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Fractional Laplacians in bounded domains: Killed, reflected, censored, and taboo Lévy flights
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The fractional Laplacian (−�)α/2, α ∈ (0, 2), has many equivalent (albeit formally different) realizations as a
nonlocal generator of a family of α-stable stochastic processes in Rn. On the other hand, if the process is to be
restricted to a bounded domain, there are many inequivalent proposals for what a boundary-data-respecting
fractional Laplacian should actually be. This ambiguity not only holds true for each specific choice of the
process behavior at the boundary (e.g., absorbtion, reflection, conditioning, or boundary taboos), but extends
as well to its particular technical implementation (Dirichlet, Neumann, etc., problems). The inferred jump-type
processes are inequivalent as well, differing in their spectral and statistical characteristics, which may strongly
influence the ability of the formalism (if uncritically adopted) to provide an unambiguous description of real
geometrically confined physical systems with disorder. Specifically that refers to their relaxation properties
and the near-equilibrium asymptotic behavior. In the present paper we focus on Lévy flight-induced jump-type
processes which are constrained to stay forever inside a finite domain. This refers to a concept of taboo processes
(imported from Brownian to Lévy-stable contexts), to so-called censored processes, and to reflected Lévy flights
whose status still remains to be unequivocally settled. As a by-product of our fractional spectral analysis,
with reference to Neumann boundary conditions, we discuss disordered semiconducting heterojunctions as the
bounded domain problem.
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I. MOTIVATION

Brownian motion in a bounded domain is a classic problem
with ample coverage in the literature, specifically concerning
the absorbing (Dirichlet) and reflecting (Neumann) boundary
data (for the present purpose we disregard other boundary data
choices). The coverage concerning their physical relevance is
extensive as well [1,2].

Anticipating further discussion, we quite intentionally
point out source papers dealing with reflected Brownian mo-
tion [3] and revealing at some length the method of eigen-
function expansions for the reflected and other boundary-data
problems [4–8] (cf. also [9]). The latter method is as well
an indispensable tool in the analysis of spectral properties
of fractional Laplacians and related jump-type processes in
bounded domains. Its direct link with the well-developed
theory of heat semigroups for jump-type processes (mostly
those with absorption or killing) allows one to address the
statistics of exits from the domain, e.g., the first and mean
first exit times, large time behavior, stationarity issues, and the
probability of survival and its asymptotic decay (cf. [10–15]).
Compare also [16,17] (Brownian case) and [18–20] (Lévy-
stable case), where the role of the lowest eigenstates and
eigenvalues (thence eigenvalue gaps) of the motion generator
appears to be vital for the description of decay rates of killed
stochastic processes. The spectral data of motion generators
are relevant for quantifying long-living processes in a spatial
trap (e.g., a bounded domain), eventually with an infinite
lifetime.

Currently, the literature devoted to fractional Laplacians
and related jump-type processes is extremely rich, albeit with
no efficient interplay or communication between the physics-

and mathematics-oriented communities. There is a definite
prevalence of the very active purely mathematical research
on this subject matter. On the other hand, even a concise
listing of various real-world applications of the fractional
calculus in science and engineering is beyond the scope of this
introductory section (see, for example, [21–26]). Viewpoints
of applied mathematicians can be consulted in [27–31]. The
departure point of the present work is an apparent incompat-
ibility of the implementation of reflecting boundary condi-
tions for Lévy flights in the physics-motivated investigations
in Refs. [32–36], set against varied (inequivalent) proposals
available in the mathematical literature in Refs. [37–44].

We note that a general theory of censored Lévy processes
has been developed [37] to handle jump-type processes which
are not allowed to jump out of an open, sufficiently regular set
D ⊂ Rn (eventually closed, under suitable precautions [39]).
Within this theory, reflected Lévy-stable processes have been
introduced and so-called regional fractional Laplacians were
identified as generators of these processes [38–40]. Nonlocal
analogs of the Neumann boundary data have been associated
with them in suitable ranges of the stability parameter [39].
We point out that other analogs of nonlocal Neumann data,
imposed directly on the fractional Laplacian, were proposed
as well [42].

The existence problem for jump-type processes with an
infinite lifetime in a bounded domain seems to have been left
aside in the physics literature (see, however, Refs. [16,17]
in connection with diffusion processes and [15,45] for a
preliminary discussion of the Cauchy process that is trapped
in the interval). In contrast, permanently trapped Lévy-type
processes (likewise diffusion processes) have their well-
established place in the mathematical literature.
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One category of such processes stems from the analysis
of the long-time behavior of the survival probability in the
case of absorbing enclosures. One may actually single out
appropriately conditioned processes that never leave the do-
main once started within. Another category can be related to
reflecting boundary data. In contrast to the reflected Brownian
motion, this issue is conceptually more involved and as yet not
free from ambiguities in the context of Lévy-stable processes.
Thus, from both physical and applied mathematics points
of view, constructing well-posed fractional (Lévy) transport
models in bounded domains and keeping under control (the
degree and physical relevance of) their possible inequivalence
are of vital importance.

In the traditional Brownian lore, while defining the Lapla-
cian in a bounded domain D ⊂ Rn, denoted tentatively by
�D, we must account for various admissible boundary data
that are local, i.e., set at the boundary ∂D of an open set D.
One may try to define a fractional power of the Laplacian by
importing its locally defined boundary data on ∂D, through the
so-called spectral definition (−�D)α/2 [27–30]. This operator
is known to be different [31] from the outcome of the proce-
dure in which one first executes the fractional power of the
Laplacian and then imposes the boundary data, as embodied
in the notation (−�)α/2

D . In the case of absorbing boundaries,
in contrast to (−�D)α/2, where Dirichlet conditions can be
imposed locally at the boundary ∂D of D, for (−�)α/2

D these
data need to be imposed as exterior ones, i.e., in the whole
complement Rn\D of D.

In passing we note that it is the nonlocality of frac-
tional motion generators (fractional Laplacians) that is the
main source of difficulties if the finite-size domain prob-
lems are to be considered. In the familiar to physicists lore
of Riemann-Liouville fractional derivatives, defined in the
Caputo sense, it is known that the divergence problems
arise near the domain boundaries. In the study of transport
properties of magnetically confined plasmas [23], a regular-
ization of the otherwise singular fractional derivative of a
general function has been accomplished by subtracting the
boundary terms. A careful handling of such terms appears
to be vital in the present research and allows one to make
a clear distinction between e.g., absorbing, censored, and
reflected processes and the corresponding fractional motion
generators.

Reflected Brownian motions belong to the bounded do-
main paradigm [7,8] and likewise for the general family of
censored Lévy flights (reflected case being included). If one
resorts to the spectral definition of the fractional Laplacian
on D, Neumann conditions can be imported directly from the
Brownian framework and imposed locally.

This is not the case if censored Lévy processes and regional
Laplacians become involved. In connection with reflected
Lévy flights, a fairly nontrivial problem is to deduce a proper
nonlocal analog of the Neumann boundary condition so that
the existence status of the regional generator (and thence of
the induced process) can be granted. An even more difficult
issue is to provide a consistent (semi)phenomenological pic-
ture of the reflection mechanism, which should underlie (or
directly follow from) the mathematical procedure. Neverthe-
less, Neumann type problems can be obtained in many ways,

depending on the kind of reinjection we impose on the outside
jumps [41].

The physically appealing reflection mechanism [a limit-
ing infinite-well–trapping-interval case of the strongly anhar-
monic Langevin-Lévy evolution (cf. Refs. [32–36])] cannot
be justified on the basis of the existing mathematical theory
of reflected Lévy processes of Refs. [37,39,40] and needs a
deeper discussion concerning its meaning and range of valid-
ity. On purely mathematical grounds, the resultant asymptotic
probability density function can be readily recognized [15] as
the so-called α-harmonic function of the fractional Laplacian
(−�)α/2

D . Here we emphasize that the α-harmonic function
needs to be defined globally in R, although it may vanish
beyond D, i.e., in R\D. A strictly positive part (restricted ex-
clusively to D) of the pertinent function, while normalized on
D, can be interpreted as a probability density and, according
to Ref. [36], sets a formal explanation of the “origin of the
preferred concentration of flying objects near the boundaries
in nonequilibrium systems.”

We note that in the interior of D this probability density
function (PDF) rapidly diverges while approaching the bound-
ary, in the whole parameter range α ∈ (0, 2). Such probability
accumulation in the vicinity of the boundary barrier has been
reported recently in the analysis of the fractional Brownian
motion with a reflecting wall [46], albeit only in the superdif-
fusive regime α > 1, while a probability depletion close to the
barrier is a characteristic of the subdiffusive regime α < 1.

Reflecting barriers were seldom seriously addressed by
physicists in the case of Lévy-type processes, fractional
diffusion, and continuous-time random-walk scenarios. On
the other hand, their role in the so-called fractional Brow-
nian motion and general anomalous diffusion problems has
been analyzed [47–49], with observations that are different
from the previously outlined ones. In addition, they remain
incongruent with more mathematically oriented (including
computer-assisted) research on reflected Lévy flights and
fractional diffusion with reflection [50].

In the present paper, the main body of arguments has
its roots in the theory of (nonlocally induced, Lévy-stable)
Markov stochastic processes and spectral properties of their
(nonlocal as well as fractional) generators. Hence many in-
teresting research lines which refer to varied realizations of
anomalous diffusions (processes with memory, those deriving
from the continuous-time random walks, standard fractional
Brownian motion, etc.) are disregarded. Nonetheless, we men-
tion some source papers that investigate relaxation properties
in the fractional transport that is governed by generalized
Langevin equations, in particular in a finite domain [22,51,52]
and in the context of the fractional Brownian motion [46,53],
where depletion or accretion zones of particles near bound-
aries have been numerically predicted.

In the latter case [48], a clear specification is given of what
pragmatically oriented researchers interpret as a reflection
from the boundary (there are different prescriptions that may
lead to inequivalent outcomes). The reflection recipe always
refers to the trajectory behavior in the vicinity of the boundary.
One needs to state clearly how to execute a reflection in
the Monte Carlo pathwise simulations, i.e., not to cross the
boundary once a jump of a given length would definitely
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take us away from the trapping enclosure. Compare, e.g., our
discussion in Sec. VI and a related discussion of reflection
conditions in Refs. [32–36]. None of these papers addresses
the reflection boundary conditions for motion generators
per se.

II. VARIED (IN)EQUIVALENT FACES OF
THE FRACTIONAL LAPLACIAN

A. Fractional Laplacians in Rn

In the present paper, up to suitable adjustment of dimen-
sional constants, the free stochastic evolution in Rn refers
to either the non-negative motion generator −� (Brown-
ian motion) or (−�)α/2 with 0 < α < 2 (Lévy-stable mo-
tion). One should keep in mind that it is −(−�)α/2 which
stands for a legitimate fractional relative of the ordinary
Laplacian �.

It is known that there are many formally different defini-
tions of the fractional Laplacian which actually are equivalent
[54]. For our purposes we will reproduce three equivalent
in Rn definitions of the symmetric Lévy-stable generator,
which nowadays are predominantly employed in the literature
[we do not directly refer to the popular notion of a frac-
tional derivative, although formally one can write (−�)α/2 ≡
−∂2/∂|x|α/2, whatever specific form of (−�)α/2 is chosen].

The spatially nonlocal fractional Laplacian has an integral
definition [involving a suitable function f (x), with x ∈ Rn] in
terms of the Cauchy principal value (P.V.), which is valid in
space dimensions n � 1,

(−�)α/2 f (x) = Aα,n lim
ε→0+

∫
Rn⊃{|y−x|>ε}

f (x) − f (y)

|x − y|α+n
dy, (1)

where dy ≡ dny and the (normalization) coefficient

Aα,n = 2α�
(

α+n
2

)
πn/2|�( − α

2

)| = 2αα�
(

α+n
2

)
πn/2�

(
1 − α

2

) . (2)

Here one needs to employ �(1 − s) = −s�(−s) for any s ∈
(0, 1). The normalization coefficient has been adjusted to
secure that the integral definition stays in conformity with
its Fourier transformed version. The latter actually gives rise
to the widely (sometimes uncritically) used Fourier multiplier
representation of the fractional Laplacian [27,29,30,54,55]

F[(−�)α/2 f ](k) = |k|αF[ f ](k). (3)

We recall again that it is −(−�)α/2 which is a fractional
analog of the Laplacian �.

