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We put forward a quantum-optical model for a thermal diode based on heat transfer between two thermal
baths through a pair of interacting qubits. We find that if the qubits are coupled by a Raman field that induces
an anisotropic interaction, heat flow can become nonreciprocal and undergoes rectification even if the baths
produce equal dissipation rates of the qubits, and these qubits can be identical, i.e., mutually resonant. The
heat flow rectification is explained by four-wave mixing and Raman transitions between dressed states of
the interacting qubits and is governed by a global master equation. The anisotropic two-qubit interaction is the
key to the operation of this simple quantum thermal diode, whose resonant operation allows for high-efficiency
rectification of large heat currents. Effects of spatial overlap of the baths are addressed. We discuss the possible
realizations of the model in various platforms, including optomechanical setups, systems of trapped ions, and
circuit QED.
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I. INTRODUCTION

A heat diode (HD) is a device that conducts heat under
thermal bias in the direction chosen as forward—say, from a
heat bath on the left side to a cold bath on the right side of the
device—but insulates heat flow under the reverse (backward)
thermal bias, i.e., from a hot bath on the right to a cold bath
on the left, according to the choice made above [1–4]. The HD
proposals and experimental realizations in solid-state [5–10],
mesoscopic [11–14], and quantum systems [15–24] attest to
the keen interest in this subject, motivated by the expectation
that HD would become to phononics [25–30], primarily in
the nanoscale and quantum domains, what a semiconducting
diode is to micro- or nano-electronics [31–33]. For the re-
alization of these prospects it is essential to acquire a deep
understanding of HD operation principles in the quantum
domain. Here we set out to resolve the following basic issues
of quantum HD operation.

(1) Since HD operation requires reciprocity breaking be-
tween forward and backward heat flow at the quantum junc-
tion connecting two baths, can we identify a genuine quan-
tum mechanism of such reciprocity breaking? Classically or
quasiclassically, an HD junction is commonly viewed as a
dissipative ratchet [25,34] where rectification is achieved by
the left-right asymmetry (tilt) of its energy spectrum, obstruct-
ing the heat flow to the “wrong” side. A ratchet is a spatially
extended structure, e.g., a spin chain [35,36], but is there an
alternative quantum HD model in the case of a single-atom
(dot) junction or a junction comprised of two closely spaced
atoms or dots?

(2) A similar question concerns a classical HD mecha-
nism whereby the junction is asymmetrically coupled to the
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left- and right-heat channels (baths) [37–39] which again
requires an extended structure such that the couplings to the
two baths are distinct, which may be impossible on nano- or
microscales. Can there be an effectively asymmetric coupling
to the two baths in the quantum domain, notwithstanding their
close proximity or overlap?

(3) Once an HD junction has been constructed, can it be
controlled, so as to adapt it to the situation at hand?

In this paper we provide affirmative answers to all three
basic questions raised above, by putting forward a simple
quantum HD scheme.

First, the proposed scheme is based on two anisotropically
interacting qubits. The mechanism responsible for HD opera-
tion in this scheme is the left-right asymmetric interaction of
the two qubits. It may arise, for example, when an external
classical field is aligned with the z axis of the Bloch sphere of
one qubit and with the x axis of its counterpart, as proposed
by Rao and Kurizki [40]. It is universally adaptable to any
material, qubit-level spacing, and temperature and entirely
relies on quantum optical tools, i.e., Raman and four-wave
mixing transitions that bypass the ratchet (spatial tilt) require-
ments. Its natural realizations can be found in ferromagnetic
systems [41,42] or in nuclear spin environments [43]. It can be
engineered, as we shall discuss in Sec. IV, using related model
Hamiltonians of various systems such as cavity QED [44–46],
trapped ions [47], circuit QED [48–51], and optomechanics
[52–55].

Previously, for a junction comprising two interacting
qubits, it has been concluded that either the qubits must be
off-resonant with each other [24] or that the two baths and
the qubit-bath couplings need to have asymmetry, in addition
to having different bath temperatures [22–24]. Here we show
that neither of the above mechanisms is compulsory for our
quantum HD. A system of two anisotropically interacting mu-
tually resonant identical qubits that are symmetrically coupled
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FIG. 1. Schematic diagram of the quantum thermal diode based
on two resonant qubits (ωR = ωL = ω) coupled via anisotropic spin-
spin interaction σ z

Lσ x
R , the coupling strength between the qubits

being g. Each qubit is coupled to a single thermal bath, the qubit
bath coupling rates being identical. We assume these two baths are
independent and may have distinct non-negative temperatures.

to two identical baths (that differ only in temperature) may
allow for high-efficiency heat rectification and much higher
heat flow than previously suggested schemes.

Second, our analysis elucidates the requirements that the
left and right baths be distinct, so that they can be assigned
different temperatures and allow for heat flow from one bath
to the other, even in case of close proximity or overlap of the
baths. Such a scenario requires an analysis based on a global
master equation for the entire setup, as previously stressed
[56–59] rather than on (generally inadequate) local master
equations for each of the qubits [60,61].

Finally, an important aspect of our proposed scheme is its
controllability through tuning the strength of the two-qubit
Raman-coupling field, which can in turn strongly inhibit or
permit four-wave mixing and Raman transitions between the
system levels via thermal quanta. Thus, the control Raman
field acts as the valve that obstructs or enables global heat
transport through the junction.

