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Statistical mechanics of a single active slider on a fluctuating interface
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We study the statistical mechanics of a single active slider on a fluctuating interface, by means of numerical
simulations and theoretical arguments. The slider, which moves by definition towards the interface minima,
is active as it also stimulates growth of the interface. Even though such a particle has no counterpart in
thermodynamic systems, active sliders may provide a simple model for ATP-dependent membrane proteins
that activate cytoskeletal growth. We find a wide range of dynamical regimes according to the ratio between
the timescales associated with the slider motion and the interface relaxation. If the interface dynamics is
slow, the slider behaves like a random walker in a random environment, which, furthermore, is able to escape
environmental troughs by making them grow. This results in different dynamic exponents to the interface and the
particle: the former behaves as an Edward-Wilkinson surface with dynamic exponent 2, whereas the latter has
dynamic exponent 3/2. When the interface is fast, we get sustained ballistic motion with the particle surfing a
membrane wave created by itself. However, if the interface relaxes immediately (i.e., it is infinitely fast), particle
motion becomes symmetric and goes back to diffusive. Due to such a rich phenomenology, we propose the
active slider as a toy model of fundamental interest in the field of active membranes and, generally, whenever
the system constituent can alter the environment by spending energy.
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I. INTRODUCTION

Active matter systems are collections of active particles
which consume energy, for example, ATP, in order to perform
work or modify their surroundings [1]. Their study lies at
the interface between statistical, soft matter, and biological
physics. An interesting example of active matter is realized
when the active particles are embedded in a fluctuating mem-
brane (as opposed to the usual scenario of active particles
in a thermal fluid). The resulting nonequilibrium system is
termed an active membrane [2–6], and here we investigate
some of its general features. We shall generically define
an active membrane as a composite system consisting of a
membrane with added active elements which we shall refer to
as inclusions. The archetypal instance of such a system is the
plasma membrane of eukaryotic cells, where the membrane
is the lipid bilayer, whereas the active inclusions are the
so-called membrane proteins, which consume ATP to perform
tasks such as proton pumping, ion channeling, or cytoskeletal
polymerisation [7,8].

In Ref. [9] we introduced a simple and generic model of
an active membrane. The motivation was twofold: (1) to iden-
tify the key principles underlying pattern organization at the
leading edge of a moving cell and (2) to test the applicability
of Kardar-Parisi-Zhang (KPZ) scaling in an active setting. In
our model, active inclusions mimic Rho-like proteins [10],
which stimulate the growth of interfacial, lamellipodium-like
protrusion, while being, in turn, coupled the the membrane
curvature. Loosely speaking, their shape causes them to accu-
mulate into membrane “valleys” (i.e., regions with negative
curvature; see the Model section for more details on the
mapping with biology). We found that the coupling between

active elements and interface dynamics leads to an intriguing
form of microphase separation and to patterns, such as waves,
which cannot be realized within an equilibrium setting. We
also found that, due to energy input from active elements at the
local level, the interface dynamics is not described by the KPZ
universality class but displays a novel oscillatory behavior
superimposed to an Edwards-Wilkinson dynamic scaling [9].

In this paper we take a step back and study the single-
particle limit of the model of Ref. [9]. This allows us to focus
on the effects of the inclusion-interface coupling and eliminate
the collective behavior emerging from the interactions among
many inclusions. As we concentrate on the fundamental sta-
tistical mechanics of the system, we generically refer to our
active particle as a “slider” (as it slides down interfacial height
gradients). The slider is active as it also promotes interfacial
growth in contrast to the previously studied passive slider
problem (see Subsection of Sec. I). We will place particular
emphasis on the role of the ratio between the characteristic
timescales of slider and interface dynamics.

In this work, our principal result is that the coupling
between the active slider and membrane fluctuations yields
three possible dynamical regimes, depending on the interface-
to-slider timescale ratio. First, if the slider diffusion is fast
with respect to interface relaxation, the slider quickly reaches
the closest valley, stimulates local interfacial growth until the
valley becomes a peak, and then diffuses away to a neighbor-
ing valley to repeat the process (Fig. 1). Viewing the interface
profile as a free energy landscape, this process resembles
metadynamics, a method of computational physics aimed
at easing the sampling of complex free energy landscapes
[11]. Second, if the slider dynamics is slower than interfacial
relaxation, we instead observe an intriguing surfing dynamics,
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FIG. 1. Pictorial representation of the system dynamics for
ω � 1, where ω is the interface-to-slider timescale ratio mentioned
in the text. In the top panel, the particle has reached a local interface
minimum. After some time (bottom panel), this location has become
a local maximum due to local growth stimulation by the particle. The
particle can now diffuse to the next local minimum, as suggested by
the yellow arrow.

whereby the membrane bump created by the slider travels
ballistically and pushes the slider itself forward (Fig. 2).
Finally, for infinitely fast interfacial dynamics, the surfing
particle regime gives way to a third regime, where fast local
growth forces maximum curvature at the location of the slider,
which is now undergoing purely diffusive motion (Fig. 3).

The paper is organized as follows. In Sec. II we describe
the model, together with the observables we will measure; we
also review the scaling theory within which we will formulate
our results. In Secs. III, IV, and V, we describe results
in the three announced regimes (with a small, large, and
intermediate interface-to-slider timescale ratio, respectively).
Notably, in Sec. IV we show how the steady-state dynamics of
the corresponding regime reduces to an electrostatic problem
where the active slider can be seen as a charged particle with
the interface playing the role of the electrostatic potential.
In Sec. V we propose an analytic description of our system
in terms of a set of Langevin equations for the moving
slider position and interface height field, and we conclude in
Sec. VII.

Let us first, however, review the contrasting case of passive
scalar dynamics.

FIG. 2. Cartoon depicting the system behavior for intermediate
ω. The particle is surfing a membrane wave that is both pushing and
being pulled by the particle.

FIG. 3. Typical interface shape for ω → ∞. As the interface
attains a tentlike profile between two subsequent particle jumps, there
is no longer a preferred direction for the particle to move along.
Hence, it diffuses around as if it was not coupled to the interface.

