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Condensation of fluctuations in the Ising model: A transition
without spontaneous symmetry breaking

Annalisa Fierro,1,* Antonio Coniglio,1,† and Marco Zannetti2,‡

1CNR-SPIN, c/o Complesso di Monte S. Angelo, via Cinthia, 80126 Napoli, Italy
2Dipartimento di Fisica “E. R. Caianiello,” Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (SA), Italy

(Received 23 December 2018; published 16 April 2019)

The ferromagnetic transition in the Ising model is the paradigmatic example of ergodicity breaking accompa-
nied by symmetry breaking. It is routinely assumed that the thermodynamic limit is taken with free or periodic
boundary conditions. More exotic symmetry-preserving boundary conditions, like cylindrical antiperiodic, are
less frequently used for special tasks, such as the study of phase coexistence or the roughening of an interface.
Here we show, instead, that when the thermodynamic limit is taken with these boundary conditions, a novel type
of transition takes place below Tc (the usual Ising transition temperature) without breaking either ergodicity or
symmetry. Then the low-temperature phase is characterized by a regime (condensation) of strong magnetization’s
fluctuations which replaces the usual ferromagnetic ordering. This is due to critical correlations perduring for all
T below Tc. The argument is developed exactly in the d = 1 case and numerically in the d = 2 case.
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I. INTRODUCTION

Our understanding of phase transitions has been shaped to
a large extent by the conceptual structure of the Landau theory
[1], whose key feature is the reduction of symmetry as the
temperature is lowered from above to below the critical point.
This is the process of spontaneous symmetry breaking (SSB),
which is manifested through the appearence of a nonvanishing
value of an order parameter, such as the magnetization in a fer-
romagnet. However, the Landau paradigma does not exhaust
the variety of possible phase transitions. There are transitions
which do not involve SSB, a notable example among these
being the topological transition in the two-dimensional (2D)
XY model. This paper is devoted to the study of another
instance of a phase transition without SSB, which is partic-
ularly interesting because it occurs in the framework of the
Ising model where it is generally taken for granted that the
transition ought to take place with the spontaneous breaking
of the up-down symmetry of the interaction.

It is convenient to first recall some well-established facts
about the connection between symmetry and ergodicity break-
ing [2,3]. To fix the ideas consider a d-dimensional Ising
system on a lattice of size V = Ld with the energy function
(Hamiltonian)

H(s) = H0(s) + B(s), (1)

where s = [si = ±1] is a spin configuration, H0(s) =
−J

∑
〈i j〉 sis j is the nearest-neighbors interaction with ferro-

magnetic coupling (J > 0), and B(s) is the boundary term.
The interaction H0(s) is invariant with respect to spin reversal
(Z2 group). In the following we shall restrict the boundary
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conditions to periodic (PBC) and cylindrical antiperiodic
(APBC), both symmetry preserving. To briefly recall what
these BC prescribe, consider a square lattice. In the PBC case,
spins on opposite edges are coupled ferromagnetically, just
like spins in the bulk. Instead, in the APBC case, spins on one
pair of opposite edges are coupled ferromagnetically, while
those on the other pair antiferromagnetically. Hence

B(p),(a)(s) = −J
L∑

y=1

s1,ysL,y ∓ J
L∑

x=1

sx,1sx,L, (2)

where PBC or APBC correspond to the upper or lower sign
and x, y denote horizontal and vertical directions. In the
following we shall use the (p) and (a) superscripts for PBC
and APBC, respectively, except when not required by clarity.
The reason for considering these two boundary conditions
is to show that while with PBC the usual ferromagnetic
transition involving ergodicity and symmetry breaking takes
place, in the APBC case we are presented with the novel
and qualitatively different scenario of a transition without
ergodicity and symmetry breaking, whose low-temperature
phase is critical all the way down to T = 0.

As time evolves the microscopic state executes a trajectory
[s(t )] inside the phase space of all possible configurations
� = [s]. In general, if V is finite and T > 0 the system is
ergodic, independently of the BC choice. This means that
all microstates in � are dynamically accesssible from any
one of them. In thermal equilibrium the trajectory samples
phase space according to the time-invariant Boltzmann-Gibbs
distribution,

P(s|μ) = e−βH(s)

Z (μ)
, (3)

where μ collects the state parameters V, T and the boundary
condition. However, in the thermodynamic limit (V → ∞)
and for sufficiently low T , ergodicity may fail, depending on
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FIG. 1. Schematic magnetization distributions at some generic T
below Tc: To the left with PBC and to the right with APBC.