The paper is organized as follows. In Sec. II we de-
scribe our model and discuss the physical mechanism be-
hind the diode operation. In Sec. III we present its results
for the heat currents and the rectification factors. We discuss
possible implementations of this model scheme in Sec. IV.
Finally, we conclude in Sec. V.

II. MODEL AND PHYSICAL MECHANISM

We consider a system of two interacting qubits, with
transition frequencies ωL and ωR as shown in Fig. 1. The
Hamiltonian of the system is (we take h̄ = 1)

Ĥ = ωL

2
σ̂ z

L + ωR

2
σ̂ z

R + gσ̂ z
Lσ̂ x

R, (1)

where g is the coupling strength of the Raman-induced
anisotropic exchange interaction between the left (L) and right
(R) qubits and σ̂ β

α with α = L, R, and β = z, x are the Pauli
matrices.

In order to derive the global Markovian master equation,
we first diagonalize the coupled-qubit system Hamiltonian
by a unitary transformation (see Appendix A) that yields the
dressed-system Hamiltonian in the form

ˆ̃H = ωL

2
ˆ̃σ z

L + �

2
ˆ̃σ z

R, (2)

where � =
√

ω2
R + 4g2 . The transformed Pauli matrices ˆ̃σβ

α

are given by

ˆ̃σ z
L = σ z

L, (3)

ˆ̃σ z
R = cos θσ̂ z

R + sin θσ̂ z
Lσ̂ x

R. (4)

The master equation is derived in Appendix A. In the interac-
tion picture it has the form

˙̂ρ = L̂LL + L̂RR, (5)

where L̂LL and L̂RR are Liouville superoperators that describe
energy exchange of the system with the baths, whose spectral
response functions are given in Appendix A. In the derivation
of Eq. (5), we have assumed that the baths are independent
and each bath is physically connected with its corresponding
qubit. Since this can be difficult to implement in cases of
proximity between the qubits, we discuss in Appendix C the
case where each bath is physically connected with both qubits.

Although Eq. (5) appears to describe two disconnected
L and R subsystems it, in fact, allows for excitation ex-
change between these subsystems, as required for a heat
diode (HD) (see Appendix D). The structure of the dis-
sipators in Eqs. (A16) and (A17) allows us to identify a
simple heat valve mechanism in the heat transport; L̂RR as
well as the first two terms in L̂LL represent the local heat
transport channels that couple the baths with the correspond-
ing dressed states |i〉 of the qubits but do not contribute to
HD operation. The last four terms in Eq. (A17) describe
the heat transport through the global channels between the
two baths, which are the only channels that matter for HD.
The different channels are characterized by frequencies ωi j

in Fig. 2 with i, j = 1, 2, 3, 4; ω13 = ω24 = ωL, ω14 = ωL +
�, ω23 = ωL − �, and ω12 = ω34 = �. The channel with
spectral response function at frequency ±ω23 = ±(ωL − �)
transfers the heat via single-excitation exchange (flip-flop)
through the qubits, while the one at frequency ±ω14 =
±(ωL + �) transfers the heat via a two-quanta (Raman)
process. In order to open one or both of the global heat
transfer channels, which are the only ones that contribute
to HD operation, the temperature of the left bath TL needs
to be sufficiently high. As the transition |4〉 → |1〉 requires
high-energy quanta, TL may not be sufficient to transfer heat
by this two-quanta process. As a result, the corresponding
channel may be completely or partially obstructed for large
g. Therefore, when TL > ωL + � > TR heat flows from left to
right through both local and global channels, but for TR > TL

the double excitation channel is obstructed and the heat flow
decreases.

The rectification effect can be explained by considering
possible cycles between the four states |1〉, |2〉, |3〉, |4〉 which
transmit heat from the hot to the cold bath. In principle, there
are three possible Raman cycles (3213), (4214), (4234), and
their inverses [here (3213) means the sequence of transitions
|3〉 → |2〉 → |1〉 → |3〉, etc.]. In addition, three four-wave
mixing cycles (41234), (43124), (41324), and their inverses
are also possible. Among the four-wave mixing cycles, only
the cycle (41234) transfers heat between the baths, while
the remaining two keep the bath energies unchanged. The
transition rate is dependent on the coupling strengths [see
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FIG. 2. Same system as in Fig. 1 with Hamiltonian represented
by a diagonalized form. The left bath induces transitions 1 ↔
3, 2 ↔ 3, 1 ↔ 4 and 2 ↔ 4, whereas the right bath induces tran-
sitions 1 ↔ 2 and 3 ↔ 4. (a) Small coupling g � ω and (b) large
coupling g = ω. The relative strength of the coupling of individual
levels induced by the reservoir fields is indicated by the width of the
arrows connecting the levels.