Passive slider problem

From the purely statistical mechanics point of view, the
problem of a particle moving on a fluctuating interface is
related to that of passive scalar dynamics, where one or
more passive tracers are coupled to a generally far-from-
equilibrium medium. Such a system is realized, for instance,
when fluorescent dyes are used to highlight turbulent flow in
a fluid [12], with passive particles sliding down a fluctuating
potential landscape [13–15], or with a so-called second class
particle, whose dynamics is designed to locate shocks in
driven diffusive systems like asymmetric simple exclusion
processes [16].

The agents in these problems are passive, in the sense
that they do not affect the dynamics of the medium they are
moving in. A possible back-coupling has instead been con-
sidered in the context of sedimenting colloidal crystals [17]
and in biophysical models for membrane protein diffusion
[18–21]. Such a problem has been attracting interest since
the advent of single-particle tracking techniques, with the
improved experimental characterization of membrane protein
dynamics calling for an accurate theoretical description. In
Refs. [18,19], for instance, the authors analyze corrections to
the protein two-dimensional diffusion coefficient due to the
membrane fluctuations in the third dimension, while works
such as Refs. [20,21] consider the effect of the twofold
coupling between protein shape and membrane curvature.
All these studies, however, are limited to an equilibrium
or quasiequilibrium setting, whereby the coupling between
particle and interface corresponds to the minimization of
some prescribed effective free energy. In the case of protein-
curvature coupling, for instance, proteins tend to sit on mem-
brane regions with a given curvature, and they also tend to
impose such a given curvature on the membrane region where
they sit.

It is worth remarking that an extension towards genuinely
out-of-equilibrium conditions of the model introduced in
Ref. [17] has been proposed and analyzed in the series of
papers [22–24]. The authors therein consider a mixture of
heavier and lighter particles that can stimulate the interface
in different ways; e.g., the heavier push it down, whereas the
lighter lift it up. We, instead, focus on particles that pull the
interface up but then slide down the resulting interfacial slope.
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FIG. 4. Schematics of our model active interface. The particle
(red circle) presence favors the move that makes the interface grow,
as denoted by the black arrows. The particle, in turn, will jump with
left-right symmetric rates when on a hill or in a trough, as the leftmost
and rightmost particles in the figure; whereas, when sitting on a slope
as the middle particle of the figure, it will be more likely to jump
towards the lower height.

II. THE MODEL

Our model, shown schematically in Fig. 4, describes a
random walker coupled to a fluctuating landscape. The lat-
ter is a 1+1-dimensional interface, whose configuration is
specified by a set of stochastic variables {hi}. Each of these
variables represents the height of the interface over the ith
site of a one-dimensional ringlike lattice of length L. As in
standard surface-growth models, the height variables obey
the solid-on-solid condition |hi+1 − hi| = 1, which causes the
landscape to look like the trajectory of a random walker [25].
In addition, the interface fluctuates according to local dynam-
ics, i.e., troughs of the interface (∨) transform into peaks (∧)
and vice versa. The transition ∨ → ∧, which causes the height
to increase, has corresponding rate p+

i ; the transition ∧ → ∨,
which causes the height to decrease, has corresponding rate
p−

i .
While the landscape evolves according to the aforemen-

tioned dynamical rules, the particle simply jumps between the
lattice sites, with rates depending on the state of the surround-
ing environment. We call such rates qR

k (for a right jump) and
qL

k (for a left jump), where k is the current lattice coordinate
of the particle. The dependence of the jump rates on the
particle position is due to the particle-landscape coupling and
is designed so that the interfacial slopes bias the local jump
rates towards the site with lower height (troughs). On the
other hand, the particle renders the growth event ∨ → ∧ more
likely than the reversed one ∧ → ∨ on the site where it sits.
Specifically,

p±
i = p(1 ± λδi,k ), (1)

qR
k = q(1 − γ∇hk ), qL

k = q(1 + γ∇hk ), (2)

where ∇hk = (hk+1 − hk−1)/2 is the height gradient seen by
the particle and δi,k the Kronecker delta.

According to Eq. (1), the particle is perceived by the
interface as a defect at site k whereby the up-down symmetry
of fluctuations is broken, and the direction of the symmetry
breaking depends on the sign of λ. In the kinetic interfaces
theory language [26], the interface dynamics is Edwards-
Wilkinson-like (EW) [27] everywhere except at the particle
site, where it is Kardar-Parisi-Zhang-like (KPZ) [28]. The

interface, in turn, affects the particle motion as a potential;
the effective potential energy is γ h.

It is useful to briefly pause at this point and comment in
some more detail on the biophysical relevance of the γ term
to the case of ATP-dependent membrane activators [9]. Such
a coupling is allowed by symmetry for a moving interface
[29], where it arises naturally as a kinematic “advective”
contribution. In this biophysical context, a positive γ as
considered here and in Ref. [9] appears automatically when a
collection of membrane activators lead to cytoskeletal growth,
hence cellular motility [2,5]. It may also model effectively
chemically induced biases towards or against substances in
the cell cortex or interior, as the h → −h symmetry is broken
even for a stationary membrane (as the membrane would
separate the cytoplasm from the cellular exterior). Within our
geometry (akin to the so-called Monge gauge [2,29]), this
coupling has also the same broad consequences of curvotaxis
[3,30,31], as proteins accumulate in valleys or peaks. Yet its
form is fundamentally distinct, as curvotaxis means sensitivity
to gradients in the curvature, rather than height as done here.

Coming back to our model, it is clear that λ and γ measure
the extent of the coupling in our system. Having both of
them greater than zero induces a negative feedback of the
kind discussed in Ref. [9], whereby the particle shapes the
landscape in a way that then repels it, continuously creating
structures it is then pushed away from. Throughout the paper,
we shall set λ = γ = 1, so that the uphill rate in Eq. (2)
becomes zero together with p−

k , the rate of ∨ → ∧ at the
particle site. This is to avoid extended crossovers from the
passive limits λ = 0 and γ = 0 and focus on the main goal of
this paper, which is to explore the effect of varying ω = p/q
on the system behavior.