BC. In fact, this is what happens with PBC. By lowering T
below the critical temperature Tc phase space breaks up into
the two dynamically disjoint components �± of the states
with positive and negative magnetization, which transform
one into the other under inversion (I�± = �∓). Ergodicity
is globally broken because the trajectory remains confined
within the same component in which it has originated but
continues to hold separately within each component. Then,
individual trajectories no longer sample � according to the
Boltzman-Gibbs distribution but rather according to non-
symmetric distributions P±(s), with support over �± and
related by P±(Is) = P∓(s). These distributions correspond
to the two possible ferromagnetic pure states formed below
Tc, while the symmetric Boltzman-Gibbs distribution (3) be-
comes the even mixture of these. The corresponding magne-
tization density probability distribution takes the double peak
form

P(p)(m) = 1
2 [P+(m) + P−(m)], (4)

as schematically depicted in the left panel of Fig. 1. The peaks
are centered about the spontaneous magnetization values m±.

Clearly, since in a single experiment the trajectory is con-
fined inside either one of �±, only one peak at the time can
be observed. The intercomponent fluctuations [2] connecting
one peak to the other are not physical. The even form (4)
of the distribution can be observed only by carrying out the
experiment on an ensemble of identically prepared systems. In
that case, the ensemble average of the magnetization vanishes
and the information on the spontaneous magnetization is
recovered from the second moment,

〈m2〉(p) = m2
±. (5)

In the effort to make precise the concept of spontaneous
magnetization, Griffiths [4] proved that, in the absence of an
external field explicitly breaking the symmetry, the probability
of finding a value of the magnetization outside the interval
[m−, m+] vanishes in the thermodynamic limit, without being
able, though, to pinpoint the shape of the distribution within
the interval. Nonetheless, as a corollary there follows the
inequality

〈m2〉 � m2
±. (6)

For future reference we mention here that Eq. (4) saturates
Griffiths inequality as an equality.

The one above outlined is the standard SSB picture, which
is radically subverted if the thermodynamic limit is taken
imposing APBC. The main purpose of the present paper is to
show that, with this choice of BC and in the thermodynamic
limit, below the standard critical point at Tc there is a novel
low-T phase whose prominent features, as stated above, are
(i) the absence of SSB and (ii) the presence of long-range
correlations. APBC have been usually employed as a mean
to artificially create an interface in order to study details of
phase coexistence, like surface tension [5,6], or to focus on
the structure of the interface itself and its fluctuations, with
particular interest in the roughening transition [7]. Here we
broaden the scope, analyzing the system’s global behavior
as temperature is varied. In the studies quoted above the
interest was essentially on the structure of the interface and
its fluctuations, without considering the translations of the
interface. Here, instead, we are interested in the fluctuations
responsible of the displacement of the interface as a whole in
the direction along which APBC are imposed, which sustain
both ergodicity and criticality.

For the d = 1 system we show, on the basis of exact
results, that the new phase, characterized by the uniformity
of the magnetization distribution in the interval [m−, m+] as
sketched in the right panel of Fig. 1, is formed at T = 0. The
reason for this is that ergodicity is not broken. The trajectory
typically visits the subset of configurations characterized by
one domain wall separating two oppositely ordered large
domains. These configurations are dynamically connected and
since the wall can freely wander through the system, all
values of the magnetization in the interval [m−, m+] become
equally probable. The fluctuations spanning this interval are
of the intracomponent kind [2], implying that the null re-
sult 〈m〉(a) = 0 is physical, i.e., the absence of spontaneous
magnetization is obtained from the time average on a single
experiment. In this case ensemble averages and time averages
do coincide. This transition without SSB is revealed by the
second moment which, as a consequence of the uniformity of
probability, is

〈m2〉(a) =
{

0, T > 0,
1
3 m2

±, T = 0,
(7)

and satisfies Griffiths inequality strictly. The significant differ-
ence with Eq. (5) is that now the finite value of 〈m2〉 does not
originate from ordering of the system but from macroscopic
fluctuations of the magnetization due to correlations extending
over the entire volume of the system (hence critical). We
shall refer to such a transition as one of condensation of
fluctuations, as opposed to the usual ferromagnetic transition.
The gross features of the above picture are numerically con-
firmed with good precision in the d = 2 case for 0 < T < Tc,
where Tc is the Ising critical temperature. The T = 0 state is
excluded due to the pinning of the interface when the straight
geometry is reached.