Another definition, which is quite popular in the literature
in view of the more explicit dependence on the ordinary
Laplacian, derives directly from the standard Brownian semi-
group exp(t�) (in passing we note that the Lévy semigroup
reads exp[−t (−�)α/2]). The pertinent semigroup is explicitly
built into the formula, originally related to Bochner’s subordi-
nation concept [54–56]:

(−�)α/2 f = 1

|�( − α
2

)|
∫ ∞

0
(et� f − f )t−1−α/2dt . (4)

Clearly, given an initial datum f (x), we are dealing here
directly with a solution of the standard (up to a dimensional

coefficient) heat equation f (x, t ) = et� f in the above integral
formula.

We note that, based on tools from functional analysis
(e.g., the spectral theorem), this definition of the fractional
Laplacian extends to fractional powers of more general non-
negative operators than (−�) proper. This point will receive
more attention below.

Remark 1. While computing the singular integral (1), one
needs to exert some care if a decomposition into a sum of
integrals is involved. An alternative definition

(−�)α/2 f (x) = Aα,n

2

∫
Rn

2 f (x) − f (x + y) − f (x − y)

|y|n+α
dy,

(5)

if employed in suitable function spaces, is by construction free
of singularities and does not involve the pertinent decomposi-
tions [27,29,31].

B. Fractional Laplacians in a bounded domain

1. Restricted (hypersingular) fractional Laplacian

As mentioned before, a domain restriction to a bounded
subset D ⊂ Rn is hard, if not impossible, to implement via the
Fourier multiplier definition. The reason is an inherent spatial
nonlocality of Lévy-stable generators.

We confine attention to the Dirichlet boundary data in a
bounded domain. Here one begins, from the formal fractional
operator definition, in Rn and restricts its action to suitable
functions with support in D ⊂ Rn. It is known that the stan-
dard Dirichlet restriction f (x) = 0 for all x ∈ ∂D is insuffi-
cient. One needs to impose the so-called exterior Dirichlet
condition f (x) = 0 for all x ∈ R\D.

Let us tentatively assume that f = g does not identically
vanish in Rn\D. The formal definition (1) (we use the principal
value abbreviation P.V. for the integral) yields

(−�)α/2 f (x) = Aα,nP.V.
∫

Rn

f (x) − f (y)

|x − y|α+n
dy

= Aα,n

[
P.V.

∫
D

f (x) − f (y)

|x − y|α+n
dy

+
∫

Rn\D

f (x) − g(y)

|x − y|α+n
dy

]
. (6)

Upon setting g(x) = 0 for all x ∈ R\D, we arrive at the
restricted fractional Laplacian (−�)α/2

D , whose integral def-
inition is shared with (−�)α/2 [cf. Eq. (1)] but whose domain
is restricted to functions vanishing in Rn\D. Accordingly, for
all x ∈ D we have

(−�)α/2
D f (x) = (−�)α/2 f (x) = h(x), (7)

where the function h(x) may not have the exterior property
of f (x). We point out that there is no restriction upon the
integration volume, which is a priori Rn and not solely D ⊂
Rn. Indeed,

(−�)α/2 f (x) = Aα,n

[
P.V.

∫
D

f (x) − f (y)

|x − y|α+n
dy

+ f (x)
∫

Rn\D

dy

|x − y|α+n

]
, (8)
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so the exterior Rn\D contribution affects the outcome of (7)
for all x ∈ D.

In the case of sufficiently regular domains, we encounter
here a solvable spectral (eigenvalue) problem for the fractional
Laplacian in a bounded domain D: (−�)α/2

D φk (x) = λkφk (x),
k � 1. This spectral issue has ample coverage in the literature,
and with regard to a detailed analysis of various eigenvalue
problems for restricted fractional Laplacians, especially of the
fully computable one-dimensional (1D) case in the interval
(−1, 1) = D ⊂ R, we mention Refs. [57–63] (see also [55]).

We note that Eq. (8) can be converted to the form of
the hypersingular Fredholm problem, discussed in detail in
Refs. [60–63]. All involved singularities can be properly han-
dled (are removable) and eventually one arrives at the formula
[62]

(−�)α/2
D f (x) ≡ −Aα,n

∫
D̄

f (u)

|u − x|n+α
du, (9)

where x ∈ D and D is the ultimate integration area. The R\D
input, implicit in Eq. (8), has been completely eliminated.

2. Spectral fractional Laplacian

We first impose the boundary conditions upon the Dirichlet
Laplacian in a bounded domain D i.e., at the boundary ∂D
of D. That is encoded in the notation �D. Presuming to
have in hand its L2(D) spectral solution [employed before in
connection with (7)], we introduce a fractional power of the
Dirichlet Laplacian (−�D )α/2 as

(−�D )α/2 f (x) =
∞∑
j=1

λ
α/2
j f jφ j (x)

= 1∣∣�( − α
2

)∣∣
∫ ∞

0
(et�D f − f )t−1−α/2dt,

(10)

where f j = ∫
D f (x)φ j (x)dx and φ j , j = 1, 2, . . ., form an

orthonormal basis system in L2(D):
∫

D φ j (x)φk (x)dx = δ jk .
We note that the spectral fractional Laplacian (−�D )α/2

and the ordinary Dirichlet Laplacian �D share eigenfunctions
and their eigenvalues are related as well: λ j ↔ λ

α/2
j . The

boundary data for (−�D )α/2 are imported from these for �D.
From the computational (computer-assisted) point of view,
this spectral simplicity has been considered as an advantage,
compared to other proposals (cf. [28,64,65]).

In contrast to the situation in Rn, the restricted (−�)α/2
D and

spectral (−�D )α/2 fractional Laplacians are inequivalent and
have entirely different sets of eigenvalues and eigenfunctions.
Basic differences between them have been studied in [31] (see
also [27,29,58]). An extended study of the intimately related
subordinate killed Brownian motion in a domain can be
found in Refs. [56,66]. We note one most obvious difference
encoded in the very definitions: The boundary data for the
restricted fractional Laplacian need to be exterior and set on
Rn\D, while those for the spectral one are set locally at the
boundary ∂D of D.

Remark 2. In the physics-oriented research, the exis-
tence of inequivalent fractional Laplacians in the case of
bounded domains seems to have been overlooked. That led

to vigorous discussions [67,68] about the validity of spectral
(eigenvalue problems) solutions presented in Refs. [24,26].
See also [69] for simple, standard quantum-theory-motivated
problems, e.g., the fractional infinite well or harmonic os-
cillator with mass m � 0. In particular, Laskin’s spectral
solution for the infinite well, as an outcome of his tacit
assumptions, coincides precisely with the spectral Laplacian
eigenvalue solution λ

α/2
k and φk (x), k � 1, given the standard

solution λk and φk (x), k � 1, of the quantum-mechanical
infinite well. We point out an explicit usage of the spec-
tral fractional Laplacian in Ref. [11], where the fractional
process on the interval with absorbing ends has been re-
solved by means of the spectral affinity with an infinite-well
problem [7,15,16].

Remark 3. Let us mention that solutions of the frac-
tional infinite-well problem, together with that of an approx-
imating sequence of deepening fractional finite wells, based
on the restricted fractional Laplacian, have been addressed
in Refs. [45,59–61,63,70–72]. Moreover, the fractional har-
monic oscillator (including the so-called massless version,
with the Cauchy generator involved) has been addressed in
a number of papers (see, e.g., [13,60,73]; see also [74] for the
quartic case).

Remark 4. In Ref. [12] the spectral definition of the frac-
tional Laplacian has been comparatively mentioned, prior
to the mathematically more refined analysis of Ref. [31].
In fact, a quantitative comparison has been made of the
spectral and restricted Dirichlet problems on the interval.
Numerical results for various average quantities have been
found not to differ substantially. It has been noticed that the
restricted Laplacian eigenfunctions are close to the spectral
Laplacian eigenfunctions (trigonometric functions) except for
the vicinity of the boundaries. An important observation was
that the probability decay time rate formulas show detectable
differences. In this connection it is also instructive to record an
analogous situation while comparing the pure Brownian case
with its spectral fractional relative.

Remark 5. It is useful to exemplify the differences between
the restricted Laplacian and spectral Laplacian outcomes for
the interval (−1, 1). Namely, according to [72], one arrives at
an approximate eigenvalue formula for n � 1 and 0 < α < 2:
λn = [ nπ

2 − (2−α)π
8 ]α − O( 2−α

n
√

α
). We note that the eigenval-

ues of the ordinary (minus) Laplacian in the interval read
λn = [ nπ

2 ]2, n � 1. Up to dimensional coefficients, we have
here the familiar quantum-mechanical spectrum of the infinite
well, set on the interval in question. On the other hand,
the spectral fractional well outcome is λα/2

n = [ nπ
2 ]α , n � 1

(see [24,26,69]).
Remark 6. The ground-state function in the restricted case

has been proposed in a quite complicated analytic form (ac-
tually, it is an approximate expression for a true eigenfunc-
tion) [71,72]. Prospective ground-state properties were also
analyzed in minute detail, with numerical assistance [59–61].
The available data justify another approximation in terms
of a function ψ (x) = Cα,γ [(1 − x2) cos(γ x)]α/2, where Cα,γ

stands for the L2(D) normalization factor, while γ is consid-
ered to be the best-fit parameter, allowing one to approach
quite closely the computer-assisted eigenfunction outcomes
[60]. This may be directly compared with the outcome for the
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spectral case, whose the ground state cos(πx/2) is shared with
the ordinary Laplacian in the interval.

3. Regional fractional Laplacian

The regional fractional Laplacian has been introduced in
conjunction with the notion of censored symmetric stable
processes [37–41]. A censored stable process in an open set
D ⊂ Rn is obtained from the symmetric stable process by
suppressing its jumps from D to the complement Rn\D of D,
i.e., by restricting its Lévy measure to D. Stated otherwise,
a censored stable process in an open domain D is a stable
process forced to stay inside D. This is a clear difference from
a number of proposals that define Neumann-type conditions
(e.g., [42,43]), where outside jumps are admitted, albeit with
an immediate return (resurrection; cf. [37,75]) to the interior
of D.

The censorship idea resembles random processes condi-
tioned to stay in a bounded domain forever [16,17]. However,
we point out that the censoring concept is not the same [37] as
that of the (Doob-type) conditioning. Instead, it is intimately
related to reflected stable processes in a bounded domain
with killing within the domain, or at least at its boundary,
encompassing a class of processes (loosely interpreted as
reflective) that do not approach the boundary at all [37,38].

In Ref. [38] the reflected stable processes in a bounded
domain have been investigated, stringent criteria for their
admissibility set, and their generators identified with regional
fractional Laplacians on the closed region D̄ = D ∪ ∂D. Ac-
cording to [38], censored stable processes of Ref. [37], in D
and for 0 < α � 1, are essentially the same as the reflected
stable process.

In general [37], if α � 1, the censored stable process never
approaches ∂D. If α > 1, the censored process may have a
finite lifetime and may take values at ∂D.

Conditions for the existence of the regional Laplacian for
all x ∈ D̄, in spatial dimensions higher than one, have been
set in Theorem 5.3 of [38]. For 1 � α < 2, the existence of
the regional Laplacian for all x ∈ ∂D is granted if and only if
a derivative (this notion is not conventional and is adapted to
the nonlocal setting) of a each function in the domain in the
inward normal direction vanishes [38,40].

For our present purposes we assume 0 < α < 2 and D ⊂
Rn being an open set. The regional Laplacian is assumed (a
technical assumption employed in the mathematical literature)
to act upon functions f on an open set D such that∫

D

| f (x)|
(1 + |x|)n+α

dx < ∞. (11)

For such functions f , x ∈ D, and ε > 0, we write [compare,
e.g., Eqs. (6)–(9)]

(−�)α/2
D,reg f (x) = Aα,n lim

ε→0+

∫
y∈D{|y−x|>ε}

f (x) − f (y)

|x − y|α+n
dy,

(12)
provided the limit (actually the Cauchy principal value) exists.

Note a subtle difference between the restricted and regional
fractional Laplacians. The former is restricted exclusively
by the domain property f (x) = 0, x ∈ Rn\D. The latter is
restricted exclusively by demanding the integration variable
y of the Lévy measure to be in D.