Eqs. (A16) and (A17)] whose relative magnitudes depend on
the mixing angle θ as in Eq. (A2). If some of the coupling
strengths between the dressed levels are much smaller than
other, they cause a bottleneck in the cycle, and the cycle
can be completed only if a sufficiently strong field induces
the transition. Thus, the cycle can preferentially run in the
direction in which the bottleneck transition is coupled to the
hot bath. For resonant qubits (ωL = ωR ≡ ω) the situation
is shown in Figs. 2 and 3 where the coupling strengths
are indicated by the widths of the arrows connecting the
levels. For weak coupling, g � ω, the bottleneck transition
in the Raman cycle (4234) is |2〉 ↔ |3〉, which is induced
by the left bath [see Fig. 2(a) and Figs. 3(a) and 3(b)] so that
the system rectifies heat from left to right. On the other hand,
for strong coupling, g = ω, the bottleneck transitions in the
four-wave mixing cycle (41234) are |1〉 ↔ |2〉 and |3〉 ↔ |4〉
[see Fig. 2(b) and Figs. 3(c) and 3(d)]. In this case the system
rectifies heat from right to left. Similar considerations can be
applied to off-resonant qubits (see Appendix B).

The proposed mechanism of the nonreciprocal heat trans-
port relies neither on the frequency difference of the qubits
nor on the asymmetry of the dissipation rates of the baths.
In our model high rectification can be obtained for resonant
qubits with symmetric (identical) couplings to their baths, in
contrast to other diode models that rely on asymmetric qubit-
bath couplings and difference in qubit frequencies to attain
rectification [23,24]. The absence of asymmetry allows us to
have two resonant coupled qubits. In contrast to HDs based
on off-resonant qubits, resonant qubits endow with unique
capabilities of either blocking or conducting a larger heat
currents with higher rectification factors than other schemes
[23,24], without a trade-off between rectification and heat
currents. From the point of view implementation, compact,

4

1

3
2

1

4

3

2

1

3

2

4

1

3

4

2

(a) (b)

(c) (d)

FIG. 3. Examples of processes that rectify heat current with
resonant qubits. Panels (a) and (b) correspond to the case with small
g � ω, and panels (c) and (d) to g = ω. The left column corresponds
to heat transfer from left to right, and the right column vice versa.
In the case with small g the weakest transition is |3〉 ↔ |2〉 (the
strength of the coupling is indicated by the width of the arrows
pointing from one level to another). This transition can be induced
by a strong field of a hot left reservoir (a). If the left reservoir is
cold (b), this transition is inhibited so the system rectifies from left to
right. For large g one of the mostly pronounced asymmetries occurs
in the four-wave mixing cycle. The coupling is relatively strong on
transitions |2〉 ↔ |3〉 and |1〉 ↔ |4〉 and weak on transitions |1〉 ↔
|2〉 and |3〉 ↔ |4〉. Therefore, cycle (41234) carrying heat from left
to right (c) is inhibited since the field of the cold right reservoir is not
sufficient to induce the weak transitions |1〉 → |2〉 and |3〉 → |4〉.
The inverse cycle (43214) can run faster if the weakly coupled
transitions are induced by the strong field of the right reservoir (d),
so in this regime the system rectifies from right to left.

two-qubit thermal diodes find considerable rectification val-
ues for large heat currents even in the case of overlapping
baths, thus allowing highly compact designs of HDs. Ac-
cordingly, the application significance and the fundamental
scheme we consider is radically different from earlier propos-
als [23,24].

III. HEAT CURRENTS AND RECTIFICATION FACTOR

In order to characterize the heat flow in our system, we
calculate the heat currents JR and JL from the two baths.
According to the definition [62] we have

JR = Tr[L̂RR
ˆ̃H]. (6)

The first law of thermodynamics requires that at steady state
the heat currents satisfy JR = −JL (a positive value of the
heat current indicates heat flowing from the bath into the
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system). Here we report only JR, and the relation for JL is
given in Appendix D. Using Eq. (5) in Eq. (6) the heat current
from the right bath is

JR = − 1
2κR� cos2 θ

[
1 + (2n̄R + 1)

× (
cos θ

〈
σ̂ z

R

〉 + sin θ
〈
σ̂ z

Lσ̂ x
R

〉)]
. (7)

Out of the heat currents one can calculate the rectification
factor [3],

R = |JR(TR, TL) + JR(TL, TR)|
Max[|JR(TR, TL)|, |JR(TL, TR)]| , (8)

where the JR(TR, TL) is the heat current from the right bath
into the system for TR > TL, and vice versa for JR(TL, TR)
and TL > TR.

The rectification factor is a figure of merit that measures
the quality of the diode, taking values between 0 (symmetric
heat flow) and 1 (perfect diode). In our numerical calcula-
tions we consider resonant (RQ, ωL = ωR) and off-resonant
(ORQ, ωL �= ωR) qubits for both Ohmic (OSD) and flat (FSD)
spectral densities of the baths. The simulations are done
using scientific python packages along with key libraries from
QuTiP [63].

A. Effects of asymmetric interaction strength

With ORQs, unit rectification is possible for wide range
of system parameters. However, here we consider the res-
onant case to show that unit rectification is also possible
for RQs. Note that in the thermal diode models proposed in
Refs. [22–24], rectification is not possible for RQs when each
qubit is connected to a separate thermal bath.

In Fig. 4 we plot the heat current JR and the rectification
factor R for different values of TL and TR with RQs and baths
with FSD. As can be seen, the heat flow is asymmetric with
respect to the TL = TR axis [Figs. 4(a) and 4(b)]: For TR > TL,
the heat current |JR| is smaller compared to the case when
thermal bias is reversed so that the system rectifies heat from
left to right. Although rectification is stronger for ORQs, RQs
allow the crucial advantage of much larger heat flows; thus,
the heat current for RQs is two orders of magnitude larger
than for ORQs with ωL = 20ωR, all other parameters being
the same.