The paper is organized as follows: The case of the d =
1 model is presented in Sec. II, where the T = 0 transi-
tion is analyzed in detail through exact results. The d = 2
case is investigated numerically in Sec. III, where the scenario
is expanded and enriched by the finite Tc value. Conclusions
and the outlook are presented in Sec. IV.
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II. ISING MODEL d = 1

The whole structure outlined in the Introduction can
be neatly illustrated in the exactly soluble one-dimensional
model. Consider an Ising chain of length L with energy
function

HL(s) = −J
L−1∑
i=1

sisi+1 + B(s), (8)

where the boundary term reads

B(s) =
{−JsLs1, PBC,

JsLs1, APBC.
(9)

The magnetization probability distribution has been com-
puted exactly for arbitrary L, T and various BC in Ref. [8]. In
the thermodynamic limit and T > 0 one finds P(m) = δ(m)
in all cases. But the dependence on BC emerges at T = 0
yielding the double peak characteristic of SSB with PBC,

P(p)(m) = 1
2 [δ(m + 1) + δ(m − 1)], (10)

as opposed to the uniform shape with APBC,

P(a)(m) =
{

1/2, m ∈ [−1, 1],

0, m /∈ [−1, 1],
(11)

which correspond to the distributions of Fig. 1 with |m±| = 1.
Notice that, although different, both distributions comply with
the Griffiths theorem previously quoted. As anticipated in the
Introduction, the difference in the ergodic properties is at the
root of the difference in shape of the probability distributions.
When PBC are imposed the ground state is degenerate and it
is given by either one of the two ordered configurations, with
all spins up s+ = [si = +1] or all spins down s− = [si = −1].
These are dynamically disconnected since the switch from one
to the other would require activated moves. In other words,
at T = 0 ergodicity is broken and s± coincide with the two
absolutely confining ergodic components �±. Consequently,
P(p)(m) is the mixture obtained by evenly mixing the two pure
states P±(m) = δ(m ∓ 1), which means, as explained in the
Introduction, that in spite of the parity of P(p)(m) the system
orders and SSB takes place.

Conversely, in the APBC case configurations of lowest
energy are those with one defect [8], or domain wall, which
are dynamically connected since the defect can freely travel
along the system by performing random walk at no energy
cost. Ergodicity is not broken and all values of m can be
sampled even in a single experiment. Thus, the uniformity
of P(a)(m) signifies absence of ordering and of SSB. This
type of transition, consisting in the appearence of macroscopic
fluctuations of m and without ordering is the condensation of
fluctuations.

Since in both cases the symmetry of P(m) is preserved at
all temperatures, the two transitions are revealed by the second
moment 〈m2〉, which jumps from zero at T > 0 to the T = 0
finite values

〈m2〉 =
{

1, PBC,

1/3, APBC.
(12)

FIG. 2. Scaling functions from Eqs. (15) and (16) in the 1D
Ising model with PBC and APBC. Left panel corresponds to finite
temperature and right panel to T = 0.

In the first case 〈m2〉 contains the information on the sponta-
neous magnetization, while in the second one expresses only
the size of fluctuations.

Correlation function

Deeper insight into the difference between the ordering
and the condensation transition is gained from the correlation
function. Using again the general results of Ref. [8], the
correlation function obeys the scaling form

C(r, T, L) = 〈sis j〉 − 〈si〉〈s j〉 = f (z, ζ ), (13)

where

r = |i − j| � L, z = r

L/2
, ζ = L

2ξ
, (14)

and ξ = −[ln tanh(J/T )]−1 is the correlation length in the
infinite system. Since the scaling functions

f (p)(z, ζ ) = cosh [ζ (1 − z)]

cosh(ζ )
, (15)

f (a)(z, ζ ) = sinh [ζ (1 − z)]

sinh(ζ )
, (16)

are forced by the BC to be even or odd under space reversal

f (p)(z, ζ ) = f (p)(z′, ζ ), f (a)(z, ζ ) = − f (a)(z′, ζ ),

z′ = 2 − z, (17)