If we impose the Dirichlet domain restriction upon the
regional fractional operator [ f (x) = 0 for x ∈ Rn\D, D being
an open set D], we can rewrite Eq. (8) as an identity relating
the restricted and regional fractional Laplacians for all x ∈ D
[15,37,58],

(−�)α/2 f (x) = [
(−�)α/2

D,reg + κD(x)
]

f (x), (13)

where κD(x) = Aα,n
∫

Rn\D |x − y|−(n+α)dy is non-negative and
plays the role of the density of the killing measure [37].

Equations (12) and (13) actually indicate that the restricted
fractional Laplacian can be obtained as a κD perturbation of
the regional one (see, e.g., [37]) and in principle we can move
priority status from the restricted to the regional one, provided
the exterior Dirichlet condition is respected by both operators.
Indeed, while quantifying the random process associated with
the generator (−�)α/2

D,reg + κD(x) by invoking the concept of
the Feynman-Kac kernel [37], one is tempted to view κD(x)dt
as the probability of extinction (killing) in the time interval
[t, t + �t], and accordingly κD(x) stands for the killing rate.

Proceeding otherwise, we can define the regional Lapla-
cian as a perturbation of the restricted fractional one by the
negative (not positive-definite) potential (−�)α/2 − κD(x) =
(−�)α/2

D,reg. Then, however, κD(x) would refer to the resurrec-
tion (birth or creation [37]) rate. One should be aware that to
define the regional fractional Laplacian, various precautions
concerning its domain must be observed to handle potentially
divergent terms [κD(x) being included].

If one were to replace D in Eq. (12) by D̄ = D ∪ ∂D
then, according to [37,38], one would arrive at the generator
of a reflected stable process in D̄ (cf. [38]), (−�)α/2

D̄,reg
f (x),

provided suitable conditions (various forms of the Hölder con-
tinuity) upon functions in the domain of the nonlocal operator
are respected. In particular, in the case of 1 � α < 2 it has
been shown that (−�)α/2

D̄,reg
f (x) exists at a boundary point

x ∈ D if and only if the normal inward derivative vanishes:
(∂ f /∂n)(x) = 0. We note that the existence of the spectral
solution (eigenvalue problem) for the regional Laplacian with
(appropriately defined, generally not in an appealing deriva-
tive form) Neumann boundary data has been demonstrated
in Ref. [40] (see also [37,39] for the one-dimensional discus-
sion).

Remark 7. To avoid possible misunderstandings and misuse
of the concept of killing (and subsequently that of resurrec-
tion or birth [75–78]), let us recall basic Brownian motion
intuitions that underlie the implicit path-integral formalism.
Namely, operators of the form Ĥ = − 1

2� + V � 0 with V �
0 give rise to transition kernels of diffusion-type Markovian
processes with killing (absorption), whose rate is determined
by the value of V (x) at x ∈ R. This interpretation stems
from the celebrated Feynman-Kac (path-integration) formula,
which assigns to exp(−Ĥt ) the positive integral kernel

exp
[ − (t − s)

( − 1
2� + V

)]
(y, x)

=
∫

exp

[
−

∫ t

s
V (ω(τ ))dτ

]
dμs,y,x,t (ω).

In terms of Wiener paths, that kernel is constructed as a
path integral over paths that get killed at a point Xt = x,
with an extinction probability V (x)dt in the time interval
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(t, t + dt ). The killed path is henceforth removed from the
ensemble of ongoing Wiener paths. The exponential factor
exp[− ∫ t

s V (ω(τ ))dτ ] is here responsible for a proper redis-
tribution of Wiener paths, so the evolution rule

exp(tL) f (x) =
∫

Rn

k(x, 0; y, t ) f (y)dy = Ex[ f (Xt )],

with −L = − 1
2� + V , is well defined as an expectation value

of the killed process X (t ), but given in terms of Brownian
paths W (t ) with the Feynman-Kac weight,

Ex[ f (Xt )] = Ex

[
f (Wt ) exp

(
−

∫ t

0
V (Wτ )dτ

)]
.

The resurrection executed with the same V (x) rate would
actually refer to another Feynman-Kac weight (note the sign
change)

∫
exp[

∫ t
s V (ω(τ ))dτ ]dμs,y,x,t (ω), which amounts to

the replacement of V by −V in the expression for the motion
generator L (as an instructive example one may conceive
of a replacement of the harmonic-oscillator potential by its
inverted version; cf. [79]).

III. RELEVANCE VERSUS IRRELEVANCE OF
EIGENVALUE PROBLEMS FOR FRACTIONAL

LAPLACIANS IN A BOUNDED DOMAIN:
STOCHASTIC VIEWPOINT

A. Transition densities

Let us restate our motivations in a more formal context (our
notation is consistent with that in Ref. [10]). Namely, given
the (negative-definite) motion generator L, we will consider
the (contractive) semigroup evolution of the form

f (x, t ) = Tt f (x) = exp(tL) f (x)

=
∫

Rn

k(x, 0; y, t ) f (y)dy = Ex[ f (Xt )],

(14)

where t � 0. In passing, we have here defined a local expec-
tation value Ex[· · · ], interpreted as an average taken at time
t > 0, with respect to the process Xt started in x at t = 0,
with values Xt = y ∈ Rn that are distributed according to the
positive transition (probability) density function k(x, 0; y, t ).

We in fact deal with a bit more general transition func-
tion k(x, s; y, t ), 0 � s < t , that is symmetric with respect
to x and y and time homogeneous. This justifies the no-
tation k(x, s; y, t ) = k(t − s, x, y) = k(t − s, y, x) and subse-
quently k(x, 0; y, t ) = k(t, x, y) = k(t, y, x). The heat equa-
tion ∂t f (x, t ) = L f (x, t ) for t � 0 is here presumed to
follow. We recall that, given a suitable transition func-
tion, we recover the semigroup generator via [L f ](x) =
limt→0

1
t

∫
Rn [k(t, x, y) f (y)dy − f (x)], in accordance with the

(implicit strong continuity) assumption that actually Tt =
exp(Lt ).

For completeness, let us mention that the semigroup prop-
erty Tt Ts = Tt+s implies the validity of the composition rule∫

Rn k(t, x, y)k(s, y, z)dy = k(t + s, x, z). Let B ⊂ Rn, a prob-
ability that a subset B has been reached by the process Xt

started in x ∈ Rn, after the time lapse t , be inferred from

P[Xt ∈ B|Xs = x] = ∫
B k(t − s, x, y)dy, 0 � s < t ; it reads

Px(Xt ∈ B) =
∫

B
k(t, x, y)dy = k(t, x, B). (15)

Clearly, Px(Xt ∈ Rn) = 1. In general, for time-homogeneous
processes, we have k(x, s; B, t ) = ∫

B k(t − s, x, y)dy, s < t ,
hence we can rephrase the Chapman-Kolmogorov relation as∫

Rn

k(x, s; z, u)k(z, u, B, t )dz

= k(x, s; B, t ) = k(t − s, x, B) (16)

= P[Xt−s ∈ B|Xs = x],

where s < u < t .

B. Absorbing boundaries and survival probability

Now we move on to killed Brownian and Lévy-stable
motions in a bounded domain. Let us denote by D a bounded
open set in Rn. By T D

t we denote the semigroup given by the
process Xt that is killed on exiting D. Let kD(t, x, y) be the
transition density for T D

t . Then [57]

T D
t f (x) = Ex[ f (Xt ); t < τD] =

∫
D

kD(t, x, y) f (y)dy, (17)

provided x ∈ D, t > 0, and the first exit time τD = inf{t �
0, Xt /∈ D} actually stands for the killing time for Xt .

From the general theory of killed semigroups in a bounded
domain it follows that in L2(D) there exists an orthonormal
basis of eigenfunctions {φn}, n = 1, 2, . . ., of T D

t and corre-
sponding eigenvalues {λn, n = 1, 2, . . .} satisfying 0 < λ1 <

λ2 � λ3 � · · · . Accordingly, T D
t φn(x) = e−λntφn(x) holds,

where x ∈ D, t > 0, and we also have

kD(t, x, y) =
∞∑

n=1

e−λntφn(x)φn(y). (18)

The eigenvalue λ1 is nondegenerate (e.g., simple) and the
corresponding strictly positive eigenfunction φ1 is often called
the ground-state function.

For the infinitesimal generator LD of the semigroup we
have LDφn(x) = −λnφn(x). The corresponding heat equation
∂t f (x, t ) = LD f (x, t ) holds true as well.

It is useful to introduce the notion of the survival proba-
bility for the killed random process in a bounded domain D.
Namely, given T > 0, the probability that the random motion
has not yet been absorbed (killed) and thus survives up to time
T is given by

Px[τ > T ] = Px[XT ∈ D] =
∫

D
kD(T, x, y)dy (19)

and is named the survival probability up to time T .
Proceeding formally with Eqs. (4) and (5), under suitable

integrability and convergence assumptions for the infinite
series, one arrives at an asymptotic survival probability decay
rule

Px[τ > T ] =
∞∑

n=1

e−λnT anφn(x) ⇒ a1e−λ1T φ1(x), (20)
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where an = ∫
D φn(y)dy, n = 1, 2, . . .. This familiar exponen-

tial decay law is characteristic of, e.g., the Brownian motion
with absorbing boundary data. Its time rate is controlled by
the largest eigenvalue −λ1 of �D.

Thus, as far as the asymptotic properties are concerned, we
do not need the full-fledged spectral solution (e.g., that of the
eigenvalue problem for the fractional Laplacian). The lowest
eigenvalue and its eigenfunction are what really matters. The
degree of accuracy with which we approximate the asymptotic
behavior may be improved by not ignoring the second eigen-
value (i.e., the fundamental gap [18]). That is also specific to
the reflected motion with the lowest eigenvalue zero.

C. Conditioned random motions in a bounded domain:
Taboo processes

For the absorbing stochastic process with the transition
density (17) (thus surviving up to time T ), we introduce
survival probabilities Py[τ > T − t] and Px[τ > T ], respec-
tively, at times T − t and T , 0 < t < T . We infer a condi-
tioned stochastic process with the transition density

qD(t, x, y) = kD(t, x, y)
Py[τ > T − t]

Px[τ > T ]
, (21)

which by construction survives up to time T and is addition-
ally conditioned to start in x ∈ D at time t = 0 and reach the
target point y ∈ D at time t < T . An alternative construction
of such processes, in the diffusive case, has been described
in [16].

Given t < T , in the large time asymptotic of T , we can
invoke (19), and once T → ∞ limit is executed, Eq. (20) takes
the form

qD(t, x, y) −→ pD(t, x, y) = kD(t, x, y)
φ1(y)

φ1(x)
exp(λ1t ).

(22)

We have arrived at the transition probability density pD(t, xy)
of the probability conserving process, which never leaves
the bounded domain D. The latter eternal lifetime property
is shared with the censored processes of Ref. [37], but the
pertinent taboo processes (cf. [16,17,80] for the origin of
the term “taboo”) appear to form an independent family of
random motions. Its asymptotic (invariant) probability density
is ρ(y) = [φ1(y)]2,

∫
D ρ(y)dy = 1 [that in view of the implicit

L2(D) normalization of eigenfunctions φn].
By employing (19) and the definition ρ(y) = [φ1(y)]2, we

readily check the stationarity property. We take ρ(x) as the
initial distribution (probability density) of points in which the
process is started at time t = 0. The propagation towards tar-
get points, to be reached at time t > 0, induces a distribution
ρ(y, t ). Stationarity follows from

ρ(y, t ) =
∫

D
ρ(x)pD(t, x, y)dx = ρ(y). (23)

Note that, in contrast to kD(t, x, y), the transition probability
function pD(t, x, y) is no longer a symmetric function of x and
y (cf. in this connection Ref. [19]).

Remark 8. The semigroup T D
t (α) = exp[−t (−�)α/2

D ], t �
0, of the stable process killed upon exiting from a bounded
set D has an eigenfunction expansion of the form (19).

Basically, we never have in hand a complete set of eigenvalues
and eigenfunctions and likewise we generically do not know
a closed analytic form for the semigroup kernel kD(t, x, y)
[Eq. (19)]. A genuine mathematical achievement has been
established that when α ∈ (0, 2) and a bounded domain D is a
subset of Rn, then the stable semigroup T D

t (α) is intrinsically
ultracontractive. This technical (intrinsically ultracontractive)
property actually means that for any t > 0 there exists ct such
that for any x, y ∈ D we have [57,81–83]

kD(t, x, y) � ctφ1(x)φ1(y).