In Ref. [24] it has been shown that there exists a trade-
off between the heat flow and the rectification factor for their
model: higher heat currents correspond to lower rectification
factors and vice versa. In our case such a trade-off does not
exist. To emphasize this point, the heat currents and associated
rectification factors are presented in Fig. 5. It is clear from the
figure that the higher heat currents are associated with higher
rectification factors for both resonant [Figs. 5(a) and 5(c)] and
off-resonant [Figs. 5(b) and 5(d)] qubits.

Rectification as a function of interqubit coupling strength
g for different values of temperature gradients 
T = TL − TR

is shown in Fig. 6, assuming heat baths with FSD. The recti-
fication shows a nonmonotonic behavior for both off-resonant
[Fig. 6(a)] and resonant [Fig. 6(b)] qubits. In both cases
rectification decreases with the increase in coupling strength g
and it reaches zero, and a further increase in coupling strength
results in the increase of rectification. In the ultrastrong cou-
pling regime, the rectification again decreases and becomes

FIG. 4. Steady-state heat current JR and rectification R as func-
tions of temperatures TL and TR, assuming heat baths with FSD.
Panels (a) and (b) show JR, and panels (c) and (d) show the corre-
sponding values of R. Almost perfect diode behavior for g = 0.01 is
obtained only with a large temperature difference |TR − TL| as shown
in panel (c), and 60% rectification is possible over wide range of bath
temperatures if coupling strength is increased to g = 1 as shown in
panel (d). The interaction strength is g = 0.01 in the left and g = 1
in the right column. The qubits are resonant with ωL = ωR = 1, and
the dissipation rates are κLL = κRR = 0.01. All system parameters
are scaled with left qubit frequency ωL/2π = 10 GHz.

zero for g 	 ωL. This comes about because heat currents
vanish in the ultrastrong coupling regime due to the fact
that the de-excitation rate from state |i〉 to state | j〉 becomes

(a) (b)

(c) (d)

FIG. 5. Steady-state heat current JR and rectification R as func-
tions of temperature TR, assuming heat baths with FSD. The blue
solid curve is for g = 10−4, and the red dashed curve is for g =
10−2. In the left column qubits are off-resonant; ωL = 1, ωR = 0.01,
and for the right column they are resonant; ωL = ωR = 1. Panels
(a) and (b) show JR, and panels (c) and (d) show the corresponding
values of R. The dissipation rates κLL = κRR = 0.001, and left bath
temperature TL = 1 is the same in all panels. All system parameters
are scaled with left qubit frequency ωL/2π = 10 GHz.
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(a)

(b)

FIG. 6. Rectification R as a function of coupling strength g,
assuming heat baths with FSD. The temperature gradients 
T =
TL − TR = 2, 5, 8, 11 are for black solid, green dashed, blue dashed-
dot, and red dotted curves, respectively. One of the baths has
fixed temperature 0.01 in 
T . In the upper panel the qubits
are off-resonant, ωL = 1, ωR = 0.01, and for the lower panel
they are resonant, ωL = ωR = 1. The dissipation rates κLL = κRR =
0.01 are the same in both panels. All system parameters are scaled
with left qubit frequency ωL/2π = 10 GHz.

equal to the excitation rate from | j〉 to |i〉, resulting in a zero
transition rate. The two nonzero rectification regimes in Fig. 6
around zero rectification are related to different kinds of pro-
cesses that transmit heat from the hot to cold bath via global
channels. In the weak coupling regime, rectification emerges
due to the asymmetry in the Raman processes [Figs. 3(a)
and 3(b)] that results in rectification from left to right. In
contrast, the rectification in the strong-coupling regime is
associated with the four-wave mixing cycles [Figs. 3(c) and
3(d)] that yield right-to-left rectification of heat flow. Since the
Raman processes have higher rates than the four-wave mixing
counterparts (for the same parameters), the Raman effect is
stronger, and therefore the rectification in the weak-coupling
regime is higher than in the strong-coupling regime (as shown
in Fig. 6). Between these two regimes, there is a dip in
the rectification that corresponds to the value of g at which
ωL − � ≈ 0. This dip appears because at this value of g the
energy levels 2 and 3 become degenerate, and the structural
asymmetry of the energy levels vanishes, so that rectification
becomes zero. This physical interpretation of Fig. 6 is valid
only if the colder-bath temperature is very low; Tα < 0.01.
For higher temperatures of the colder bath, the qualitative
behavior of rectification becomes more complex and difficult
to interpret.

The nonmonotonic behavior of rectification presented in
Fig. 6 is not unique to our model; similar trends have been
reported in the case of two interacting qubits coupled asym-
metrically with three independent thermal baths [23]. One im-
portant difference between the two models is that for resonant
qubits, in the model of Ref. [23], rectification varies slightly
with the coupling strength g and vanishes for symmetric bath
couplings. By contrast in our model, not only do we observe a
change in the rectification direction but also obtain nonzero

FIG. 7. Rectification R as a function of the qubit frequencies ωL

and ωR. The interaction strength is g = 0.5 in the left and g = 1
in the right column. In panels (a) and (b) TR = 0.5TL = 1, and in
panels (c) and (d) TR = 0.05TL = 10. The remaining parameters are
the same as in Fig. 4.

rectification for symmetric bath couplings. It is clear from
Fig. 6 that higher rectifications can be achieved for a higher
temperature gradient 
T .