we shall consider the behavior only in the first half of the
interval z � 1, no new information on the correlations being
obtained from the second half. The BC-dependent finite-size
effects are negligible if ξ 	 L, i.e., ζ 
 1, while they do play
a role in the opposite regime ξ � L, i.e., ζ � 1. In the high-T
regime with ζ 
 1 exponential decay, independent of BC, is
found

f (z, ζ ) = e−ζ z + O(1/ζ ), (18)

as shown by the dotted curve in Fig. 2. If T is lowered in the
ζ � 1 region, then BC-dependent finite-size effects become
detectable, driving the slower PBC decay above the APBC
one. Finally, at T = 0, that is for ζ = 0, from Eq. (15) and
Eq. (16) follows:

lim
ζ→0

f (z, ζ ) = f̂ (z) =
{

1, PBC,

1 − z, APBC,
(19)
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which shows that the PBC correlation function does not decay,
irrespective of the size of L, while in the APBC one there
remains an L-dependent decay (right panel of Fig. 2).

It is important to realize that this difference of behavior
is the direct consequence of the different distributions and
consequently of the different ergodic properties previously
discussed. To the mixed state (10) in configuration space there
corresponds the mixture of the two pure states concentrated on
s±,

P(p)(s) = 1
2 [δ(s − s+) + δ(s − s−)], (20)

from which immediately follows the above result in the first
line of Eq. (19) for PBC, since 〈sis j〉 = 1 for any r and
〈si〉 = 〈s j〉 = 0. In other words, the correlation function is no-
clustering as a consequence of ergodicity breaking. Instead,
with APBC, matters are quite different. As explained previ-
ously, due to the twisted BC, the lowest-energy configurations
contain one defect. Therefore, there is probability r/L that
the two sites i and j are on opposite sides of the defect and
probability 1 − r/L for them to be on the same side, from
which follows the second line of Eq. (19). Hence, at T = 0
the state is critical, since the correlation length is of the order
of the size of the system, which accounts for the macroscopic
fluctuations of m, as shown by Eq. (12). This L dependence
generates the sharp distinction between the short and large
distance behavior, depending on the scale of r, when L → ∞.
If r is kept fixed, then z → 0 as L → ∞ and

lim
L→∞

f̂ (a)(z) = 1, (21)

while, if z is kept fixed, then

lim
L→∞

f̂ (a)(z) = 1 − z. (22)

Thus, ergodicity looks broken at short distance (r 	 L), while
on the scale of L, no matter how large L is taken, there will be
always a defect going by, causing decorrelation and restoring
the clustering property. Borrowing terminology from aging
systems, this is an instance of weak ergodicity breaking [9,10],
which in the end means that ergodicity is not broken.

In closing this section, we point out that from the compari-
son of Eq. (15) or Eq. (16) with the generic finite-size scaling

form of the correlation function

C(r, T, L) = 1

r2(d−D)
f (z, ζ ), (23)

where D = (d + 2 − η)/2 is the fractal dimensionality of cor-
related clusters [11], there follows that in d = 1 the correlated
clusters are compact, i.e., D = 1 implying η = 1.

III. ISING MODEL d = 2

Let us now consider a two-dimensional finite square lattice
containing V = L2 sites. The BC interaction term (2) has
been discussed in the Introduction. The exact result for the
spontaneous magnetization of the infinite system is given by
[12]

m± =
{

0, for T � Tc,

±[1 − sinh−4(2J/T )]1/8, for T < Tc,
(24)

where Tc = 2.269J is the critical temperature. From now on
we shall set J = 1.

We have numerically extracted P(m), above and below Tc,
by preparing an L = 64 system at T = 0 and letting it to ther-
malize at the final temperature T . We have sampled m every
1000 Monte Carlo steps from 50 independent realizations of
total length 107 Monte Carlo steps. The outcome is displayed
in the left (PBC) and center (APBC) panels of Fig. 3. The
overall pattern replicates the structure observed in the d = 1
case. Above Tc the distribution is independent of BC. In both
cases there is a peak centered on the origin, which is expected
to narrow toward δ(m) as L grows. Below Tc, instead, the
dependence on BC is strong. In the left panel there appears
the growth with decreasing temperature of the bimodal distri-
bution, characteristic of ergodicity breaking and SSB, with the
two peaks centered about m− and m+ [13,14]. Conversely, in
the center panel as T goes below Tc the distribution spreads
out over the interval [m−, m+]. For T sufficiently low the
data show convergence toward a limit distribution which is
uniform to a good approximation. Ergodicity and symmetry
are preserved, as illustrated in the right panel of Fig. 3, where
the distribution of m computed at T = 1.5 from a single
realization of 107 Monte Carlo steps is compared with the
one extracted from an ensemble of 1.9 × 104 independent