The ratio ω measures how fast the interface dynamics is
with respect to that of the particle. Large ω, for instance,
implies that the interface dynamics is faster than that of the
particle, and the interface adapts to the particle position before
the latter moves significantly. The converse is true for small
ω. In order to efficiently change ω in simulations (see the
Supplementary Information of Ref. [9] for additional details),
we use the following strategy. Each time step of the Monte
Carlo algorithm consists of Ns = aL + b microsteps. In each
of the microsteps, we choose the particle with probability
b/Ns or an interface site with probability a/Ns. Once chosen,
the particle has probability (1 − ∇hX )/2 of moving right
and (1 + ∇hX )/2 of moving left. For the interface updates,
instead, first we check whether the chosen site is a peak or a
trough. If the ith site is a trough (peak) a local growth move is
performed with probability (1 + λδX,i )/2[(1 − λδX,i )/2]. The
desired value of ω is thus selected by tuning a and b, as their
ratio measures the average number of updates of the interface
per particle update.

In the remainder of this section we will define the ob-
servables of interest for the system at hand and discuss their
expected behavior in relation to previous studies of similar
problems.

Observables and scaling

As our system is made of two components (particle and
interface), each pushing the other far from equilibrium, it is
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natural to characterize the dynamical and statistical properties
of each component.

In the theory of kinetic roughening, most of the global
statistical properties of an interface can be discerned from its
first two moments [32]: the mean height h = L−1 ∑L

i=1 hi and

the squared width W 2 = L−1 ∑L
i=1 (hi − h)

2
. Notice that both

h and W 2 are stochastic variables, as are hi.
We will denote the ensemble-averaged width (averaged

over many realizations of the system dynamics) with lower
case w. The ensemble-averaged width is expected to follow
the Family-Vicsek scaling hypothesis [33],

w(L, t ) = Lα f (t/Lz1 ), (3)

where α and z1 are the roughness and dynamic exponent of the
interface, respectively, whereas the scaling function f behaves
as a power law for small arguments and a constant for large
ones. The width grows in time as a power law ∼tβ until,
at a time t ∼ Lz1 , it saturates due to the finite interface size.
According to Eq. (3), the saturation value scales with the size
as Lα , while, in order to cancel any system size dependence
at short times t � Lz1 , we must have f (y) ∼ yα/z1 for small
y, which implies that the initial growth exponent obeys β =
α/z1.

Following this line of thought, we will analyze the particle
dynamics by looking at the first two moments of the particle
displacement Xt . As there is only one particle, averages here
are performed over realizations of the stochastic dynamics.
Contrary to the height first moment, the average displacement
of the particle is identically zero, as nothing breaks the left-
right symmetry of averages (we will see though that such
symmetry is broken at the individual trajectory level). The
mean squared displacement, however, obeys a scaling form
akin to that of Eq. (3),〈

X 2
t

〉 = tLχg(t/Lz2 ), (4)

where z2 is a dynamic exponent relating the time it takes for
the particle to reach its steady-state behavior to the system
size. The form of (4) can be understood from the requirement
that at long times, on a finite system (t � Lz2 ), the behavior
of the particle becomes diffusive 〈X 2

t 〉 ∼ t . Thus the scaling
function g must be constant for large arguments, and χ

specifies the system-size dependence of the effective, long-
time diffusion coefficient. On the other hand, the early-time
behavior should not depend on the system size, and the small
argument behavior of g is fixed by requiring a functional form
g(y) ∼ yχ/z2 which causes the L in Eq. (4) to cancel each other
for t � Lz2 . Then one obtains the early times law〈

X 2
t

〉 ∼ tη, (5)

where

η = 1 + χ

z2
. (6)

The scaling hypothesis Eq. (4) was proposed in Ref. [16] for a
“second class particle” which exhibits superdiffusive behavior
and was later used in related problems of Brownian particles
passively coupled to time-dependent random environments
[34–36].

Now, the theory of transport in random environment [37]
states that the spatial correlations of a stochastic medium may

FIG. 5. Scaling of the averaged width for ω = 1; values of L
are given in the key. The best collapse is achieved by setting the
exponents α and z1 to the EW class values, even if the width oscilla-
tions cause a slight departure from the scaling hypothesis, Eq. (3).
A power law xα/z1 is shown as a guide to the eye (black dashed
line). The interface width has been averaged over at least 1000
realizations of the stochastic dynamics for L up to 8000, and more
than 100 realizations for L = 16 000. The number of realizations
used for averages is the same in all the following figures, unless
stated otherwise.

give rise to anomalous diffusion of the particles living there.
Then one may write (for a system of infinite spatial extent)〈

X 2
t

〉 ∼ t2/zP , (7)

where zp is yet another dynamical exponent. It characterizes
the anomalous diffusion as follows: after time t the particle
will have explored a distance 〈X 2

t 〉1/2 ∼ t1/zP . Thus the parti-
cle should explore a finite system size L after time t ∼ Lzp .

However, a priori, the value of zp is not necessarily equal
to that of z2. Demanding that the two dynamical exponents z2

and zp are indeed equal implies the scaling relation

χ + z2 = 2. (8)

Such a special condition can be perceived as the signature that
no other length scale than the system size affects the particle
motion [34]. In fact, χ + z2 = 2 holds in the several “passive”
versions of our model considered in the literature, such as the
second class particle problem and that of a passive slider on a
self-affine interface [16,34,38]. It appears, in addition, that z1

and z2 also can be identified with each other, at least in most
of these problems [39,40]. Consequently, one single dynamic
exponent suffices to characterize all dynamical features of the
system. We will soon see that it is not always the case in our
active model.

III. FLUCTUATING METADYNAMICS AT ω � 1

Let us begin by setting ω = 1, i.e., considering the case
where particle and interface have the same mobility. On the
γ = λ line of the phase diagram, we find that the steady-
state interface is described by Edwards-Wilkinson statistics.
Simulations (see Fig. 5) in which the width is measured as a
function of time show that the roughness exponent α = 1/2
and the dynamic exponent z1 = 2, the values of the EW
class. Note that the numerical estimation of the exponents is
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FIG. 6. Scaling of the particle MSD for ω = 1, L as in the key.
The data are collapsed using values χ = 1/2 and z2 = 3/2 consistent
with the second class particle scaling discussed in the text. The black
dashed line is a guide to the eye suggesting 〈X 2

t 〉 ∼ t4/3. In this figure,
and all the following figures, the MSD is computed in steady state,
meaning that time starts running after the interface has reached its
saturation width.

hampered by the emergence of width oscillations. These os-
cillations begin to emerge for the larger system sizes in Fig. 5
just before saturation, although the effect is not as strong as
for the finite particle density case [9], where oscillations are
clearer and extend over several periods.