Our calculations show similar properties for baths with
OSD. However, the temperature domain of high rectification
is then larger, while the heat current is reduced compared
to the baths with FSD. This is related to the asymmetry of
the spectrum and the proportionality of the spectral response
functions to the transition frequencies.

B. Variation of qubit parameters

In the previous subsection, we showed that the RQs behave
as a thermal diode, whose rectification depends on coupling
strength g. Let us now analyze the effect of qubits coupling-
strength variation on the rectification. Figure 7 shows R for
two different coupling strengths, g = 0.01 in the left column
and g = 1 in the right column. Figures 7(a) and 7(b) are for
a small temperature difference between the two baths, while
Figs. 7(c) and 7(d) correspond to large temperature differ-
ences. As can be seen, a large temperature difference increases
the diode quality irrespective of the strength of the qubit-qubit
coupling. However, RQs generate vanishing rectification for
a small value of coupling strength g = 0.01 as depicted in
Fig. 7(c). On the other hand, almost unit rectification of the
heat current by RQs can be obtained if the coupling strength
is increased to g = 1 [Fig. 7(d)]. All these results demonstrate
that the diode quality can be controlled in a wide-range
variation of the system parameters. For instance, as shown in
Fig. 4(c), the RQ model with g = 0.01 behaves as a thermal
diode for a narrow range of temperatures; however, this range
can be extended by changing the qubit frequencies as shown
in Fig. 7. System-bath coupling rates can have another control
parameter for the rectification, but here we consider them to
be symmetric. A brief discussion of the effect of dissipation
rates on rectification is presented in Appendix C.
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IV. PHYSICAL MODEL SYSTEMS FOR
POSSIBLE IMPLEMENTATIONS

Our HDs rely on asymmetric spin-spin interactions, e.g.,
σ z

Lσ x
R such interaction can be found, for example, in magnetic

molecules embedded in nuclear spin environments [43] or
in weakly ferromagnetic systems with spin-orbit coupling
[41,42]. Similar spin bath models have been used to explore
controlling dephasing of a single qubit [40]. The interaction
(σ z

Lσ x
R) has also been proposed in Ref. [52] for its similarity

to optomechanical coupling. Here we provide more details on
the realization of such interactions.

A. Optomechanical route for σz
Lσx

R

The optomechanical coupling between an optical resonator
of frequency ω and a mechanical resonator of frequency � can
be written as [53,54]

H = ωa†a + �b†b + ga†a(b + b†), (9)

where the annihilation and creation operators of photons
and phonons are denoted by a, a† and b, b†, respectively. A
statistical mutation of bosonic operators to spin operators can
be constructed as an inversion of spin to boson Holstein-
Primakoff transformation [64]

a†a = J1 + Jz, a = 1√
J1 + Jz

J−,

a† = J+
1√

J1 + Jz
, (10)

where J is the total spin and J±, Jz satisfy the SU(2) algebra.
Applying this transformation to both photons and phonons,
and assuming weakly excited spins (〈Jz〉 � J), the bosonic
optomechanical model can be mapped to the asymmetric spin-
spin coupling model. Replacing a bosonic mechanical mode
by a single spin-1/2 is justified by assuming 〈b†b〉 � 1, so
that only the two lowest vibronic levels are accessible [55].

The weak excitation condition as well as the absence
physical qubits make the optomechanical route a limited and
indirect approach to implement our HD scheme. The other
restrictions, such as weak g or the frequency difference of
optical and mechanical modes, can be relaxed in electrical
analogs of optomechanical couplings [48].

B. Coupled Raman model route for σz
Lσx

R

The Hamiltonian of a system consisting of a three-level
atom in a single-mode cavity is given by

H = ωa†a + ωr |r〉〈r| + ωe|e〉〈e| + ωg|g〉〈g|
+ g(a†(|g〉〈r| + |e〉〈r|) + H.c., (11)

where g is the cavity-atom coupling coefficient, and ωr, ωe, ωg

denote the upper, middle, and lowest energy levels with the
associated states |r〉, |e〉, |g〉, respectively. Assuming the lower
doublet of energy levels are quasidegenerate (ωe ≈ ωg) and
taking the detuning δ = ωr − ωe − ωa of the cavity mode
from the atomic resonance as much greater than g, then the
upper level can be adiabatically eliminated from the dynam-
ics, which can be described by an effective Hamiltonian of the

form

H = ωca†a + εσz − g2

δ
a†aσx. (12)

This two-photon transition model is known as the Raman cou-
pled model [44,46]. Here the intensity-dependent Stark shift
in the cavity frequency is neglected; we introduced ε = ωe −
ωg, and σz = |e〉〈e| − |g〉〈g|, σx = |e〉〈g| + |g〉〈e|. Similarly to
the optomechanical case, one can assume weak excitation of
the cavity mode and replace a†a with σ z

L to get the desired
asymmetric spin-spin interaction.