Actually we have kD(t, x, y) = ∑∞
1 e−λntφn(x)φn(y). Accord-

ingly,

kD(t, x, y)

e−λ1tφ1(x)φ1(y)
= 1 +

∞∑
2

e−(λn−λ1 )t φn(x)φn(y)

φ1(x)φ1(y)
.

It follows that we have complete information about the
(large time asymptotic) decay of relevant quantities

lim
t→∞

kD(t, x, y)

e−λ1tφ1(x)φ1(y)
= 1

and (for t > 1)

e−(λ2−λ1 )t � sup
x,y∈D

∣∣∣∣ kD(t, x, y)

e−λ1tφ1(x)φ1(y)

∣∣∣∣ � Cα,De−(λ2−λ1 )t .

Thus, what we actually need to investigate the large time
regime of Lévy processes in the bounded domain D is to know
the two lowest eigenvalues λ1 and λ2 and the ground-state
eigenfunction φ1(x) (eventually its shape [84]) of the motion
generator (see, e.g., [18]). The existence of conditioned Lévy
flights, with a transition density (21) and an invariant probabil-
ity density ρ(y) = [φ1(y)]2,

∫
D ρ(y) dy = 1, is here granted.

D. Reflected motions in a bounded domain

Reflected random motions in the bounded domain are
typically expected to live indefinitely, never leaving the do-
main, basically with a complete reflection from the bound-
ary. (We cannot a priori exclude a partial reflection, which
is accompanied by killing or transmission.) In the case of
previously considered motions, a boundary may be regarded
either as a transfer terminal to the so-called cemetery (killing
or absorption) or as being completely inaccessible from the
interior (conditioned processes). In both scenarios, the major
technical tool was the eigenfunction expansion (11), where the
spectral solution for the Laplacian with the Dirichlet boundary
data has been employed. Thus, in principle, we should here
use the notation �D, where D indicates that the Dirichlet
boundary data have been imposed at the boundary ∂D of
D ⊂ Rn.

Reflecting boundaries are related to Neumann boundary
data and therefore we should rather use the notation �N . In a
bounded domain we deal with a spectral (eigenvalue) problem
for �N with the Neumann data-respecting eigenfunctions and
eigenvalues.

A major difference from the absorbing case is that the
eigenvalue zero is admissible and the corresponding eigen-
function ψ0(x) determines an asymptotic (stationary, uniform
in D) distribution ρ0(x) = [ψ0(x)]2 [7,8]. In the Brownian
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context, the rough form of the related transition density
looks like

kN (t, x, y) = 1

V (D)
+

∞∑
n=1

e−κntψn(x)ψn(y), (24)

where κn are positive eigenvalues, ψn(x) respect the Neumann
boundary data, and V (D) denotes the volume of D (interval
length, surface area, etc.). We have ψ0(x) = 1/

√
V (D).

If one resorts to the spectral definition of the fractional
Laplacian in a bounded domain, Neumann conditions are
directly imported from these for the standard Laplacian and
thence (see, e.g., [7,11,12]) the Laplacian eigenvalues λk ,
k > 0, need to be replaced by λ

α/2
k . That is enough to map an

eigenfunction expansion of the Laplacian-induced PDF and
transition PDF to those appropriate for the fractional case
(recalling the spectral definition of the fractional Laplacian;
see also [31]).

Remark 9. Let us invoke the standard Laplacian in the
interval (with an immediate passage to the spectral definition
in mind). The case of reflecting boundaries in the interval is
specified by Neumann boundary conditions for solutions of
the diffusion equation ∂t f (x) = �N f (x) in the interval D̄ =
[a, b]. We need to have respected (∂x f )(a) = 0 = (∂x f )(b) at
the interval boundaries. The pertinent transition density reads
[2,7]

kN (t, x, y) = 1

L
+ 2

L

∞∑
n=1

cos
(nπ

L
(x − a)

)

× cos
(nπ

L
(y − a)

)
exp

(
−n2π2

L2
t

)
. (25)

The operator �N admits the eigenvalue 0 at the bottom
of its spectrum, the corresponding eigenfunction being a con-
stant whose square actually stands for a uniform probability
distribution on the interval of length L [L = 2 in the case
of (−1, 1)], to be approached in the asymptotic (large time)
limit. Solutions of the diffusion equation with reflection at
the boundaries of D can be modeled by setting p(x, t ) =
kN (t, x, x0) while recalling that p(x, 0) = δ(x − x0). We can
as well resort to c(x, t ) = ∫

D kN (t, x, y)c(y)dy while recalling
that k(t, x, y) = k(t, y, x). Note that all n � 1 eigenvalues
coincide with those of the absorbing case [11]. The eigen-
values of the spectral fractional operator for n > 0 would
read λα/2

n = (n2π2/4)α/2 = (nπ/2)α . For comparison we re-
produce a rough analytic approximation of the restricted
Laplacian eigenvalues [ nπ

2 − (2−α)π
8 ]α [72] (see also [63] for

an extended list of numerically generated sharp eigenvalues).

IV. SPECTRAL PROPERTIES OF THE REGIONAL
FRACTIONAL LAPLACIAN

All derivations and mathematically advanced demonstra-
tions of the existence of regional fractional Laplacians and
their link with (whatever that actually means) reflected Lévy
flights and general censored processes involve subtleties
concerning the behavior of functions in their domain, in
the vicinity, and at the boundaries. Attempts to reconcile
a semiphenomenologically prescribed boundary behavior of
censored stochastic processes with the notion of (i) a re-

gional fractional Laplacian and (ii) any conceivable forms
of Neumann boundary data lead to inequivalent outcomes.
This refers as well to the exploitation of Sobolev spaces
instead of the more familiar for physicists L2(D) Hilbert
spaces [40,85]. Other subtleties, like an issue of the Hölder
continuity up to the boundary, need to be kept under control as
well.

All that blurs or even hampers any pragmatic approach
aiming at the deduction of approximate (if not sharp) eigen-
values, functional shapes of eigenfunctions, related (approx-
imate) probability distributions, and estimates of probability
killing rates or decay rates towards equilibrium if regional
fractional Laplacians are interpreted as primary theoretical
constructs, instead of the restricted ones. It is our purpose
to follow the pragmatic routine, tested before in our in-
vestigation of fractional Laplacians with exterior Dirichlet
boundary conditions [60,61,63]. We point out the existence
of alternative computation routines (based on a direct dis-
cretization of fractional Laplacians) [59,86,87]. It is advan-
tageous that we can directly compare our results with these
of Ref. [58] for the regional Laplacian with the (exterior)
Dirichlet boundary data. This test of a comparative validity of
two different computation methods supports our subsequent
analysis of the full-fledged spectral problem with no Dirich-
let restriction, resulting in the implicit reflecting boundary
conditions.

It is worthwhile to note that the main body of mathematical
research refers to space dimensionalities d � 2. One should
keep in mind, at least for comparative purposes, that the one-
dimensional case (which is of interest for us below) differs
from higher-dimensional ones in a number of technical points.
Nevertheless, the one-dimensional case has an advantage of
computability and allows for deeper insight into the properties
of motion generators and processes, specifically into the issue
of potentially dangerous divergences.

A. Restricted versus regional fractional Laplacian

We depart from the formal definition (11)–(13) of the
regional fractional Laplacian and following [15,58] concen-
trate on the one-dimensional spectral problem in the interval.
The latter topic, for the Dirichlet fractional Laplacians, has
been addressed before in a number of papers in the whole
stability parameter range 0 < α < 2 and in more detail for
the distinguished α = 1 value (Cauchy process and motion
generator) in Refs. [32–34,36,45,54,59–61,63,73].

We consider the regional fractional Laplacian (see, e.g.,
Ref. [38]) acting on the closed interval (including the end
points) −1 � x � 1. To make clear the difference between the
regional and ordinary fractional Laplacians, we begin with the
fractional Laplacian on the whole real axis. We have [63]

(−�)α/2ψ (x) = −Aα

∫ ∞

−∞

ψ (u) − ψ (x)

|u − x|1+α
du,

Aα = 1

π
�(1 + α) sin

πα

2
. (26)

Since we assume the exterior Dirichlet condition ψ (u) = 0
for R\(−1, 1) [cf. (8) and (9)], the division of the integral into
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separate contributions from within and outside the interval

(−�)α/2ψ (x) = −Aα

∫ ∞

−∞

ψ (u) − ψ (x)

|u − x|1+α
du = −Aα

[∫ −1

−∞
+

∫ 1

−1
+

∫ ∞

1

]
ψ (u) − ψ (x)

|u − x|1+α
du (27)

implies

(−�)α/2ψ (x) = −Aα

[
−ψ (x)

∫ −1

−∞

du

|u − x|1+α
+

∫ 1

−1

ψ (u)

|u − x|1+α
du − ψ (x)

∫ 1

−1

du

|u − x|1+α
− ψ (x)

∫ ∞

1

du

|u − x|1+α

]

≡ −Aα

[∫ 1

−1

ψ (u)

|u − x|1+α
du − ψ (x)

∫ ∞

−∞

du

|u − x|1+α

]
≡ −Aα

∫ 1

−1

ψ (u)du

|u − x|1+α
+ �I1D. (28)

Formally, the integral �I1D in (28) identically vanishes,

�I1D = −Aαψ (x)

α

[
1

|u − x|α
]∞

−∞
= 0, (29)

for all 0 < α < 2. This implies that the eigenvalue problem for the operator |�|α/2 in the interval [i.e., actually the restricted
fractional Laplacian (−�)α/2

D of Eq. (9)] is defined by the equation

(−�)α/2ψ (x) = −Aα

∫ 1

−1

ψ (u)du

|u − x|1+α
= Eψ (x). (30)

The emergent spectrum is discrete E ≡ En, n = 1, 2, . . ., nondegenerate, and positive En > 0 (see, e.g., [57,62,63] and references
therein).

The regional fractional Laplacian is defined similarly to Eq. (26) but directly in the interval D = [−1, 1] (which refers to the
admitted integration area as well), i.e.,

(−�)α/2
D,regψ (x) = −Aα

∫ 1

−1

ψ (u) − ψ (x)

|u − x|1+α
du = −Aα

[∫ 1

−1

ψ (u)du

|u − x|1+α
− ψ (x)

∫ 1

−1

du

|u − x|1+α

]
. (31)

We can readily evaluate the integral∫ 1

−1

du

|u − x|1+α
= − 1

α

1

(1 − x2)α
[(1 − x)α + (1 + x)α] = − 1

Aα

κα
D(x), (32)

where D = [−1, 1] and we obtain essentially the same κD(x) that has emerged in the formula (13) [see also Eq. (2.13) in
Ref. [58]]. We emphasize that, apart from a difference in the integration volumes for the involved integrals (13) and (32), the
outcome of integrations is the same (see, e.g., [63]). We note a familiar [63] outcome 2/(x2 − 1) for α = 1.

We thus arrive at the following spectral problem for the regional fractional Laplacian in D = [−1, 1]:

−Aα

∫ 1

−1

ψ (u)du

|u − x|1+α
− Aαψ (x)

α

(1 − x)α + (1 + x)α

(1 − x2)α
= Eψ (x). (33)

In short that reads

(−�)α/2
D,regψ (x) = (−�)α/2ψ (x) − κα

D(x)ψ (x) = Eψ (x), (34)

with the persuasive interpretation of (−�)α/2
D,regψ (x) as the

additive perturbation of |�|α/2 by the negative-definite po-
tential −κα

D(x). The latter is an inverted version (cf. [79]) of
the attractive singular (cf. [88]) potential κα

D(x). Its functional
shape (the coefficient Aα has been omitted) for different values
of α is reported in Fig. 1.

In passing we note that the concept of resurrected (after
killing) Markov processes has been associated with the thus
interpreted random noise generator (−�)α/2

D,regψ (x) (see, e.g.,
[37,75]).