FIG. 3. Magnetization distribution in the 2D Ising model with PBC (left) and APBC (center) for different T and L = 64. Continuous
lines are guides to the eye. Right: Comparison of P(a)(m) from a single realization (stars) and from an ensemble of 1.9 × 104 independent
configurations (circles) for T = 1.5 and L = 64.
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FIG. 4. Temperature dependence of 〈m2〉 in the 2D Ising model
with L = 64. PBC (circles) and APBC (triangles). The continuous
line and the dashed line are the plots of m2

± and 1
3 m2

± computed from
Eq. (24).

configurations. A similar computation carried out in the PBC
case (not displayed here) shows only one peak from the single
time series, as opposed to the two peaks obtained from the
ensemble.

The comparison of 〈m2〉(p) with m2
± and of 〈m2〉(a) with

1
3 m2

± is displayed in Fig. 4, showing that Eqs. (5) and (7) are
verified with good precision.

A. Correlation function

After checking that 〈si〉 = 0, the correlation functions are
computed along the x (horizontal) and y (vertical) directions
in the following way:

Cx(r, L, T ) = 1

L(L − r)

L∑
y=1

∑
i j

〈sis j〉, (25)

Cy(r, L, T ) = 1

L(L − r)

L∑
x=1

∑
i j

〈sis j〉, (26)

where the inner sums are over i and j such that yi = y j =
y, |xi − x j | = r in the first one and xi = x j = x, |yi − y j | = r
in the second one; L − r is the number of pairs (i, j) with the
same y, or x, and at a distance r. The average is taken over a
set of 1000 independent realizations.

In the PBC case there is isotropy between the x and y
directions, with C(p)

x (r, L, T ) = C(p)
y (r, L, T ) = C(p)(r, L, T )

symmetric under space reversal r → r′ = L − r, while in the
APBC case there is anisotropy, since C(a)

x (r, L, T ) is symmet-
ric and C(a)

y (r, L, T ) is antisymmetric. As in the d = 1 case,
we will restrict the study of these functions to the half interval
r ∈ [0, L/2].

FIG. 5. Left: Plot of r0.25C (p)(r, L, T ) against r/ξ in the 2D
Ising model with PBC. Independence from L is illustrated by the
superposition of the data taken with L = 512 and L = 256 on the
continuous line representing e−r/ξ . Right: data collapse at criticality
with PBC.

B. PBC

We have plotted C(p)(r, L, T ) for T above, at, and below Tc

in Figs. 5 and 6:
(i) T > Tc: Finite-size scaling holds in the form of

Eq. (23) with D = 1.875 since η = 1/4. Here and in the
following we shall keep using the scaling variables z and ζ

defined in Eq. (14). As in the d = 1 case, at a temperature T
sufficiently higher than Tc, such that ζ 
 1, the correlation
function becomes independent of L and decays exponentially
to zero like e−r/ξ . This is shown in the left panel of Fig. 5,
where r0.25C(p)(r, L, T ) has been plotted against r/ξ for dif-
ferent T and L, after extracting ξ as a linear fit parameter from
the semilog plot.

(ii) T = Tc: Since ξ = ∞, the finite-size scaling form
reduces to

C(p)(r, L, Tc) = 1

r1/4
f (p)
c (z), (27)

as demonstrated in the right panel of Fig. 5, where the data
taken for different system’s sizes have been collapsed by
plotting L1/4C(p)(r, L, Tc) against z = 2r/L.