The Raman route is quite generic provided that we assume
only two vibronic levels are involved in an optical Raman
scattering from a molecule. The Raman scattering of a field
E is described by the interaction q|E |2 where q is the vibra-
tional displacement which can be replaced by σx in the case
of two-level approximation for the vibrational motion. Us-
ing E ∼ (a + a†) and neglecting two-photon terms, a†aσx is
obtained [45].

C. Quantum walk with trapped ions scheme for σz
Lσx

R

The quantum walk on a circle can be simulated by trapped
ions where the steps of the walker are taken in quantum optical
phase space according to the single step generator [47]

U = eipσz H, (13)

where p is the momentum operator generating the step condi-
tioned by the result of the coin toss operation. Here H stands
for the Hadamard gate operator. It is proposed that the step can
be implemented using four Raman beam pulses sequentially
[47]. Assuming the vibrational excitation is much less than 1,
the effective Hamiltonian associated with the step generator
corresponds to the asymmetric spin-spin interaction σ z

Lσ x
R .

D. Circuit QED scheme for σz
Lσx

R

A general Hamiltonian of a superconducting resonator
interacting with a superconducting qubit can be expressed
as [49]

H = ωa†a + �

2
+ g(cos θσz + sin θσx )(a + a†), (14)

where ω is the frequency of the resonator with the annihila-
tion and creation operators a and a†, respectively. The qubit
frequency is denoted by �. The coupling coefficient g and the
mixing angle θ depend on Josephson-Junction properties. By
adjusting the junction parameters to data in θ = 0 one gets
the so called phase-gate term [50], which becomes σ z

Lσ x
R if the

resonator is weakly excited.

E. Two-qubit Raman coupled scheme for σz
Lσx

R

So far we have considered effective qubit systems to imple-
ment σ z

Lσ x
R coupling. Let us now assume a pair of three-level

atoms, each held separately in two bimodal optical cavities.
The cavities are coupled to each other via single-mode fibers
as depicted in Fig. 8. This scheme is a generalization of
the one for single-mode cavities described in Ref. [51]. We
consider the general case where the atomic transitions are
driven by both classical laser and cavity fields. The interaction
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FIG. 8. Schematic diagram of two distant three-level atoms
trapped inside fiber coupled bimodal cavities.

picture Hamiltonian describing the coupling of atoms and
lasers is

H1 =
∑

k=L,R

∑
x=e,g

�kxei
kxt |rk〉〈xk| + H.c., (15)

where �kx is the Rabi frequency associated with the transition
|rk〉 ↔ |xk〉 and 
kx denotes the detuning of the laser from
the respective transition. Similarly, the interactions of the
cavity modes and the atoms are expressed in the interaction
picture as

H2 =
∑

k=L,R

∑
x=e,g

gkxakxeiδxt |rk〉〈xk| + H.c. (16)

Here akx and a†
kx are the annihilation and creation operators

for the respective cavity modes and δx is the cavity detuning
from the respective transition. The cavities are assumed to
be connected through single-mode (short) fibers. The optical
interactions are described by the Hamiltonian

H3 =
∑
e,g

νxbx(a†
Lx + a†

Rx ) + H.c., (17)

where gkx is the atom-cavity coupling coefficient, and νx is the
coupling strength of the fiber mode and the respective cavity
mode. Creation and annihilation operators for the fiber modes
are denoted by bx and b†

x, respectively. The notation is shown
in Fig. 9 for clarity. These Hamiltonians are generalizations
of those in Ref. [51]. The only new ingredient here is that we
allow for an additional classical drive and a cavity field acting
on each atom, such that each transition can be driven by both
classical and cavity fields.

The full Raman-coupled model allows us to engineer a va-
riety of qubit-qubit interactions, including asymmetric ones.
In particular we can assume that in one transition, e.g., |rL〉 ↔
|gL〉, it is driven by the classical and cavity fields, while in the
second qubit, a classical field drives the |rR〉 ↔ |gR〉 transition
and the cavity field drives the |rR〉 ↔ |eR〉 transition (Fig. 9).
This scheme would yield an effective qubit-qubit coupling
|eL〉〈eL| ⊗ |gR〉〈eR| that depends on the population of the |eL〉.
Taking into account the Hermitian conjugate process we get
the σ z

Lσ x
R interaction.

FIG. 9. (Left panel) The classical laser and cavity-field–driven
transitions in the three-level atoms, distinguished by label x = L, R
for the atom trapped in the left or right cavity (cf. Fig. 8). Both the
classical and cavity fields drive the transitions. Upper, middle, and
lower atomic states are denoted by |rx〉, |ex〉, and gx〉, respectively.
(Right panel) Special case where only the |rL〉 ↔ |eL〉 is driven by
both the classical laser and the cavity field. The other fields on the
left atom are turned off. The right atom is driven by a single classical
and a single cavity field in the Raman configuration.