B. Regional fractional Laplacian in L2(D), D = [−1, 1]:
Trigonometric base with Dirichlet boundary conditions

We do not know of any methods towards an analytic
solution of the pertinent eigenvalue problem and therefore we

revert to numerically assisted arguments, where an explicit
diagonalization of Eq. (33) in the L2(D) trigonometric basis
can be performed. To this end we will use the same even-odd
base (and the computation method) as that in Ref. [63]. For
any function ψα (x), which may possibly be a solution to the
eigenvalue problem, we have the following expansions in the
trigonometric basis of L2(D), D = [−1, 1]:

ψαe(x) =
∞∑

k=0

akα cos
(2k + 1)πx

2
,

ψαo(x) =
∞∑

k=1

bkα sin kπx. (35)

So defined would-be basis functions (35) satisfy the Dirich-
let boundary conditions ψαe,o(±1) = 0. The behavior of the
derivative dψ (x = ±1)/dx is immaterial.
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FIG. 1. Negative-definite singular potential (32) in the spectral
problem for the regional fractional Laplacian for various values of α

(figures near curves).

Continuing to the matrix representation of the eigenvalue
problem, for the even subspace we have

∞∑
k=0

ak (γkiα + βkiα ) = Eaiα. (36)

Explicitly, the matrix to be diagonalized has the form (we
suppress an index α for the moment)

Âeven =

⎛
⎜⎜⎝

γ00 + β00 γ10 + β10 · · · γn0 + βn0

γ10 + β10 γ11 + β11 · · · γn1 + βn1
... · · · · · · ...

γn0 + βn0 γn1 + βn1 · · · γnn + βnn

⎞
⎟⎟⎠, (37)

where γik ≡ γki are “old” [63] matrix elements coming from
Eq. (30) [or the first term on left-hand side of Eq. (33)],

γikα =
∫ 1

−1
fkα (x) cos

(2i + 1)πx

2
dx, (38)

where fkα (x) are defined by Eq. (16) of Ref. [63].
At the same time, βki are “new” matrix elements coming

from the second term on the left-hand side of (33), i.e., from
the additive negative-definite potential (32),

βikα = −Aα

α

∫ 1

−1
cos

(2i + 1)πx

2
cos

(2k + 1)πx

2

× (1 − x)α + (1 + x)α

(1 − x2)α
dx. (39)

The integrals for βik1 (α = 1) can be calculated explicitly,

βik1 = 1

π

{
(−1)k−iCi[2π (1 + k + i)]

+ (−1)k+i+1Ci[2π (k − i)] + (−1)k+i+1

× ln
1 + k + i

k − i

}
. (40)

Diagonal elements have the form

βii1 = 1

π
{−γ + Ci[2π (1 + 2i)] − ln[2π (1 + 2i)]},

γ = 0.577 216 . . . . (41)

TABLE I. Six lowest eigenvalues of the regional fractional
Laplacian for α = 0.5, 1, and 1.5 calculated for the 2000 × 2000
matrix, composed with respect to the trigonometric base with Dirich-
let boundary conditions. Energy levels are numbered according to
standard convention: The lowest (ground) state is labeled n = 1
(even state with k = 0), n = 2 corresponds to the lowest odd state
with k = 1, n = 3 corresponds to an even state with k = 2, etc. The
corresponding eigenvalues from Ref. [58] are listed for comparison.

�
��α

i
1 2 3 4 5 6

0.5 0.0048 0.4495 0.8724 1.2189 1.5041 1.7809
0.5 [58] 0.0038 0.4593 0.8626 1.2091 1.5149 1.7911

1.0 0.1177 1.1926 2.5888 4.0147 5.5328 7.0077
1.0 [58] 0.1135 1.2026 2.5760 4.0292 5.5171 7.0245

1.5 0.8059 3.6475 7.7541 12.816 18.676 25.230
1.5 [58] 0.8088 3.6509 7.7500 12.811 18.670 25.235

Here Ci(x) is a cosine integral function [89]. Analogously,
one proceeds with γik1, which can be analytically computed
as well [63].

For the odd subspace we have

∞∑
k=0

bk (ηkiα + ζkiα ) = Ebiα, (42)

where ηkiα is given by Eq. (35) of Ref. [63] and

ζikα = −Aα

α

∫ 1

−1
sin kπx sin iπx

(1 − x)α + (1 + x)α

(1 − x2)α
dx.

(43)

For concreteness, we reproduce a computation outcome in the
special (Cauchy) case α = 1:

ζik1 = 1

π

{
(−1)k−iCi[2π (k + i)]

+ (−1)k+i+1Ci[2π (k − i)] + (−1)k+i+1 ln
k + i

k − i

}
,

(44)

ζii1 = 1

π
{−γ + Ci[4iπ ] − ln[4iπ ]}. (45)

For α �= 1 the same arguments are valid and can be safely
reproduced step by step. The only difference is that matrix
elements need to be calculated numerically. To obtain the
results at a reasonable time cost, we use smaller-size matrices,
around 50 × 50. This gives access to two decimal places for
(lowest) eigenvalues and a fairly good approximation of the
corresponding eigenfunctions.

The six lowest eigenvalues for Eq. (33) are reported in
Table I for each of the stability indices α = 0.5, 1.0, and
1.5. Quite good coincidence is seen with the spectral data
reported in Table 1 of Ref. [58] (obtained by an alternative
fractional Laplacian discretization method). Since our main
purpose has been to test the computation method of [62,63]
against an alternative proposal of Refs. [58,59], we refrain
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FIG. 2. Comparison between four lowest eigenfunctions of the
(a) regional and (b) restricted fractional Laplacians for α = 1. Eigen-
state labels n = 1, 2, 3, 4 are indicated.

from a comparative listing of other eigenvalues and other α

choices; see, however, [58].
The four lowest eigenfunctions for α = 1 are reported in

Fig. 2. It can be seen [compare, e.g., Figs. 2(a) and 2(b)] that
the eigenfunctions for regional and standard fractional Lapla-
cians are qualitatively similar, with one exception. Namely,
those for the regional operator show much sharper decay
as x → ±1 and their derivatives diverge to infinity as the
boundary points are approached.

The more detailed comparative display of Fig. 3 gives
further support to our statement about the sharp decay (steep
descent down to zero) of the regional fractional Laplacian
eigenfunctions set against those for the restricted one. Com-
paring Eqs. (30) and (33), we realize that the milder decay
in the restricted case is a consequence of a strong repulsion
(scattering) from the boundaries, which is encoded in the
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FIG. 3. Comparison of first four eigenfunctions of regional and
restricted fractional Laplacians for α = 1, while displayed in pairs
corresponding to n = 1, 2, 3, 4. Black solid curves refer to the re-
gional Laplacian and red dashed curves to the restricted one.
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tional operator (31) for different Lévy indices α, shown in the panel.
(b) Same as in Fig. 2 but for α = 1.5. Figures near curves correspond
to state labels (numbers 1,2,3,4).

functional form of the (inverted) singular potential (32) in the
eigenvalue problem of the form (13).

We note that our results are consistent with independent
findings of Ref. [58] (which refers as well to a different
computation method). Compare Fig. 7 therein, where the
first and second eigenfunctions of the restricted and regional
fractional Laplacians were compared. Additionally, those for
the spectral fractional Laplacian have been depicted.

To give a glimpse of the α dependence of the spectral
problems discussed, in Fig. 4 we display comparatively the
n = 1 eigenfunctions (ground states) for several α �= 1 values
[Fig. 4(a)]. We note that for α = 0.2 and 0.5 the ground-
state eigenfunctions show an oscillatory behavior, close to a
maximum. The computation has been completed for 50 × 50
matrices (and checked for 30 × 30, which still can be viewed
to provide a rough approximation). These oscillatory artifacts
are expected to smoothen down with the growth in matrix
size. For α = 1.5 and 1.8, curves have been evaluated by
employing 50 × 50 matrices and are found to be smooth.

Figure 4(b) depicts the four lowest eigenfunctions for
α = 1.5. The pertinent curves are qualitatively similar to those
for α = 1 (cf. Fig. 3).

C. Regional fractional Laplacian: Trigonometric base with
Neumann boundary conditions, an obstacle

On the basis of results reported in Figs. 2–4, it is possible
to investigate the behavior of the derivative of the ground
state in the vicinity of boundary points. Clearly, ψ ′

1(x → ±1)
becomes smaller as α increases. While for 0.2 < α < 1 the
decay of ψ1(x) is steep, at α > 1 the decay becomes pro-
gressively milder. Accordingly, as α increases, the derivative
ψ ′

n(x → ±1) of any state decreases. It is different from zero
in the whole range 0 < α < 2.

It is thus natural to address the question of whether the
traditional Neumann condition (vanishing of the derivative
of the function at the boundaries) is at all feasible for the
regional fractional Laplacian. The natural choice at this point

042126-11



GARBACZEWSKI AND STEPHANOVICH PHYSICAL REVIEW E 99, 042126 (2019)

n=0

n=1

n=2
n=3

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

FIG. 5. Plot of four first functions of the Neumann base in the
interval [−1, 1]. State labels n = 0, 1, 2, 3 are displayed near curves.

is to pass from the Dirichlet to the Neumann L2([−1, 1]) basis
[originally devised for the standard Laplacian in the interval;
compare, e.g., Sec. III B, Eqs. (24) and (25)].

The pertinent Neumann base in the interval of length
L comprises fn = cos(nπx/L), 0 < x < L, n = 0, 1, 2, . . ..
In dimensionless units (measuring x in units of L) the
functions assume the form fn = cos nπx, x ∈ [0, 1], n =
0, 1, 2, 3, . . .. This basis system is orthogonal but not nor-
malized:

∫ 1
0 cos nπx cos kπx dx = 1

2δnk , n, k �= 0 or 1, n =
k = 0. The passage to the interval [−1, 1] is accom-
plished via a substitution x → (x + 1)/2, which gives rise
to fn = cos nπ

2 (x + 1), n = 0, 1, 2, . . ., x ∈ [−1, 1]. This ba-
sis system is orthonormal in L2([−1, 1]) except for f0 = 1.
After incorporating the normalization coefficient, the or-
thonormal base with Neumann boundary conditions at end
points of [−1, 1] reads { f0 = 1/

√
2, fn = cos nπ

2 (x + 1), n =
1, 2, . . . , x ∈ [−1, 1]}. The Neumann basis functions take
nonzero values at the boundaries x = ±1 (see, e.g., Fig. 5)
and this fact actually precludes the convergence of integrals
that define matrix elements involved in the solution of the
eigenvalue problem for the regional operator.

To demonstrate the divergence obstacle, we calculate ex-
plicitly the auxiliary function gkα [see Eq. (15) of Ref. [63]]
for α = 1. We have

gk1 = − 1

π

∫ 1

−1

cos kπ
2 (x + 1)

(z − x)2
dz = 1

π

(
cos kπ

1 − x
+ 1

1 + x

)
+ k

2

{[
Ci

kπ

2
|x − 1| − Ci

kπ

2
|x + 1|

]
sin

kπ

2
(x + 1) +

+
[

Si
kπ

2
(x + 1) − Si

kπ

2
(x − 1)

]
cos

kπ

2
(x + 1)

}
. (46)

Now, if we pass to an explicit form of the matrix elements [cf. Eq. (18) of Ref. [63]]

γkl1 =
∫ 1

−1
cos

lπ

2
(x + 1)gk1(x)dx, (47)

we see that the terms in Eq. (46) which contain (1 ± x)−1 generate the logarithmic divergence.
The choice of α = 1 may be considered special, but explicit computations allow one to identify jeopardies to be met if the

Neumann base is used. Actually, the situation is more intricate. Below we will see that for α � 1 the divergence problem persists,
while for α < 1 one can handle the integrals.

Interestingly, these observations appear to stay in conformity with the mathematically rigorous discussion of divergence
jeopardies in the case of censored Lévy flights [37] and of reflected Lévy flights proper [40], where the stability parameter
ranges 0 < α < 1 and 1 � α < 2 were found to refer to qualitatively different jump-type processes.

We now return to the above functions fn = cos kπ
2 (x + 1) (k = 0, 1, 2, . . .) comprising a complete orthonormal basis system

in L2(D), D = [−1, 1]. While seeking a solution ψα (x) of the eigenvalue problem for the fractional Laplacian, we consider the
expansion ψα (x) = ∑∞

k=0 akα fk (x).
To quantify a possible outcome of the choice of Neumann boundary conditions, it is sufficient to consider the first integral

term in Eq. (31), which is a remnant of the action of the restricted fractional Laplacian proper upon ψ (x). Clearly, the second
term (the inverted potential) does not depend on the choice of the (Dirichlet vs Neumann) boundary conditions.