(iii) T < Tc: Below Tc the correlation function decays
rapidly to a flat plateau (left panel of Fig. 6), whose height q
increases by lowering the temperature according to q = m2

±,

FIG. 6. Left: Correlation function C (p)(r, L, T ) against z in the
2D Ising model with PBC for different T below Tc and L = 128.
Right: Symbols stand for the plateau height q for different temper-
atures below Tc, while the continuous line is the plot of m2

± from
Eq. (24).
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FIG. 7. Typical configurations with PBC (left) and APBC (right)
below Tc.

as demonstrated in the right panel. We may then rewrite
C(p)(r, L, T ) as the sum of two contributions,

C(p)(r, L, T ) = G(r, L, T ) + q(T ), (28)

with G(r, L, T ) decaying toward zero as r increases. The
origin of this additive form can be understood taking into
account that the typical configurations below Tc, such as the
one depicted in the left panel of Fig. 7, display one ordered
domain filling compactly the whole system, with small finite
patches of reversed spins, due to thermal fluctuations. This
suggests to split the order parameter into the sum [10]

si = ψi + σ, (29)

where σ is a random variable which takes with probability 1/2
the two values m± and ψi represents the thermal fluctuations
in the broken symmetry state with the signature carried by m±.
From the statistical independence of these two variables and
the zero averages 〈ψi〉 = 〈σ 〉 = 0, one has

〈sis j〉 = 〈ψiψ j〉 + 〈σ 2〉, (30)

where 〈σ 2〉 = m2
± is the variance of σ and 〈ψiψi+r〉 can

be identified with the correlation function C±(r, L, T ) in the
broken symmetry pure states, which is independent of the ±
signature and obeys finite-size scaling of the form

C±(r, L, T ) � 1

r1/4
g(z, ζ ). (31)

Therefore, comparing Eqs. (28) and (30), we may identify

G(r, L, T ) = C±(r, L, T ), q(T ) = m2
±. (32)

Notice that the plateau contribution q is independent of L. We
emphasize that the presence of this plateau signals ergodicity
breaking and, therefore, that the state below Tc is not critical,
contrary to what happens with APBC, as we shall see in the
next subsection.

C. APBC

In the APBC case the phenomenology is characterized
by the x, y anisotropy. Specifically, C(a)

x (r, L, T ) behaves
similarly to C(p)(r, L, T ), while C(a)

y (r, L, T ) is qualitatively
different.

(i) T > Tc: As long as ζ 
 1, the two functions

C(a)
x,y (r, L, T ) = 1

r1/4
f (a)
x,y (z, ζ ) (33)

FIG. 8. Left: Correlation functions C (a)
x (r, L, T ) (triangles) and

C (a)
y (r, L, T ) (squares) in the 2D Ising model with APBC, above Tc

for T = 2.5, 2.4 (from bottom to top) and L = 128. For T = 2.5 the
two sets of symbols superimpose. Right: L0.25C (a)

x (r, L, T ) (triangles)
and L0.25C (a)

y (r, L, T ) (squares) (from top to bottom) in the 2D Ising
model with APBC at Tc. Data taken with L = 64, 128, 256, 512
collapse almost perfectly.

display x, y isotropy and independence from BC. Anisotropy
emerges when finite-size effects become appreciable in the
ζ � 1 region. Then the behaviors along x and along y separate
(see left panel of Fig. 8) according to a pattern reminiscent of
the one in the left panel of Fig. 2 for the d = 1 case. Clearly, in
the L → ∞ limit the difference between the x and y directions
disappears.

(ii) T = Tc: Anisotropy of the finite-size scaling at Tc,

C(a)
x,y (r, L, T ) = 1

r1/4
f (a)
x,y (z), (34)

is illustrated in the right panel of Fig. 8 by the collapse of
the data taken with different L when plotting L0.25C(a)

x,y (r, L, T )
against z. The anisotropy onset is at z � 1.

(iii) T < Tc: The strong anisotropy demonstrated by the
comparison of the left and center panels of Fig. 9 is evidence
that long-range correlations persist throughout the region T <

Tc. Specific features of C(a)
x,y (r, L, T ) can be accounted for by

generalizing the argument previously developed for PBC. As
explained above, typical configurations (see right panel of
Fig. 7) now contain two large ordered domains, oppositely
oriented and separated by a spanning domain wall, each
containing in its interior the small reversed domains due to
thermal fluctuations [15]. Accordingly, the split (29) of the
order parameter now must take the local form

si = ψi + σi, (35)

where σi = 〈si〉αi is the average magnetization in the broken
symmetry state with the signature αi = ± of the domain to
which the site i belongs, and ψi is the thermal fluctuations
contribution. In other words, σi is a stochastic variable which
flips between m+ and m− as the spanning interface crosses
the site i. Then, assuming statistical independence of ψi and
σi, and taking into account that the average over the whole
system yields 〈ψi〉 = 〈σi〉 = 0, one has