V. CONCLUSION

We have investigated a quantum thermal diode composed
of two qubits coupled via anisotropic exchange interaction. By
deriving the global master equation, analytical expressions for
the heat currents in the system have been found. We have used
the rectification factor to quantify the diode quality, calculat-
ing the results for both flat and Ohmic spectral densities of
the thermal baths. The rectification mechanism is explained in
terms of the anisotropic exchange interactions: the baths can
excite only some of the transitions in the Raman or four-wave-
mixing global cycles so that some global cycles can run only
in one direction and not oppositely. We have shown that in our
model the diode behavior relies neither on the asymmetry of
qubit frequencies nor on the difference of dissipation rates of
the heat baths. Rectification can be achieved even for resonant
qubits, thus allowing it to conduct large heat currents without
compromising rectification efficiency. Since the anisotropic
exchange model can be applied to natural weak ferromag-
nets [41,42], nuclear spin environments [40,43], cavity QED
[44–46], circuit QED [48–51], trapped ions [47], and optome-
chanical systems [48,52,55], we anticipate that our results can
be significant for heat management in such systems.
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APPENDIX A: GLOBAL MASTER EQUATION

We present the derivation of global master equation given
in Eq. (5). The system Hamiltonian is diagonalized using the
unitary transformation

U := exp

(
−i

θ

2
σ̂ z

Lσ̂
y
R

)
, (A1)

where the angle θ is defined as

sin θ := 2g

�
, cos θ := ωR

�
, tan θ := 2g

ωR
, (A2)

such that � :=
√

ω2
R + 4g2 . The transformed operators then

read

ˆ̃σ x
L = U σ̂ x

LU † = cos θσ̂ x
L + sin θσ̂

y
Lσ̂

y
R, (A3)

ˆ̃σ y
L = U σ̂

y
LU † = cos θσ̂

y
L − sin θσ̂ x

L σ̂
y
R, (A4)

ˆ̃σ z
L = U σ̂ z

LU † = σ z
L, (A5)

and

ˆ̃σ x
R = U σ̂ x

RU † = cos θσ̂ x
R − sin θσ̂ z

Lσ̂ z
R, (A6)

ˆ̃σ y
R = U σ̂

y
RU † = σ

y
R, (A7)

ˆ̃σ z
R = U σ̂ z

RU † = cos θσ̂ z
R + sin θσ̂ z

Lσ̂ x
R. (A8)

The back transformations from dressed operators to bare
operators read from Eqs. (A3)–(A8) by switching dressed
operators to bare operators and vice versa with θ replaced by
−θ . Then, with the transformation Eq. (A1), the Hamiltonian
in Eq. (1) is diagonalized to the Hamiltonian given in Eq. (2).

Eigenstates of the dressed Hamiltonian are given by the
individual eigenstates of the qubits as

|1〉 = cos
θ

2
|++〉 − sin

θ

2
|+−〉 , (A9)

|2〉 = sin
θ

2
|++〉 + cos

θ

2
|+−〉 , (A10)

|3〉 = cos
θ

2
|−+〉 + sin

θ

2
|−−〉 , (A11)

|4〉 = cos
θ

2
|−−〉 − sin

θ

2
|−+〉 , (A12)

with their corresponding eigenvalues ω1 = 1
2 (ωL + �), ω2 =

1
2 (ωL − �), ω3 = 1

2 (−ωL + �), and ω4 = 1
2 (−ωL − �), re-

spectively.
The qubits are coupled to two baths of temperature TR

and TL via the the Hamiltonian Ĥ i j
SB = σ̂ x

i ⊗ ∑
k gj

k (â j
k + â j†

k ),
where gj

k are the coupling strengths to baths, and â j
k (â j†

k )
are the creation (annihilation) operator of the k mode of the
bath i, j = L, R, whose Hamiltonian is Ĥj = ∑

k ωkâ j†
k â j

k . To
calculate the master equation, we move to the interaction
picture in which

σ̂ x
L (t ) = cos θ ˆ̃σ−

L e−iωLt − sin θ ˆ̃σ+
L

ˆ̃σ−
R e−i(�−ωL )t

+ sin θ ˆ̃σ−
L

ˆ̃σ−
R e−i(�+ωL )t + H.c., (A13)

FIG. 10. Same system, but for off-resonant qubits with ωR �
ωL, and the system Hamiltonian represented by a diagonalized form.
The left bath induces transitions 1 ↔ 3, 2 ↔ 3, 1 ↔ 4 and 2 ↔
4, whereas the right bath induces transitions 1 ↔ 2 and 3 ↔ 4.
(a) Small coupling g and (b) large coupling g for off-resonant qubits.
In both cases the left bath is at a higher temperature than the right
bath.

σ̂ x
R(t ) = cos θ ˆ̃σ−

R e−i�t + 1
2 sin θ ˆ̃σ z

L
ˆ̃σ z

R + H.c. (A14)

Hence, the master equation in the interaction picture is found
to be the one that is given in Eq. (5), with

Gi j (ω) =

⎧⎪⎨
⎪⎩

κi j (ω)[1 + n̄ j (ω)], ω > 0

κi j (|ω|)n̄ j (|ω|), ω < 0

0, ω = 0

, (A15)

where n̄ j (ω) := 1/(exp ω/Tj − 1) is the average excitation
number of j = L, R baths. We define κi j (ω) as rates which are
independent of frequency for the flat spectrum and κi j (ω) =
κi jω for the Ohmic spectrum:

L̂Lj = GLj(ωL) cos2 θD̂[ ˆ̃σ−
L ] + GLj(−ωL) cos2 θD̂[ ˆ̃σ+

L ]