Following the arguments of [63], we invoke Eq. (15) therein and note that for an auxiliary function gkα (x) (0 < α < 2) we
actually have

gkα (x) = −Aα

∫ 1

−1

fk (u)

|u − x|1+α
= {x − u = t, u = x − t, du = dt}

= −Aα

∫ x+1

x−1

fk (x − t )dt

t1+α
= −Aα ×

{
dt

t1+α = dv, u = fk (x − t )
v = − 1

αtα , du = − f ′
k (x − t )dt

= −Aα

[
− fk (x − t )

αtα

∣∣∣∣
x+1

x−1

− 1

α

∫ x+1

x−1

f ′
k (x − t )dt

tα

]

= Aα

α

[
fk (1)

(x − 1)α
− fk (−1)

(x + 1)α
+

∫ x+1

x−1

f ′
k (x − t )dt

tα

]
. (48)
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If we were to impose the Dirichlet boundary conditions fk (±1) = 0, the first two terms in Eq. (48) would vanish, leaving us with
a convergent integral. In the non-Dirichlet regime the situation becomes more complicated, since we may encounter divergent
matrix elements. We will analyze the latter obstacle in more detail.

To this end let us calculate the matrix elements γαkl = ∫ 1
−1 gkα (x) fl (x)dx of the (so far) ordinary fractional Laplacian

γαkl = Aα

α

∫ 1

−1
fl (x)

{
fk (1)

(x − 1)α
− fk (−1)

(x + 1)α
+

∫ x+1

x−1

f ′
k (x − t )dt

tα

}
dx. (49)

It can be shown that the double integral in Eq. (49) is convergent (of course in the sense of the Cauchy principal value) for all
0 < α < 2. At the same time if fk (±1) �= 0, we should consider the first two integrals separately. We have

I1 =
∫ 1

−1

fl (x)dx

(x − 1)α
, I−1 =

∫ 1

−1

fl (x)dx

(x + 1)α
. (50)

The dangerous points are x = 1 for I1 and x = −1 for I−1. Clearly, in the Dirichlet case ql (±1) = 0, no convergence problem
arises.

However, if fl (±1) = const ≡ C (with respect to the convergence issue, it does not matter whether these constants can or
cannot be different at x = 1 and x = −1), we have

I1(x → 1) = C
∫ 1

−1

dx

(x − 1)α
= C

(x − 1)1−α

1 − α

∣∣∣∣
1

−1

= {x − 1 = δ, x → 1, δ → 0} ∼ C

1 − α
lim
δ→0

δ1−α

=
⎧⎨
⎩

0, α < 1
ln δ → ∞, α = 1
∞, 1 < α < 2.

(51)

The same behavior is shared by I−1 near x = −1. This shows
that, regardless of the value of the derivative f ′

l (±1), the
integrals (50) are divergent in the range 1 � α < 2.

We point out that a departure point for our discussion
was the Neumann basis system and thus standard Neumann
boundary data (vanishing of the derivative at the end points
of [−1, 1]) were implicit. The outcome (51) tells us that
the regional fractional Laplacian may react consistently with
Neumann boundary data in the range 0 < α < 1.

This observation stays in conformity with the results of
mathematical papers [39,40] where the range 0 < α < 1 has
been singled out for the unquestionable identification of the
regional fractional Laplacian on a closed bounded domain as
the generator of a reflected α-stable process. Interestingly, no
traditional form of the Neumann condition has been used. On
the other hand, a traditional looking (merely on the formal,
notational level) Neumann-type boundary condition has been
found to be necessary for the existence of the reflected process
in the range 1 � α < 1.

V. REGIONAL FRACTIONAL LAPLACIAN:
SIGNATURES OF REFLECTING BOUNDARIES

The explicit spectral solution for the regional fractional
Laplacian in the non-Dirichlet regime is not known in
the literature, except for some general existence statements
[37,39,40,44]. The low part of that spectrum (shapes of
ground and first excited eigenstates, related eigenvalues) re-
mains unknown as well. The spectral solution reported in [58]
refers explicitly to the Dirichlet boundary data for the regional
fractional Laplacian.

Our major purpose is to deduce the spectral solution that
would have something in common with physicists’ intuitions
about reflected random motions in a bounded domain. To this
end we will address the spectral problem for the regional

fractional Laplacian more carefully, avoiding the decompo-
sition of the (nonlocal operator action-defining) integral ex-
pression into a sum of integrals, of the form (27) or (31)–
(34). We will not impose any explicit form of the Neumann
condition (or any of its analogs that can be found in the
literature [39–43]). The only Neumann input will be related
to the choice of the basis system in L2(D), the latter Hilbert
space not being the one favored by mathematicians [85]. The
lowest eigenvalues and shapes of related eigenfunctions will
be deduced with numerical assistance.

The structure of the expression for the fractional regional
operator (31) shows that the term ψ (x) balances ψ (u) in
the integrand numerator making the integral convergent. In-
deed, by inserting u = x + δ in the integrand (31) and ex-
panding at small δ = u − x in power series, we obtain that
around the dangerous point u = x, the integral takes the form∫

u−x
|u−x|1+α du, which is convergent for 0 < α < 1. Note that it

has the form
∫

dt/tα ∼ t1−α = 0 at α < 1 and exists as the
Cauchy principal value for 1 � α � 2. We have previously
discussed this question in Ref. [14]; see also Eqs. (9) and (10)
and the surrounding discussion. We will analyze that issue in
more detail below.

Accordingly, to calculate safely (i.e., without divergences)
the spectrum of the regional operator (31), we should not split
the integral into a sum of terms containing, respectively, ψ (u)
and ψ (x), but rather consider them together. [We point out that
in the case of the restricted fractional Laplacian with Dirichlet
boundary data, we were actually urged to split the integral into
a sum because the term with ψ (x) vanishes identically in this
case; see Ref. [63] for details.]

Let us make use of the modulus property

|u − x| =
{

u − x, u > x
x − u, u < x

(52)
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and rewrite the limits of integration in Eq. (31) accordingly,
thus arriving at (here again D = [−1, 1])

(−�)α/2
D,regψ (x) = −Aα

∫ 1

−1

ψ (u) − ψ (x)

|u − x|1+α
du

= −Aα

[∫ x

−1

ψ (u) − ψ (x)

(x − u)1+α
du

+
∫ 1

x

ψ (u) − ψ (x)

(u − x)1+α
du

]
. (53)

We perform the substitution x − u = t (u = x − t) in the first
integral to obtain

P1(x) =
∫ x+1

0

ψ (x − t ) − ψ (x)

t1+α
dt . (54)

Next we substitute u − x = t (u = x + t) in the second inte-
gral

P2(x) =
∫ 1−x

0

ψ (x + t ) − ψ (x)

t1+α
dt . (55)

The regional operator can be rewritten in the form

(−�)α/2
D,regψ (x) = −Aα[P1(x) + P2(x)]. (56)

We will demonstrate that for 0 < α < 1 the integrals Pi(x)
(i = 1, 2) are convergent as t → 0. We have, in the lowest
order in t ,

ψ (x − t ) ≈ ψ (x) − tψ ′(x), ψ (x + t ) ≈ ψ (x) + tψ ′(x).

(57)

Substitution of (57) into (54) and (55) yields

P1(x) = −ψ ′(x)
∫ x+1

0

t dt

t1+α
= −ψ ′(x)

t1−α

1 − α

∣∣∣∣
x+1

0

= −ψ ′(x)
(x + 1)1−α

1 − α
, α < 1 (58)

P2(x) = ψ ′(x)
∫ 1−x

0

t dt

t1+α
= ψ ′(x)

t1−α

1 − α

∣∣∣∣
1−x

0

= ψ ′(x)
(1 − x)1−α

1 − α
, α < 1. (59)

We note that at 1 � α � 2 we should interpret P1 + P2 as a
whole, but in terms of the Cauchy principal value procedure.
The limiting behavior near zero gives rise to a cancellation
similar to that in Eq. (10) from Ref. [14].

In the lowest order in t , the final form of the regional
fractional operator reads

(−�)α/2
D,regψ (x) ≈ −Aα

ψ ′(x)

1 − α
[(1 − x)1−α − (1 + x)1−α].

(60)

The expression (60) is already free from divergences.
We note that the procedure (57) can be extended to an

arbitrary order in t to yield the representation of the regional
fractional Laplacian (nonlocal integral operator) through an
infinite series of locally defined differential operators. For our
present purposes we find that series idea is impractical, being

too computing time consuming. Therefore, we will compute
explicitly the integrals (53) replacing ψ (x) by fk (x), which are
the elements of the Neumann basis in L2(D), n = 0, 1, 2, . . ..
We note the structure of the integrands in Eqs. (53)–(60).
Namely, the Lévy index α is contained only in the denom-
inators, while the functions ψ (x) do not have this index.
The same situation occurs for the functions fk (x). Below, for
convenience, we include the index α in the definition of fk (x),
i.e., we set formally fk (x) ≡ fkα (x). We have

fkα (x) = −Aα[P1,kα (x) + P2,kα (x)],

P1,kα (x) =
∫ x+1

0

cos kπ
2 (x − t + 1) − cos kπ

2 (x + 1)

t1+α
dt

= cos
kπ

2
(x + 1)P11,kα (x) + sin

kπ

2
(x + 1)P12,kα (x);

(61)

P2,kα (x) =
∫ 1−x

0

cos kπ
2 (x + t + 1) − cos kπ

2 (x + 1)

t1+α
dt

= cos
kπ

2
(x + 1)P21,kα (x)

− sin
kπ

2
(x + 1)P22,kα (x); (62)

P11,kα (x) =
∫ x+1

0

cos kπt
2 − 1

t1+α
dt,

(63)

P12,kα (x) =
∫ x+1

0

sin kπt
2

t1+α
dt ;

P21,kα (x) =
∫ 1−x

0

cos kπt
2 − 1

t1+α
dt,

(64)

P22,kα (x) =
∫ 1−x

0

sin kπt
2

t1+α
dt .

To derive the expressions for Pi j,kα (i, j = 1, 2), we use the
trigonometric identity cos(A − B) = cos A cos B + sin A sin B
so that, for example, in (61),

cos
kπ

2
(x + 1 − t ) − cos

kπ

2
(x + 1)

= cos
kπ

2
(x + 1) cos

kπt

2

+ sin
kπ

2
(x + 1) sin

kπt

2
− cos

kπ

2
(x + 1)

= cos
kπ

2
(x + 1)

(
cos

kπt

2
− 1

)
+ sin

kπ

2
(x + 1) sin

kπt

2
.

Dividing this expression by t1+α and integrating yields
Eq. (63) for P11,kα (x) and P12,kα (x). The derivation of Eqs. (64)
is the same. In other words, the second subscript in the
functions Pi j,kα (i, j = 1, 2) appears simply because the initial
functions Pi,kα (x) (i = 1, 2) [Eqs. (61) and (62)] contain two
terms, each of which adds one more index j = 1, 2.

The integrals Pi j,kα (i, j = 1, 2) will be calculated numeri-
cally. For reference purposes we list the integrals Pi j,kα (i, j =
1, 2) in terms of variable z = kπt/2, which we use for actual
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numerical calculations

P11,kα (x) =
(

kπ

2

)α ∫ (kπ/2)(x+1)

0

cos z − 1

z1+α
dz,

P12,kα (x) =
(

kπ

2

)α ∫ (kπ/2)(x+1)

0

sin z

z1+α
dz,

(65)

P21,kα (x) =
(

kπ

2

)α ∫ (kπ/2)(1−x)

0

cos z − 1

z1+α
dz,

P22,kα (x) =
(

kπ

2

)α ∫ (kπ/2)(1−x)

0

sin z

z1+α
dz.

Also, to remove the (spurious) divergences at z = 0 elegantly,
we render the integrals in the form

Pi j,kα (x) =
∫ δ

0
+

∫ 1±x

δ

≡ Pi j,k0α (x) + �Pi j,kα, δ < 0.01.