With regard to the particle MSD, the numerics agree with
the scaling form in Eq. (4), as is shown in Fig. 6. The
exponents, χ = 1/2 and z2 = 3/2, are the same as in the
second class particle problem [16], which, due to the well-
known mapping between the totally antisymmetric simple
exclusion process and a discrete interface model in the KPZ
class, corresponds to setting p± = p(1 ± λ) uniformly over
the interface instead of on the particle site only. The exponent
z2 = 3/2, there, reflects the dynamic exponent of the interface
and the value χ = 1/2 yields η through (6). In this case the
exponents obey the scaling relation (8).

In our model, conversely, there is a mismatch between z1

and z2, i.e., the interface and particle dynamic exponents are
not the same. A possible explanation for such a difference is
the following. The exponent z1 refers to the saturation of a
global interfacial variable such as the width: it is reasonable to
expect a single particle not to dramatically alter its properties.
The interface dynamics is thus dominated by the up-down
symmetric growth events away from the particle, resulting
in z1 = 2. The value of z2, on the other hand, is related to
the early-time superdiffusive behavior of the single particle
(5). Such behavior is triggered by the local environment of
the particle rather than the instantaneous global structure.
Here, owing to the particle itself, the up-down symmetry
of fluctuations is broken, and the dynamic exponent 3/2 is
plausible.

In order to corroborate the idea that the particle experiences
a different dynamic exponent to that of the interface as a
whole, we measured the spatial spreading of correlations from
the particle site. Specifically, we put a static (qL = qR = 0),
yet active particle (which still catalyzes the interface growth)
on the kth site of a flat interface, then let the interface evolve

FIG. 7. Correlations spreading from a fixed active particle which
catalyzes growth in the interface. The averages here are performed
over 10 000 different realizations of the interface dynamics. The
slope correlation function defined in the text is plotted against j/t1/2

in the top panel and j/t2/3 in the bottom panel. The overlap of the
functions is much better in the latter case, suggesting that correlations
spread around the particle as t1/z2 where z2 = 3/2.

and measure the slope correlation function

Cs( j, t ) = 〈[hk+1(t ) − hk (t )][hk+ j+1(t ) − hk+ j (t )]〉
at different times. The average here is performed over several
histories of the interface dynamics, and, due to the left-right
symmetry, we limit our measurements to the half of the
interface on the right of the particle. The data collapse of Fig. 7
provides evidence that around the particle the correlation
length grows, at least for relatively short times, as t1/z2 with
z2 = 3/2. This is consistent with the dynamical exponent of
the KPZ universality class.

To summarize the dynamics in the ω = 1 case, the interface
behaves as an EW one with emerging oscillations analogous to
those previously observed in the finite particle-density system.
The particle, in turn, behaves as if it were passively sliding on
a KPZ interface, displaying an initial superdiffusive regime
〈X 2

t 〉 ∼ t4/3, followed by normal diffusion 〈X 2
t 〉 ∼ Defft with
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FIG. 8. Width (top) and MSD (bottom) vs ωt , for L = 8000 and
ω as in the key. The width of a passive, EW interface is also shown
for comparison. While rescaling time by ω renders the interface
dynamics independent of this parameter, the particle displays an
early-time, subdiffusive regime, the extent of which scales as 1/ω,
as pointed out in the text.

Deff ∼ L1/2. The crossover, caused by the system finite size,
occurs at a time t ∼ L3/2. Our independent measurement of
correlations supports the idea that such a KPZ-like scaling is
caused by the local, symmetry-breaking action of the particle,
which causes itself to see the globally EW interface as an
effectively KPZ one.

Activity versus trapping in the small ω limit

In this section we discuss the scaling of the interface width
and of the particle MSD when the latter is slower than the
former, i.e., ω < 1. Let us start by comparing, for L fixed,
the average width and MSD of systems with different ω. As
shown in Fig. 8, upper panel, the width dynamics does not
depend on ω, apart from a trivial rescaling of time—recall
that ω equals the average number of interface updates per
particle update, whereas we take the average time for a particle
move as our unit of time. The interface exponents will then be
the same as those observed at ω = 1, that is, the EW class
values α = 1/2 and z = 2. The MSD, conversely, shows an
initial subdiffusive regime, reminiscent of the typical behav-
ior displayed by random walkers in random environments.
Subdiffusive behavior is manifest in Fig. 8, lower panel, by
a decreasing curve when 〈X 2

t 〉/(ωt ) is plotted as a function
of ωt . In a completely static random environment (such as

a quenched random potential) the subdiffusive behavior due
to trapping can be as slow as 〈X 2

t 〉 ∼ (log t )4 [41]. After a
time ∼ω−1, Fig. 8, lower panel, shows that subdiffusion is
replaced by superdiffusion, which eventually crosses over to
normal diffusion [〈X 2

t 〉/(ωt ) → const] due to the finiteness of
the medium, as in the ω = 1 case. As a result, the scaled MSD
at ω < 1 tends to the ω = 1 curve for sufficiently large scaled
times, as in the right panel of Fig. 8. In fact, ω−1 is the average
time at which the interface site under the particle undergoes
its first update. Hence, this is the time at which the interface
activity steps in, together with the mechanisms responsible for
the physics of the system at ω = 1. The asymptotic properties
of the system are then described by the same exponents found
at ω = 1, it will just take longer times and larger systems for
these to appear:

α = 1/2, z1 = 2;
ω � 1 : (9)

χ = 1/2, z2 = 3/2.

We close this section by showing the MSD scaling at
fixed ω, with L in the range 1000–8000, so as to support
the hypothesis χ = 1/2, z2 = zp = 3/2 in the whole ω � 1
of the parameter space (Fig. 9). Even though there is no
early time collapse of the curves for different L, the late
time collapse of the superdiffusive and diffusive regimes is
fully compatible with the proposed exponents. In order to
obtain cleaner scaling behavior, one would like the sub- and
superdiffusive regimes to be well separated in time. Such a
separation, however, would require system sizes much bigger
than those used throughout this paper, hence significantly
longer simulations—as we are dealing with a single particle
on a fluctuating interface, for each particle trajectory one
needs to simulate the whole interface dynamics too.