C(a)
x,y (r, L, T ) = 〈sisi+r〉x,y = 〈ψiψi+r〉x,y︸ ︷︷ ︸

G(r,L,T )

+〈σiσi+r〉x,y︸ ︷︷ ︸
Dx,y (r,L,T )

,

(36)
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FIG. 9. Correlation functions C (a)
y (r, L, T ) and C (a)

x (r, L, T ) along the y direction (left) and x direction (center) with APBC, for different T
below Tc and L = 64. In the right panel the symbols stand for the plateau height from C (a)

x (r, L, T ), while the continous line is the plot of m2
±

from Eq. (24).

where G(r, L, T ) is the same thermal contribution discussed
in Eq. (32) of the PBC case (and, therefore, BC indepen-
dent). The second bulk contribution Dx,y(r, L, T ) is strongly
anisotropic and, by analogy with the arguments put forward
in the d = 1 case at T = 0, is expected to have the structure

Dx(r, L, T ) = q, (37)

Dy(r, L, T ) = q(1 − z), (38)

where the T dependence is absorbed in q. This is corrobo-
rated by the plots in Fig. 9. Notice that the plateau height
q of C(a)

x (r, L, T ) is somewhat lower than m2
± (right panel

of Fig. 9), because the interface is corrugated along the
x direction. The finite width of the strip occupied by the
interface induces a correction on the plateau value. In this
connection, we expect that in the 3D case, where there is a
finite roughening temperature 0 < TR < Tc, the same effect
would be observed above TR, where the interface is rough, but
not below TR, where the surface is stable. More precisely, if
APBC in the 3D case are imposed along the z direction, the
plateau values of the correlation functions along the x and y
transverse directions are expected to lie somewhat below the
m2

± curve for T chosen in between TR and Tc, just as in the
right panel of Fig. 9, while they should fall right on top of it
for T below TR.
Apart from this, from Eq. (38) there follows, on the basis of
the considerations made at the end of Sec. II, that below Tc the
σ degrees of freedom are critically correlated with compact
clusters. In order to further elaborate on this important feature,
it is instructive to consider the circularly averaged correlation
function, which can be decomposed as before into the sum of
two parts as a consequence of the split (35) of variables

C(a)(r, L, T ) = G(r, L, T ) + D(r, L, T ). (39)

By taking T low enough to suppress the thermal contribution,
the plot of C(a)(r, L, T ) against z, for different values of
L, in Fig. 10 reveals the critical behavior of the type dis-
cussed in Eq. (22), characterized by scaling and linear decay
D(r, L, T ) ∼ 1 − z. This confirms that at any T below Tc

the system with APBC is at criticality. The picture is com-
pleted introducing critical exponents. From the scalings of the
order-parameter-like quantity

√
〈m2〉 ∼ L0 and susceptibility

χ = ∫
dr D(r, L, T ) ∼ Ld follow the exponent relations

β/ν = 0, γ /ν = d,

which, in turn, imply hyperscaling to be satisfied,

2β + γ = νd. (40)

From the relation D = d − β/ν [11] it follows that the fractal
dimension is, as expected, D = d , consistently with the value
of the fractal dimension D = (d + 2 − η)/2 obtained from
the value of η = 2 − d , required by the form of D(r, L, T ).
If the results obtained in this paper can be extended to any
dimensions, then we expect from (40) that the hyperscaling
relation is always verified, implying absence of an upper
critical dimension.

IV. CONCLUSIONS

In this paper we have analyzed the differences between
the phase transitions occurring in the Ising model when the
thermodynamic limit is taken with PBC and APBC. In the first
case the usual SSB ferromagnetic transition is observed. In the
second one there is no ordering and no SSB. The transition
consists in the onset of a regime of critical fluctuations below
Tc, referred to as condensation of fluctuations. In order to

FIG. 10. Circularly averaged correlation function at T = 1.8 for
different L values.
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understand in what ways condensation contraposes to the
usual ferromagnetic transition, it is instructive to recall the
similar dichotomy arising when the spherical model [16] and
the mean-spherical model [17] are compared in the low-
temperature region. Let us organize the discussion around the
mechanism driving the transition. In the Ising case, this can be
traced back to the basic identity 1