(66)
The explicit expressions for �Pi j,kα read

�P11,kα = �P21,kα =
(

kπ

2

)α 1

2

δ2−α

2 − α
,

�P12,kα = �P22,kα =
(

kπ

2

)α
δ1−α

1 − α
. (67)

Finally, the elements of the matrix (γklα), to be diagonalized
in order to find the desired spectrum, are

γklα = −Aα

∫ 1

−1
cos

lπ

2
(x − t + 1)

×
{

cos
kπ

2
(x − t + 1)[P11,kα (x) + P21,kα (x)]

+ sin
kπ

2
(x − t + 1)[P12,kα (x) − P22,kα (x)]

}
dx.

(68)

The results of numerical calculations of the spectrum for
(γklα ) [Eq. (68)] are reported in Table II. As computational
times are very long (around 6 h for a 20 × 20 matrix and
around 24 h for 30 × 30 one), we limit ourselves to 20 × 20
matrices. However, the qualitative features of the spectrum
remain the same as those for larger matrices. We have checked
that by test calculations of some of the eigenfunctions, by
means of 30 × 30 matrices.

It can be seen that the Neumann base, in view of our matrix
size limitations (small matrices, to lower the computing
time), gives a slightly inaccurate estimation for the lowest
(ground-state) eigenvalue. This is probably due to the fact
that the lowest function of the Neumann base f0 = 1/

√
2 is

simply constant.
To convince ourselves that the obtained eigenvalues are

signatures of reflecting boundaries, we have computed several
(approximate) eigenfunctions. The representative plot of the
four lowest eigenfunctions for α = 0.5 is portrayed in Fig. 6.

We have checked that for other α ∈ (0, 1) the eigenfunc-
tions become fairly close to those found for α = 0.5. Also,
they are not distant from the Neumann basis (trigonomet-
ric) functions. Strictly speaking, up to a sign of resulting
eigenfunctions, ψn may happen to be opposite to that of the

TABLE II. Comparison of the six lowest eigenvalues Ei of the
regional fractional Laplacian, evaluated in the Neumann base, for
different α in the range 0 < α < 1 (calculated by means of the
20 × 20 matrices), with those obtained by imposing the Dirichlet
boundary condition. Data are taken from Table I in Sec. IV of
the present paper and from Table I in Ref. [58] (for comparison
purposes we have abstained from using the label zero; the displayed
data should be read as the first, second, third, etc., eigenvalue of
the regional Laplacian in question). The first column, modulo the
computing inaccuracy, is a clear signature of reflecting boundary data
that were imported by executing the diagonalization in the Neumann
basis. The ground-state function in the Neumann base is constant
and the respective eigenvalue should equal zero. Our data show
that the numerically computed lowest eigenvalue should actually be
identified with zero, up to inaccuracies appearing in the third decimal
place.

�
��α

i
1 2 3 4 5 6

0.2 0.0000 0.1871 0.3075 0.3972 0.4696 0.5307
0.2 [58] 0.0003 0.1878 0.3085 0.3981 0.4700 0.5306

0.5 0.001 0.4499 0.8505 1.1959 1.5018 1.7785
0.5 [58] 0.0038 0.4593 0.8626 1.2091 1.5149 1.7911

0.7 0.004 0.6319 1.3138 1.9591 2.5665 3.1420
0.7 [58] 0.0170 0.6729 1.3646 2.0140 2.6231 3.1993

0.9 0.006 0.8290 1.8987 3.0064 4.1148 5.2156
0.9 [58] 0.0640 0.9799 2.0823 3.2054 4.3230 5.4300

Neumann trigonometric functions. Except for the ground
state, the sign issue is immaterial, since it is |ψn|2, which
stands for the probability density. The main feature of the
eigenfunctions is that they appear to satisfy the Neumann
boundary conditions, interpreted in terms of standard vanish-
ing derivatives.
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FIG. 6. Representative (α = 0.5) plot of the first five eigen-
functions of the regional fractional Laplacian, found via the diag-
onalization in the Neumann base; the n = 0 function is constant,
being a clear signature of the reflecting boundary conditions. The
corresponding eigenvalue is for all practical purposes zero. It is
instructive to compare the shapes of eigenfunctions with the elements
of the Neumann base, depicted in Fig. 5.
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We have paid special attention to the range 0 < α < 1,
because in this parameter regime the integrals (53) are
convergent. The case of 1 < α < 2 needs more attention,
since these integrals exist only in the sense of the Cauchy
principal value. That enforces slight modifications of the
matrix diagonalization procedure, previously adopted to
calculate the spectrum of the regional fractional Laplacian in
the Neumann base.

On one hand, the calculation of the matrix elements (in-
tegrals) is now more time consuming, because we need to
bypass the singularity at u = x by means of the Cauchy
principal value. On the other hand, the convergence of the
matrix method is generally much worse for the base with
Neumann boundary conditions than that for Dirichlet ones.

For instance, for the Dirichlet base, the acceptable accu-
racy of computation outcomes has been achieved already for
20 × 20 matrices. For the Neumann base we need matrices of
size 1000 × 1000 to achieve an acceptable accuracy level (the
smallest possible case is 600 × 600). That substantially in-
creases the computational time. The integration procedure for
1 < α < 2 incurs a further increase of the computation time.

By these reasons, we have explicitly checked the signatures
of reflection by an explicit computation of the ground-state
eigenvalue for α = 1.2, 1.5, and 1.8, followed by a compu-
tation of the shape of the corresponding eigenfunction. As
expected, the eigenvalues come up (for all practical purposes)
as zero, and eigenfunctions are indeed constant.

In passing we note that the integrals (53) are identically
zero for the constant function ψ (x). This is actually the
signature of reflection, i.e., the zeroth ground-state eigenvalue.

VI. IMPENETRABLE BARRIERS FOR LÉVY FLIGHTS:
STOCHASTIC BEHAVIOR IN THE VICINITY

OF THE BOUNDARY

The notion of censored stable processes, as introduced
in Ref. [37], is verbally rather loose: A censored stable
process in an open set D ⊂ Rn is obtained by suppressing
its jumps from D to the complement Rn\D. Alternatively,
it is a process forced to stay inside D. Jumps are censored,
i.e., those that would (according to the jump-size probability
law) land beyond D are simply canceled. Next the process is
resurrected at the stopping point and started anew. Regarding
the resurrection of the Markov process, see, e.g., [37,75].

Remark 10. The above concept of resurrection exploits the
starting anew property for the stopped stochastic process. It
shows some affinity for the family of stochastic processes
with resetting, where the wandering particle can be reset to
an initial location, at a certain rate, and next the process is
started anew. It is known that in the diffusion with stochastic
resetting one arrives at nonequilibrium stationary states with
non-Gaussian fluctuations for the particle position. Apart from
the above (reset) affinity, we have not found any probability
accumulation outcomes that would resemble those reported
in [32,33] and in the fractional Brownian motion on the
interval [53].

Bogdan et al. [37] exclude from consideration so-called
taboo processes which are related to the concept of the Doob
h transform [16,17,80] and are known not to leave the open
set D. It has been demonstrated that what is referred to in

Ref. [37] as a censored process (actually, a recurrent censored
symmetric α-stable process) is different (in law) from the
symmetric stable one conditioned not to leave D (cf. pp.
104–105 in Ref. [37]). This is by no mean a no-go statement
for taboo processes; quite simply they do not involve any
pointwise censoring mechanism, since it is the conditioning
that does the job (of not reaching the boundaries).

It is quite clear that the above loose definition encompasses
both taboo and censored processes plus (upon admitting that
the boundary of D can be reached by the process) α-stable
versions of reflected processes. The main issue addressed in
the mathematical literature has been to strengthen the con-
cept of reflection by inventing nonlocal analogs of Neumann
boundary conditions [39–43].

Various scenarios of the behavior of the censored process
in the vicinity of the boundary have been formulated as well.
One of them is described as follows [42,43]. When the process
exits D, it immediately returns to D. The way it returns is,
if a process exits to a point x ∈ Rn\D, its return to y ∈ D is
realized with a probability density being proportional to |x −
y|−n−α , hence not necessarily to the stopping point.

The concept of resurrection for a Markov process has been
invoked here as well [37,75]. It amounts to an immediate
resurrection of the process after eliminating (censorship) the
inadmissible jump (from D to Rn\D), through a procedure
of gluing together stable processes: At a stopping point (and
time) of the tentatively terminated process, we glue its copy
that actually gives birth to a process started anew at the stop-
ping point. The process proceeds up to the next stopping time
(i.e., censored jump) and the gluing procedure is repeated.
Such a continually resurrected process is bound not to leave
D, as required.

Leaving aside the many technicalities concerning the
proper mathematical formulation of what a reflected stable
process should actually be, we will move on to a brief discus-
sion of the physicists’ viewpoint of impenetrable barriers and
eventually of the concept of reflection (e.g., that of reflecting
boundaries) [11,12,32–36].

Motivated by the pathwise simulations, physicists coin
their own recipes on how to implement the condition of
reflection from the barrier in terms of the the sample path
behavior (that on the computer simulation level). For example,
in Ref. [32] the condition of reflection is ensured by wrapping
the trajectory, destined to hit the barrier (or crossing the
barrier), around the hitting point location while preserving
the assigned length. On the other hand, it is mentioned that
for jump-type processes the location boundary is not hit by
the majority of discontinuous sample paths and returns (or
recrossings of the boundary location) should be excluded
from consideration, which excludes the wrapping scenario
from further consideration. Another viewpoint mentioned in
Ref. [32] refers to a simulation of the reflecting boundary by
an infinitely high hard (e.g., impenetrable) wall, quantum me-
chanically interpreted as the infinite well [60,61], yielding an
immediate reflection once its vicinity (and not necessarily the
boundary itself) is reached. In contrast, in Ref. [33] another
proposal for the introduction of the reflection scenario has
been outlined (an idea inspired by [34–36]), with a focus on a
numerical simulation of sample trajectories of the Langevin-
type Lévy-stable evolution in the binding extremally
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anharmonic potential Vn(x) ∼ xn with n � 1 (set, e.g., n =
800 for concreteness).

Here a departure point is the observation (strictly speaking,
questionable in the quantum setting) that in the limit n → ∞
the potential Vn(x) mimics the infinite-well enclosure, with
boundaries at end points of the interval [−1, 1] (interpreted in
[33] as reflecting). The random motion is described in terms
of the Langevin-type equation dX (t )/dt = −V ′

n(x) + ζα (t ),
where ζα (t ) is a formal encoding of the symmetric white
α-stable noise (cf. [33]). The limiting stationary probability
density of the associated fractional Fokker-Planck equation
has been found [36] in the form of the L1([−1, 1]) normalized
function

ρα (x) = (2)1−α �(α)

�2(α/2)
(1 − x2)α/2−1, (69)

a result valid for all 0 < α � 2. The special case of the
Cauchy noise (α = 1) has been addressed in Ref. [34] by an
independent reasoning, with the outcome

ρ1(x) = 1

π

1√
1 − x2

, (70)

valid for all |x| < 1. This function blows up to infinity at the
boundaries of the interval [−1, 1].

In passing we note that for α = 2 a uniform Brownian
distribution 1/L arises. That would suggest a link to reflected
processes, but this observation is misleading.

The probability density functions (69) and (70) do not
belong to the L2([−1, 1]) inventory associated with the re-
gional fractional Laplacian. Furthermore, they refer to ran-
dom motion scenarios that cannot reach the boundary and
definitely comply with the stopping scenarios used in the
numerical simulations in Ref. [33]. That view is supported
by the fact that (70) coincides with the familiar probability
distribution function for the classical harmonic oscillator. Its
high-probability areas correspond to the long residence time
for a classical particle in harmonic motion.

From the physical point of view, the most interesting
observation of Ref. [33] in this context is that the extremely
anharmonic and stopping motion scenarios in the presence of
the symmetric α-stable noise actually yield the same statistics
of simulation outcomes (cf. Sec. II A 2 in [33]). Moreover, a
detectable deviation from these outcomes has been reported if
the wrapping scenario is employed. Actually, irrespective of
the stability index α, the wrapping assumption, in the pathwise
simulation procedure of Refs. [32,33], has been found to lead
to a uniform asymptotic distribution in the interval, like in
the reflecting Brownian motion. The pertinent figures have
not been reproduced in Ref. [33], but are available from the
authors [90].

At this point we will discuss the concept of the stopping
scenario [90]. In the course of the pathwise simulation of the
jump-type process, any jump longer than the distance of the
point of origin from the boundary is canceled (the process is
stopped). In the ε vicinity of the boundary, ε � 1, all jumps
in the direction of the barrier are canceled (it is an explicit
censorship at work). The process remains stopped until the
probability law produces a jump in the direction opposite to
the boundary, and then it continues.