IV. THE ω → ∞ LIMIT: ELECTROSTATICS ON THE RING

Having explored the dynamics for ω � 1, we now turn
to ω > 1, where the interface moves faster than the particle.
Let us start by considering the extreme case, i.e., the ω →
∞ limit. The interface, in this limit, reaches a stationary
state before the particle can even move: most of the system
features, including the various exponents considered in this
paper, depend on the stationary shape the interface reaches
between subsequent jumps of the particle, as such a shape will
determine the particle jump rates in the following step.

In order to gain insight into this stationary shape, we
consider the related problem of a stochastic interface with a
defect site. Forcing our particle to stay put on a single site
means that the interface is being pulled from this specific
site, while there are only up-down symmetric fluctuations
elsewhere on the ring. By mapping our interface problem onto
a simple exclusion process, one can readily infer what the
system steady state is, especially with our parameter choice
λ = 1. Imagine every −1-slope segment of the interface to
be a bead and each +1-slope segment to be a hole: then
the transition ∨ → ∧ (resp. ∧ → ∨) corresponds to a bead
moving right (resp. left). All the beads in our system move left
or right at the same rate and experience hard-core repulsion,
whereas the particle site acts as a semipermeable membrane
which allows the beads to cross it only from the left to
the right. All the beads starting on the membrane left will
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FIG. 9. Scaling plot of the particle MSD for ω = 10−2 (left) and 10−1 (right). The black solid lines in both plots are guides to the eye for
the superdiffusive law 〈Xt 〉 ∼ t4/3.

eventually cross it and lie on its right, while there will be only
holes on the left. As a result, the steady-state interface will
look like a “tent,” a macroscopic convex wedge as depicted in
Fig. 10.

We now consider fluctuations of the system. We use a
field-theoretic representation of the interface using symmetry
considerations to retain the relevant terms. The starting point
is the Edwards-Wilkinson equation,

∂t h = ν∇2h +
√

2�η(x, t ), (10)

where h(x, t ) is the interface field and η a space-time white,
Gaussian noise with unit variance. In Eq. (10), ν can be
perceived as the interface tension, while � is the noise in-
tensity. As we are writing a field description from symmetry
considerations, there is no explicit link at this level between
the parameters in Eq. (10) and our stochastic model param-
eters. This is, however, irrelevant for what we are going to
deduce from the field-theoretic approach. Periodic boundary
conditions are used to enforce the ring topology on the
system.

The defect site (we will call its position X0) is introduced
as a δ-like source term in the right-hand side of Eq. (10):

∂t h = δ(x − X0) + ν∇2h +
√

2�η(x, t ), (11)

FIG. 10. Tentlike shape of the interface, which is obtained in
our model in the limit ω → ∞. The dotted line plots the analytic
prediction (18), with /ν = 2 and L = 4000, while the blue dots
represent a simulated L = 4000 interface.

where  measures the strength of the bias on the defect
site [42]. To infer the steady state of Eq. (11), we introduce
the height Fourier modes hk (t ) = ∫ L

0 dx h(x, t )e−ikx , where,
due to periodicity, k = 2πn/L with n integer. Equation (11)
transforms to

∂t h̃k = e−ikX0 − νk2h̃k +
√

2�η̃k . (12)

Each mode is nothing but an Ornstein-Uhlenbeck process with
k-dependent parameters. The new ingredient here over the
usual EW equation is the constant forcing term e−ikX0 which
stems from the defect site. Integrating (12) yields

h̃k (t ) = e−νk2t h̃k (0) +
∫ t

0
ds e−νk2(t−s)

× [
√

2�η̃k (s) + e−ikX0 ]. (13)

First, by setting a flat initial condition, the h̃k (0) contribu-
tion disappears. Next, we note that the zeroth mode, once
divided by L, equals the mean height h defined in Subsection
of Sec. II; the mean height is a Gaussian random variable
with mean t/L and variance 2�t/L2. The zeroth mode
contributes neither to the interface width, since this measures
fluctuations about the mean, nor to the particle dynamics,
which involves only the interface slope. We therefore ignore
the zero mode for the remainder of this section. In particular,
we consider the stationary state

lim
t→∞[h(x, t ) − h] = hdet (x) + hrand(x), (14)

where hdet (x) is the deterministic part of the interface profile
coming from the delta function and Laplacian in (11), whereas
hrand(x) is a random part coming from the noise.

We note in passing that the deterministic part of the steady-
state solution of (11) corresponds to the solution of Laplace’s
equation for the electrostatic potential of a point charge
at X0 on a one-dimensional lattice with periodic boundary
conditions. In order to have a consistent equation, which
satisfies the periodic boundary condition, one has to introduce
a background charge density to give overall charge neutrality.
In our context, this procedure is equivalent to subtracting out
the zeroth mode.
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Let us then consider the t → ∞ limit of all the other
modes. In this limit the deterministic part of (13) reads

h̃det
k (x) = lim

t→∞


ν

1 − e−νk2t

k2
e−ikX0 = 

ν

e−ikX0

k2
. (15)

Inverting (15) by summing over k = 2πn/L, n = 0, one gets

hdet (x) ≡ 

ν

L

4π2

{
Li2

[
e2π i (x−X0 )

L

]
+ Li2

[
e−2π i (x−X0 )

L

]}
, (16)

where Lim(x) = ∑
k�1 xk/km is the polylogarithm of order m

of x. We now invoke a polylogarithm identity

Lin(e2π ix ) + (−1)nLin(e−2π ix ) = −(2π i)nBn(x)/n!, (17)

where 0 < x � 1. Here Bn denotes the nth Bernoulli polyno-
mial and in particular, B2(x) = x2 − x + 1/6 so that we obtain

hdet (x) = L

2ν

[
(x − X0)2

L2
− |x − X0|

L
+ 1

6

]
. (18)

This is the tent profile illustrated by the dashed line in Fig. 10.
The stochastic contribution hrand(x, t ) consists of zero-

average Gaussian random variables at each point x of the
profile, and the Fourier transform is

h̃rand
k (t ) =

∫ t

0
ds e−νk2(t−s)