N

∑
i s2

i = 1 by introducing
the set of variables [m, ψi], where m = 1

N

∑
i si is the overall

magnetization and the [ψi = si − m] contain the excitations
with respect to the background. Then, the identity takes the
form m2 + 1

N

∑
i ψ

2
i = 1, which after averaging yields

〈m2〉 + 1

N

∑
i

〈
ψ2

i

〉 = 1. (41)

The above is a sum rule which must be satisfied, no matter
what ensemble is used in taking the average. Tc is the tem-
perature above which the excitations contribution suffices to
saturate the equality, while below Tc it falls short of it and the
missing piece must be compensated by a finite contribution
〈m2〉 coming from m. This is the point where the role of the
statistical ensemble becomes crucial, since there is no unique
way to do it. With PBC a finite value of 〈m2〉 is built up
by ordering. With APBC, instead, since ordering cannot take
place, a finite 〈m2〉 comes from fluctuations condensing into
the single degree of freedom m. Going over to the spherical
models, the transition is driven by a mechanism with an iden-
tical structure, that is, a sum rule analogous to (41) originating
from the spherical constraint on a continuous order parameter
ϕ(x). In terms of Fourier components, this reads

〈m2〉 + 1

V 2

∑
k �=0

〈
ϕ2

k
〉 = 1, (42)

where m = 1
V ϕ0 is the zero wave vector component. In the

formulation of Berlin and Kac [16], where the spherical
constraint is imposed sharply, the 〈m2〉 contribution, needed
to satisfy the equality below Tc, comes from ordering, as in
the Ising case with PBC. Instead, in the softer version of
Lewis and Wannier [17], ordering is not possible because the
constraint is imposed on average, leaving the model formally
linear. Then, the required 〈m2〉 contribution comes from con-
densation of the fluctuations of m [18], as in the APBC case.

Another instance of lack of ensemble equivalence, which
involves ordering vs. condensation, arises with the treatment
of the ideal Bose gas in the canonical and grand-canonical
ensemble, whose analogy with the spherical models has been
known for quite sometime [19]. Bose-Einstein condensation
(BEC) in the canonical case corresponds to the spontaneous

breaking of gauge symmetry and to ordering. Conversely,
BEC in the grand-canonical framework rather fits into the
condensation of fluctuations scheme [20]. Furthermore, the
discussion in the present paper gives us the opportunity to
comment on the use of Griffiths inequality in Eq. (6) to
establish a relation between BEC and SSB. The inequality,
properly reformulated [21] in the BEC context, has been
used [22,23] to argue that BEC is in fact equivalent to the
spontaneous breaking of the underlying global gauge symme-
try. Keeping on using the magnetic language, the argument
is based on the observation that, given the inequality, then
from 〈m2〉 > 0 follows m2

± > 0. However, such an implication
is inconsequential with regard to SSB occurrence, because
Griffiths theorem, and therefore the inequality, say nothing
about the form of the probability distribution of m. SSB occurs
only if P(m) is of the bimodal form as sketched in Fig. 1. The
results presented above do clarify the issue by showing, in the
transparent context of the Ising model, that the inequality may
well be satisfied, as in Eq. (7) above, and yet the transition to
occur without SSB.

As a final comment, we point out that the critical state
below Tc arising with APBC is of considerable interest also
in the framework of the phase-ordering process following
the quench from above to below Tc. Recall that phase or-
dering [10,24,25] is the relaxation process taking place after
the sudden temperature drop below Tc of a system initially
equilibrated above Tc, with free or PBC. Then, if the thermo-
dynamic limit is taken beforehand, then the system remains
permanently out of equilibrium, exhibiting slow relaxation
characterized by dynamical scaling and aging [10]. Now,
even though equilibrium is never achieved, the sequence
limt→∞ limV →∞〈·〉V,t yields a well-defined limit which—and
here is the point—shares the properties of the equilibrium
state prepared with APBC, even though, we emphasize, the
evolution takes place with free or periodic BC. Specifically,
the putative equilibrium state to be reached by the never-
ending relaxation process of phase ordering is critical with
compact correlated domains, just as in the APBC equilibrium
state. The investigation of this important connection is the
object of work in preparation.
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