From a mathematical point of view, it is clear that prob-
ability functions (69) and (70) are not eigenfunctions of

the regional fractional Laplacian. Actually, after completing
them in R\(−1, 1) by assigning them the value zero beyond
(−1, 1), we realize that ρα (x) is the so-called α-harmonic
eigenfunction of the original fractional Laplacian (−�)α/2

[Eq. (1)], defined on the whole of R1 and associated with the
eigenvalue zero

(−�)α/2ρα (x) = 0 (71)

(cf. [30,57]). One should keep in mind that the above identity
needs somewhat involved calculations in the case of arbitrary
1 < α < 2, but can be straightforwardly checked in the case
of α = 1. The calculation exploits in full a nonlocality of
the fractional Laplacian, and terms that account for R(−1, 1)
cannot be disregarded [91,92].

Thus a stochastic process that is consistent with the PDF
(70) is not the reflected one, but rather the censored one
(see, e.g., [37]). The pertinent censored process never crosses
or reaches the boundary, which is a property shared with
taboo processes in the impenetrable enclosure [cf. the frac-
tional infinite-square-well spectral problem or the related
taboo process in the interval (so-called ground-state process)
[15,58–63]]. Nonetheless, the associated stationary probabil-
ity distributions appear to be very different, behaving recipro-
cally at the boundary: quick decay with a decreasing distance
D from the boundary ∼Dα/2 (taboo process) versus a blowup
to infinity ∼1/Dα/2−1 in the same regime (censored process).
Clearly, the taboo case refers to a probability depletion in the
vicinity of the boundary, while its accumulation close to the
boundary characterizes the censored process considered.

VII. OUTLOOK AND PROSPECTS: SOME ADVANTAGES
OF THE SPECTRAL LORE FOR FRACTIONAL

LAPLACIANS IN BOUNDED DOMAINS

A. General considerations

We have paid special attention to spectral problems in-
volved with nonlocal motion generators (fractional Laplacians
of arbitrary Lévy index 0 < α < 2) whose adjustment to
account for finite (bounded) spatial geometries is a source
of ambiguities in the physics literature. Like in the case of
standard diffusion processes, the lowest eigenfunctions and
eigenvalues of the pertinent operators are decisive for de-
ducing measurable properties of relaxation processes towards
equilibrium or their near-equilibrium behavior.

Our motivations stem basically from a simple looking
inquiry into the problem of all admissible stochastic processes
in a bounded domain, which may be consistently associated
(derived or inferred from) with the primordial Lévy noise.
That sets the broad conceptual context of Lévy flights in
bounded domains and directly involves the delicate issue of
properly defined boundary data for fractional Laplacians in
finite geometries.

To this end, we have adopted a numerically assisted ap-
proach to the eigenvalue problem of fractional Laplacians
in the interval, developed by us earlier [62] and based on
the expansion of the sought eigenfunctions in the properly
tailored orthonormal base of L2(D). In the present paper we
have considered two such bases, namely, trigonometric ones
associated with D = [−1, 1].
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The first one is familiar from the standard quantum-
mechanical infinite-well problem [93] and comprises
functions with Dirichlet boundary conditions, i.e., vanishing
at the boundaries. The second one is that obeying the
Neumann boundary conditions, i.e., basic functions are
allowed to take arbitrary nonzero values at the boundaries,
while their derivatives are required to vanish. In both cases
the spectral fractional Laplacian (see Sec. II) simply imports
all basic properties of the standard Laplacian. Things become
complicated if other definitions of the fractional Laplacian in
D are considered.

In the course of the study, we have demonstrated that the
Dirichlet base secures much better convergence properties
from the numerical procedure than the Neumann one. The
latter base implies particularly bad convergence properties
in the stability parameter range 1 < α < 2, where integrals
of importance [see, e.g., Eq. (53)] exist only in the sense
of Cauchy principal values. Not incidentally, in all studies
devoted to censored stochastic processes [37,39], the range
0 < α � 1 has been considered separately from 1 < α < 2, in
which major difficulties were encountered, while attempting
to define the notion of reflected jump-type processes and to
devise a consistent form of Neumann boundary data.

We note in passing that in so-called fractional quantum
mechanics [26], the range 1 � α < 2 is introduced a priori
as the one in which this theory is supposed to make sense
(it is not quite a necessary assumption [94] that essentially
narrows the framework). We point out that a good reason
for that may be the nonexistence of probability currents out
of the pertinent range [94]. Nevertheless, consistent spectral
solutions for Laplacians in bounded Dirichlet domains are
known to exist in the whole range 0 < α < 2. On the other
hand, spectral problems beyond the range 0 < α < 1 make the
Dirichlet boundary data the only (for all practical purposes)
reliable choice (compared to the Neumann or Robin ones),
for purely pragmatic reasons. This conforms with the standard
quantum-mechanical approach, where Neumann or Robin
boundary data are definitely out of favor, while the Dirichlet
data are prevalent.

In contrast, all these data are encountered often and are am-
ply discussed in the theory of Brownian motion and diffusion-
type processes. In connection with the eigenvalue problems
addressed, we note that one may in principle invoke the
variational approach, which is customary in ordinary quantum
mechanics. Such an approach works for self-adjoint operators
(see, e.g., [95]) and hence should be valid for trial functions
with both Dirichlet and Neumann boundary conditions in
settings more general than the standard Laplacian settings,
i.e., for fractional Laplacians as well. It would be interesting
to study the accuracy of the variational method for our two
classes of (trigonometric) trial functions.

B. Fractional spectral problems: Exemplary association
with realistic physical systems

Our discussion of Sec. III on relevance versus irrelevance
of eigenvalue problems for fractional Laplacians pertains to
an interplay (intertwine) between the theory of stochastic
processes (stochastic modeling) in a bounded domain and the
fractionally generalized quantum model systems (which refers

to so-called fractional quantum mechanics [24–26]; see also
[94]) which are spatially confined. Leaving aside an explicit
probabilistic (stochastic processes) viewpoint, the formalism
developed can be applied to physical systems of confined
geometry (like quantum wells and/or surfaces or interfaces),
where the disorder and other kinds of intrinsic randomness
(hence the fractional Lévy noise) can be interpreted on the
quantum level.

One class of such systems is an electronic ensemble, which
tunnels through potential barriers in so-called spintronic de-
vices (see [96–98] and references therein). One of the realistic
examples here is heterostructures like the LaAlO3/SrTiO3 in-
terface [99–101]. To describe the experimental data related to
the above tunneling statistics, fractional derivatives should be
introduced in the conventional quantum-mechanical problem
of a tunneling particle.

To be specific, the fractional generalization of the
Schrödinger equation, describing the electronic properties of a
heterojunction between materials 1 and 2 reads (see Ref. [100]
for details)

H�(z) ≡
(

sc(z) + U (z) iv(−�)1/2

iv(−�)1/2 −sv (z) + U (z)

)(
ϕ(z)
χ (z)

)

= ε

(
ϕ(z)
χ (z)

)
, (72)

where ε is the eigenenergy and �(z) is the spinor wave
function of the electron at the interface. Here (−�)1/2 is the
fractional Laplacian for Lévy index α = 1, z is the dimen-
sionless coordinate along the interface (normalized by the
interface width a) [100], and we use atomic units h̄ = c = 1.
The spatial confinement of the problem lies in the interfacial
potential U (z),

U (z) = U0δ(z) + U1P(z),
(73)

P(z) = [θ (z) + θ (d − z)],

where the first term, containing the δ function, signifies the
potential barrier exactly at the interface, while the second term
denotes the barrier of height U1 and width d , through which
the electrons can tunnel. Here θ (z) is the Heaviside (unit
step) function. The influence of technologically unavoidable
disorder is modeled by the introduction of the fractional
derivative (−�)1/2 instead of ordinary gradient d/dz. We use
the additional notation [100]

sc(z) = sc1[1 − θ (z)] + sc2θ (z),

sv (z) = sv1[1 − θ (z)] + sv2θ (z), (74)

v(z) = v1[1 − θ (z)] + v2θ (z),

with

sc1,2 = �1,2 + k2
⊥

2mc1,2
, sv1,2 = �1,2 + k2

⊥
2mv1,2

, (75)

where �1,2 and mc,v,1,2 are, respectively, the energy gaps and
effective masses of interface-forming semiconductors 1 and 2.
Indices c and v mean, respectively, the conduction and valence
bands, so m1c denotes the electron effective mass in the
conduction band of semiconductor 1 (see Refs. [100,101] for
details). Also, k⊥ is (unimportant for the interfacial problem)
the electron momentum component, parallel to the interface
[100].
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The explicit form of the Schrödinger equation (72) reads

(sc + U − ε)ϕ + iv(−�)1/2χ = 0,

iv(−�)1/2ϕ + (−sv + U − ε)χ = 0. (76)

Then we can express the component χ through ϕ from the
second of Eqs. (76) to obtain the following eigenproblem
for ϕ:

[sc(z) + U (z)]ϕ(z) + v(z)(−�)1/2

×
[

v(z)

−sv (z) + U (z) − ε
(−�)1/2ϕ(z)

]
= εϕ(z). (77)

We note that the eigenproblem (77) is indeed nonlinear as
the eigenenergy ε enters also the denominator. Our analysis
shows that for small ε the problem (77) is reducible to that for
1D regional fractional derivative. The best way to solve it is
to expand a solution in the orthogonal set of functions with
Neumann boundary conditions. The complete solution of the
problem (77) can be obtained only numerically. Our prelimi-
nary studies of that solution show that it describes many ex-
perimentally observable salient features of the interfaces like
high electronic concentration at the interface (leading, e.g., to
metallic conductivity; see [99] and references therein), which
appears due to disorder, described by fractional derivatives.

One more interesting physical problem is the onset of
chaos in excitons, induced by the Rashba spin-orbit interac-
tion [102]. This situation is described by one more confined
(although in two dimensions, making the solution much more
complicated than in the 1D case) problem. Then one is dealing
with the quantum version of the Kepler problem, i.e., the
hydrogen atom (see, e.g., [103]). The fractional Hamiltonian
of the 2D problem has the form

(−�)α/2

2m
ψ (x, y) − ψ (x, y)

r
= Eψ (x, y), (78)

where r = (x2 + y2)1/2 and we once more use atomic units.
Here the spatial confinement is due to the Coulomb potential
1/r. Similar to the case of ordinary quantum mechanics
[93,95], the discrete spectrum exists only at E < 0. It can be
shown that the problem (78) admits the separation of angular
and radial variables, leaving us with an ordinary differential

equation for the function ψ (r). The solution of the latter
problem is still much more complicated than those in one
dimension. Our preliminary analysis shows that the function
ψ (r) can be obtained as the expansion of the complete set
of eigenfunctions, corresponding to the ordinary [i.e., with
the conventional Laplacian in Eq. (78)] 2D hydrogen atom.
The method is similar to that of Ref. [62]. Note that the
problem (78) can be formulated in three dimensions with
additional confinement in the potential well. The latter case
corresponds to excitons confined to quantum wells in dis-
ordered semiconductors. One more way of generalizing the
problem (78) is to take into account the fractional analog of
the Rashba spin-orbit interaction [102]. Although the latter
problem becomes very complex (for example, it contains now,
similar to Eq. (72), a spinor wave function), its solution can be
obtained along the lines of Ref. [62], i.e., by the expansion
over a properly tailored orthonormal basis with Dirichlet
boundary conditions. The problems discussed, related to the
fractionally quantized Kepler one, are extremely important for
photovoltaic applications (see Ref. [104] for appropriate refer-
ences), where possible chaotic behavior [105,106] can disrupt
the solar cell functionality. Namely, the chaotic behavior has
been obtained explicitly in the form of nonuniform electronic
trajectories [105]. At the same time, in the quantized version
only weak effects like energy levels repulsion have been
revealed [106]. It is tempting to reveal the quantum chaotic
features (along with direct quantum trajectories simulations)
of this problem by replacing the ordinary 2D Laplacian by the
fractional one in the Schrödinger equation (78). In this case,
the level repulsion and other features like non-Poissonian
energy level statistics [107] would heavily depend on the Lévy
index α.
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