√
2�η̃k (s). (19)

Inverting the Fourier transform by a calculation analogous to
that presented above reveals that, as t → ∞,

hrand(x) →
√

2�

L

∑
k =0

eikx

νk2
η̃k, (20)

where

〈η̃k〉 = 0, (21)

〈η̃k η̃k′ 〉 = Lδ(k + k′), (22)

so that 〈hrand(x)〉 = 0 and the spatial correlation between
points at distance r of the stochastic profile reads

〈hrand(x)hrand(x + r)〉 = �

ν

L

4π2

[
Li2

(
e2π i r

L
) + Li2

(
e−2π i r

L
)]

= �L

2ν

[
r2

L2
− |r|

L
+ 1

6

]
. (23)

By squaring Eq. (14) and integrating over [0, L], one gets
the steady-state squared mean width. This quantity comprises,
again, two competing contributions:

w2
ss(L) = c

(
L

2ν

)2

+ �L

12ν
, (24)

the first from the squared deterministic profile, the sec-
ond from the integral of 〈hrand(x)hrand(x)〉. Here c =∫ 1/2
−1/2 dx (x2 − |x| + 1/6)2 = 1/180.

According to Eq. (24), noise dominates the roughening
dynamics for small system sizes (L < ν�/32c), and α =
1/2. As the system gets larger, however, the deterministic
contribution of the defect site grows in weight, until it over-
comes that of the noise and sets the roughness exponent to
α = 1. As for the dynamic exponents, they can be inferred
via the following argument. Although at early times, slope

FIG. 11. Width scaling in the ω → ∞ limit.

correlations spread around the defect site as in Fig. 7, at
long times one obtains diffusive behavior. This is because,
when the tent profile has formed, growth is limited by slope
diffusion: the interface must be concave (∨) at the defect site
for the tent to grow by one unit, so that a +1-slope segment
has to diffuse across the −1-slope region on the right of
the defect while a −1-slope segment has to diffuse across
the +1-slope region on the left of the defect. The resulting
dynamic exponent z1 equals 2, as one would expect from the
field equation (11) and is confirmed by the numerics (Fig. 11).

The particle dynamics is also easily understood, as the
particle will always be sitting on the top of the tent before
moving. Then, from Eq. (2), the left and right jump rates
coincide, qR

k = qL
k = q, so that the particle undergoes normal

diffusion. As there is normal diffusion at all times, the expo-
nents ξ and z2 are therefore trivially zero. To sum up,

α = 1, z1 = 2;
ω � L2 : (25)

χ = 0, z2 = 0.

where ω � L2 specifically means that ω is larger than the
static defect problem saturation time. Of course this regime
can be achieved only on a finite L system, and because of this
the behavior (25) does not survive the thermodynamic limit.
What happens for ω large but shorter than the saturation time
is the object of the following section.

V. THE SURFING REGIME

The system behavior when ω lies between the values of
Secs. III and IV is not just a mixture of the limiting cases
previously described, but another regime appears. Such a
regime—we call it the surfing regime—occurs for ω large, but
still smaller than the static particle problem saturation time,
which is O(L2). The reason for the given name, as anticipated
in the introduction, comes from the particle behavior, which is
peculiar to this system and specific range of parameter. This
behavior is summarized in Fig. 12.

At first, the particle pulls the interface as a static defect,
thus creating the typical tent shape discussed in the previous
section. However, as ω is finite the particle will move before
the tent gets as big as the system, which takes a time O(L2).
Pictorially (see Fig. 12), the particle randomly chooses one
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FIG. 12. Surfing regime snapshots. The interface profiles are
ordered in time according to their color, from lighter to darker, while
the particle is represented by a yellow dot of a significantly larger
size, to ease understanding of the picture. The earliest snapshot (light
blue) depicts the initial growth, whose dynamics is analogous to that
of the ω → ∞ regime. The second (azure) is taken some moments
after the particle has started moving: the wave is broken together
with the left-right symmetry of the system. The last (dark blue) is the
latest, and it shows that the particle keeps moving while “ironing out”
the interface: this is, in fact, the regime with the smallest roughness
exponent. Notice how, due to the system finite size, the particle will
soon reach the back of the wave: at this point it could stochastically
revert his motion, so that the long-time dynamics is still diffusive (see
discussion in the text).

side of the tent as the direction to move away, then the tent
breaks like a sea wave towards the particle’s direction of
motion. Since ω is greater than 1, after the wave breaks the
interface keeps following the particle but without completely
adapting to the new particle position, as it does for ω → ∞.
As a result, the particle will keep finding itself on a downslope
and being pushed forward—the particle appears to surf the
interface.

The first, immediate consequence of this peculiar dynamics
is that the particle is able to use the protrusive force it exerts on
the membrane to propel itself. The mechanism is qualitatively
similar to the one giving rise to waves in the finite density
case [9]: first the particle creates a bump, then it is advected
away from it. Although their origins lie in analogous mecha-
nisms, the two phenomena are not quite the same, as, in the
single-particle system considered in this paper, directed mo-

tion is not a collective phenomenon. Furthermore, it is not
generic on the whole λ, γ > 0 region of the parameter space
but requires ω to lie within some specific, system-size depen-
dent values.

Consider the MSDs shown in Fig. 13. For ω = 10 (left
panel), after some short transient, 〈X 2

t 〉 grows faster than the
t4/3 law observed at ω = 1 and represented in the figure by the
blue dashed line. It is, however, slower than the black dashed
lines, representing 〈X 2

t 〉 ∼ t2 and thus ballistic behavior. Upon
increasing ω even further (ω = 100 in the right panel), the
initial transient gets longer, but the superdiffusive regime
becomes ballistic, at least for the bigger systems. This regime
disappears by reducing the system size simply because the
crossover time to the long-time diffusive behavior becomes
short enough to mix with the initial transient. The reason why
it requires a big enough ω, instead, lies in the size of the
tent created before directed motion: it has to be wide enough
that it does not mix with noise-induced fluctuations, and its
sloped side must provide a pushing force stable against both
the particle and the interface fluctuations. For large values of
ω as described, the scaling hypothesis of Eq. (4) is obeyed
once again, provided one considers only systems which are
big enough to display the ballistic behavior and chooses a
value of ω much larger than 1 but still much smaller than L2.

As shown in Fig. 14, collapse is achieved for χ = z2 = 1.
The value of z2, together with χ + z2 = 2, is consistent with
the ballistic regime observed right before saturation. What is
the meaning of χ = 1? It implies that the long-time effective
diffusion coefficient Deff is directly proportional to the system
size L. By coupling this observation with the kinetic inter-
pretation of the diffusion coefficient D = (mean free path) ×
(speed), we argue that the particle surfs the interface for
its whole length before reverting its motion. This is indeed
what emerges by inspecting snapshots of the system as those
collected in Fig. 12: after traveling about a system length, the
particle meets the tail of the wave it is surfing, hence it will
have to stop and create a new wave to surf, possibly in the
opposite direction. The resulting motion is that of a persistent
random walk, with the interface size as persistence length.

As a byproduct of the peculiar particle dynamics, the width
scaling appears to differ from the previous sections or indeed

FIG. 13. MSD at ω = 10 (left) and 100 (right), system size as in the key. The dashed lines are guides to the eye, the black corresponds
to the ballistic law 〈X 2

t 〉 ∼ t2, and the blue corresponds to 〈X 2
t 〉 ∼ t4/3. Though both left and right panels display superdiffusive behavior, true

ballistic behavior is achieved for ω = 100 only (right panel).
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FIG. 14. MSD scaling at ω = 100. If one excludes the L = 1000
curve, which does not reach a full ballistic regime, the scaling
exponents agree with the proposed values χ = z2 = 1.

any of the known universality classes. First, as in the finite
density case [9], the dynamics is dominated by oscillations:
the interface roughens when the particle creates a tent, then
becomes smooth as the particle surfs the membrane wave.
Once the particle has stopped running, due to the finiteness
of the interface size, the width increases again and the cycle
repeats. The period of the oscillations, being controlled by the
particle running time, scales as the system size, hence z1 = 1,
as can be observed in Fig. 15. Notice that this is the only
case where z1 = z2 = zP, as in the passive scalar problems
discussed in Subsection of Sec. I. Furthermore, due to the
“ironing” performed by the surfing particle, the interface
appears significantly smoother than in the other phases. A
reasonable width collapse in Fig. 15 is achieved for α = 0.175
(about 1/6), but we cannot exclude the possibility that the
roughness will vanish upon increasing the system size even
further. Some light will be shed on this issue in the forthcom-
ing section, where we predict the surfing regime through a
self-consistent solution of a coarse-grained description of the
system at hand.

VI. THE LANGEVIN DESCRIPTION AND DYNAMICAL
PHASE TRANSITION

In this section we resort to a coarse-grained description of
our model, in order to analyze the surfing regime. The starting

FIG. 15. Width scaling at ω = 100. The oscillating widths col-
lapse on a single curve for α = 0.175 and z1 = 1.

point is the “Active KPZ” equation proposed in Ref. [9].
Having a single particle, though, causes the introduction of
a density field to be meaningless. We will instead build a
process X (t ) which is a continuous-space equivalent of the
jumping particle, at least to the extent at which the height
field h(x, t ) is the continuous-space equivalent of our discrete
interface.

Hence, let us start by calling it the lattice position of the
particle at time t , a the lattice spacing, and define x = ai as
the coordinate that will become continuous in the a → 0 limit.
The current particle position will be distinguished from the
latter by denoting it with Xt . After a short time δt , the particle
position changes according to

Xt+δt =

⎧⎪⎪⎨
⎪⎪⎩

Xt + a, prob. δtqR
i ,

Xt − a, prob. δtqL
i ,

Xt , otherwise.

(26)

Thus,

〈δXt 〉 = δta
(
qR

i − qL
i

) = −δta2qγ∇hi;〈
δX 2

t

〉 = δta2
(
qR

i + qL
i

) = δta22q, (27)

and higher order moments 〈δX n
t 〉 are of order an. By setting

2q = a−2, approximating ∇hi with a∂xh(x, t ) + O(a2), and
performing the a → 0 limit, one notices that the nth moments
with n > 2 vanish, while

〈δXt 〉
δt

= −γ ∂xh(x, t )|Xt ;

〈
δX 2

t

〉
δt

= 1. (28)

The quantities above are nothing but the first two coefficients
of the Kramers-Moyal expansion of the probability distri-
bution of the particle position. From those we deduce the
continuous-space limit particle position obeys the Langevin
equation

Ẋt = −γ ∂xh(x, t )|Xt + ξ (t ), (29)

where ξ (t ) is a Gaussian white noise with unit variance. With
an analogous procedure one can derive the height equation [cf.
Eq. (11)]

∂t h = ω[δ(x − Xt ) + ν∇2h] +
√

2�ωη, (30)

where we factored out the timescale ratio parameter ω.
Without solving Eqs. (29) and (30) explicitly, we can check

if it admits a surfing solution in the deterministic limit � = 0.
Let us work, as in Sec. IV, in the Fourier representation: with
an initially flat interface and � = 0,

h̃k (t ) = ω

∫ t

0
ds e−ωνk2(t−s)e−ikXs . (31)

As he speed of the slider equals the force felt at time t , F (t ) =
−γ ∂xh(x, t )|Xt ,

Ẋt = −γ

∫ ∞

−∞

dk

2π
ikh̃k (t )eikXt

= −ωγ

∫ ∞

−∞

dk

2π

∫ t

0
ds ike−ωνk2(t−s)eik(Xt −Xs ). (32)
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The above equation is just a reformulation of Eqs. (29) and
(30), obtained by integrating out the height field. Since the
particle begins its motion on a flat interface, Ẋt vanishes at
t = 0. Ẋt = 0 is actually a solution of Eq. (32) at all times, as
can be checked by setting Xt = Xs in the equation’s right-hand
side: the ensuing parity of the integrand causes the k integral
to vanish.

Our simulations, however, show that the particle starts
moving at some later time. Furthermore, we have argued
that the run length diverges in the thermodynamic limit L →
∞ (cf. Sec. V), which should imply the existence—and
finiteness—of the following limit,

lim
t→∞ Ẋt = vss, (33)

where we refer to vss as a “steady-state” surfing speed. The
goal of the remainder of the section is then that of finding
a self-consistent equation for vss by performing a long-time
limit of Eq. (32). This limit is given by

vss = lim
t→∞

{
−ωγ

∫ ∞

−∞

dk

2π

∫ t

0
ds ike[ikvss−ωνk2](t−s)

}
.

(34)

In Eq. (34), Xt − Xs is approximated by vss(t − s) for all
times, whereas actually vss approximates Ẋt only at very
large times. However, due to the decaying exponential factor
exp {−ωνk2(t − s)}, the s integral is insensitive to the inte-
grand values for small s when t → ∞. Therefore, under the
t → ∞ limit, the replacement of Xt − Xs with vss(t − s) can
be safely extended to the whole integration domain [0, t] to
get to Eq. (34). We finally get to the sought self-consistent
equation by performing the limit. The result reads

vss = γ

ν

∫ ∞

−∞

dk

2π

1

ik + vss/ων

= γ

2ν
sign(vss), (35)

where “sign” is the signum function (+1 for positive argu-
ment, −1 for negative, 0 when the argument vanishes). Equa-
tion (35) is solved by v = 0 and ±v∗, where v∗ = γ/2ν.

This means that, at some time between 0 and ∞, the
two nonzero solutions appear: in order to infer this time,
one would have to solve the full time-dependent problem.
The time-dependent particle speed will then interpolate from
v = 0 at t = 0 to v = γ/2νsign(v) at t → ∞. The approach
to the t → ∞ limit follows easily from next-to-leading cor-
rections to Eq. (34), found to be exponentially small in t and
controlled by the saturation time tsat = 4ων/v∗. The departure
from the t = 0 solution, instead, is much harder to analyze.
The reason is that a small t expansion of Eq. (32) will result
in all the derivatives of Xt vanishing. We believe this might
be due to some latency period where the solution sticks to
Ẋt = 0.

As the transition away from this solution has proven diffi-
cult to analyze, we present in Fig. 16 a stochastic simulation
that illustrates it. The transition to a running phase with
constant speed occurs after some apparent latency period,
marked by a vertical red dashed line in the figure. In this
simulation the particle is subject to thermal noise when there

FIG. 16. Particle trajectory for ω = 400, with L as in the key. The
depicted behavior is emblematic of the whole 1 � ω � L2 regime.
The dynamics goes qualitatively as follows. Starting from a flat
interface at t = 0, the particle fluctuates diffusively. It eventually
picks a direction at random and starts running, but it does so only
after some finite time.

is no net slope driving it, hence it moves diffusively before
making the transition to the running phase. It is possible that
some thermal kick is also required for the particle to transition
between the v = 0 and v = ±v∗ deterministic solutions.

VII. CONCLUSIONS

In conclusion, we have studied the statistical mechanics
of a single active particle, an active slider, on a fluctuating
membrane. The nature of the coupling is such that the active
particle stimulates interfacial growth and is in turn affected
by height gradients so as to be repelled by peaks and slide
down to accumulate at valleys. We chose this setup for two
reasons. First, the particles create interface peaks which repel
them, thus perpetually generating activity, and this enhances
the nonequilibrium nature of the problem (i.e., there is no
equilibrium system which qualitatively resembles the one we
study). Second, this setup may be relevant to understanding
the behavior of membrane proteins, especially those which,
by signaling to the actin cortex, stimulate membrane growth.

Our simulations show that there is a surprisingly rich
range of possible dynamical behaviours of an active slider.
The regimes we identified depend crucially on the ratio be-
tween two timescales, that of interface relaxation and that
of slider motion or diffusion in an effective potential. When
the first timescale is sufficiently slow, the interface behaves
as an Edwards-Wilkinson equilibrium interface, whereas the
particle dynamics is nontrivial: it is superdiffusive at inter-
mediate times, and diffusive at late times. For very slow
interfacial motion, the slider can also move subdiffusively at
very early times, which is reminiscent of the dynamics of
random walkers in quenched random environments. Thus the
interface and the slider exhibit different dynamic exponents.
It is intriguing to notice that, in the slow interface regime, the
slider dynamics resembles metadynamics, a virtual dynamics
used to let a system fully sample a possibly complex free
energy landscape—it would be tempting here to speculate that
such metadynamics could also appear as an efficient strategy
in biological systems.
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When, instead, the dynamics of the interface is fast with
respect to particle diffusion, two additional distinct regimes
can occur, whose interplay depends also on the system size.
One is the “surfing” regime, where the slider travels ballisti-
cally for whole system lengths by riding its own wave, and the
other is the “electrostatic” regime where the slider behaves as
a moving positive charge on a negatively charged ring. They
both occur due to the particle being able, if slow enough, to
enslave the interface: after an adequate amount of time, the
interface modification due to the slider action will dominate
over thermal fluctuations, and the interface will look like the
tent described in Sec. IV. Depending on whether the slider
influences the whole interface or part of it before it moves,
the tentlike shape will stay stable or break and be surfed by
the slider. Such an added system-size dependence leads us
to believe that, should the L → ∞ limit be performed first,
only the metadynamics and surfing regimes would survive.
Which of the two takes place would then be determined by
the relative importance of noise- and activity-induced shape
fluctuations.

A further exploration of the effect of noise would be of
great interest. One might, for instance, include noise in the
coarse-grained approach we presented in Sec. VI [coupled

Langevin equations (29) and (30)]. Arguably, the addition
of interfacial noise could hinder the emergence of surfing
solutions, hence explain why surfing appears only in a specific
range of ω. Furthermore, as the interface noise influences
all the particles in the system, its inclusion would constitute
a significant step in understanding the interface-mediated
interactions between the sliders and the emergent collective
behavior. Even the simpler—but still challenging—exact so-
lution of the deterministic problem, Eq. (32), would shed
some light on the transition to directed motion described in
Sec. VI.

To sum up, our work shows that nonequilibrium active
membranes exhibit nontrivial dynamics, even when activity
is due to the action of a single particle. We hope that this work
will stimulate further theoretical studies of nonequilibrium
membranes with active sliders, as well as other applications of
this models to other contexts, for instance, that of nonequilib-
rium random walkers in fluctuating potentials, or chemotactic
microorganisms and phoretic particles [43].
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