+ GLj(ω23) sin2 θD̂[ ˆ̃σ−
L

ˆ̃σ+
R ]

+GLj(−ω23) sin2 θD̂[ ˆ̃σ+
L

ˆ̃σ−
R ]

+ GLj(ω14) sin2 θD̂[ ˆ̃σ−
L

ˆ̃σ−
R ]

+ GLj(−ω14) sin2 θD̂[ ˆ̃σ+
L

ˆ̃σ+
R ], (A16)

L̂Rj = GRj(�) cos2 θD̂[ ˆ̃σ−
R ] + GRj(−�) cos2 θD̂[ ˆ̃σ+

R ],

(A17)

where the first index represents left (L) or right (R) qubit,
and the second index j = L, R is for baths with θ =
arctan(2g/ωR). In the main text, we consider κi j = 0 for
distinct i and j. The Lindblad dissipators D̂[Â] are defined
as [65,66]

D̂[Â] = Âρ̂Â† − 1
2 (Â†Âρ̂ + ρ̂Â†Â). (A18)
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FIG. 11. Examples of processes that rectify heat current for off-
resonant qubits, and ωR � ωL. Panels (a) and (b) correspond to small
g, and panels (c) and (d) to large g; panels (a) and (c) show the left
bath is hotter than the right one, and in panels (b) and (d) it is vice
versa. For small g, heat can flow from left to right, e.g., via the Raman
cycle (4234) (a), whereas the opposite cycle (4324) (b) is inhibited
because the cold reservoir cannot excite the |3〉 → |2〉 transition. For
large g and for temperatures of the hot reservoir that cannot excite
|4〉 → |1〉 transition, the four-wave mixing cycle (41234) (c) may
not be achieved, whereas the opposite cycle (43214) (d) can conduct
heat from right to left.

APPENDIX B: OFF-RESONANT QUBITS

The different transitions between dressed energy levels
with ωR � ωL for the case of off-resonant qubits are shown
in Fig. 10(a) for small g and in Fig. 10(b) for large g. The
transitions with red arrows are induced by the left bath, and
those with blue arrows are induced by the right bath. To
explain the rectification in the case of off-resonant qubits, for
example, we consider the Raman cycle (4234) for small g as
shown in Figs. 11(a) and 11(b). If the left bath is hot, i.e.,
TL > TR [Fig. 11(a)], the cycle may be completed. However,
if TR > TL [Fig. 11(b)], then the left bath cannot excite the
|3〉 → |2〉 transition, and consequently the heat transfer from
right to left is inhibited and the device rectifies heat from left
to right.

As another example, consider the four-wave mixing cycle
(41234) for large g as shown in Figs. 11(c) and 11(d). If the left
bath is hot [Fig. 11(c)], but not hot enough to excite the |4〉 →
|1〉 transition, the heat transfer from the left to the right bath is
inhibited. On the contrary, if the right bath is hot [Fig. 11(d)],

FIG. 12. Rectification R for the cases with different coupling
rates between both baths to both qubits. Panel (a) shows the local
bath case. Panels (b) and (c) show the case with both baths accessing
their local qubits symmetrically but asymmetrically to the other one.
Panel (c) is the case with all qubit-bath couplings symmetric. In all
panels, TL = 10, TR = 0.5, and κLL = κRR = 0.01. The rest of the
parameters are the same as in Fig. 4.

the reverse cycle may be completed without obstruction, so
that the device rectifies heat from right to left.

APPENDIX C: CASE OF SPATIALLY OVERLAPPING
THERMAL BATHS

In our treatment, we have assumed that each bath is con-
nected only to its corresponding qubit. The assumption of
local baths for the qubits, however, is restrictive for possible
implementations of our thermal diode scheme. In practice,
thermal baths can overlap spatially over the closely spaced
pair of interacting qubits. Systems where such an overlap
can be absent can still be found. One scenario is to use
optomechanical-like coupling of two transmission line res-
onators as proposed in Ref. [48]. If the resonators are weakly
excited in the limit of a single photon, then the system mimics
the case of two interacting qubits with local baths realized
by thermal noise currents fed into the transmission-line res-
onators. In other implementations, such as trapped ions [47],
off-resonant Raman systems [46], or asymmetric exchange
interactions [41,42], spatial overlap of the thermal baths is
unavoidable. Apart from such extra design, we would like
to now address the question of to what extent can spatial
overlap of the baths over the qubit pair be tolerated for a
significant thermal rectification? To this end, we consider a
generalization of our master equation (5) by including the
cross terms L̂LR and L̂RL, describing the access of the nonlocal
thermal baths to both qubits in the bare-state picture. In
general, spatial overlap degrades the thermal diode quality
by decreasing the maximum rectification factor. On the other
hand, in the case of different coupling rates of the baths to
their distant qubits we have found that the lowest value of
the rectification factor is increased, as shown in Figs. 12(b)
and 12(c), compared to Fig. 12(a), which shows the case
κLR = κRL = 0, which is equivalent to the local case given in
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Eq. (5). When the cross-coupling rate is about half of the local
coupling rate, then the rectification factor is reduced from
∼90% to ∼45%. When all the coupling rates are equal to each
other, the rectification is practically lost.

We conclude that if the spatial overlap of the thermal baths
cannot be avoided, then either asymmetric coupling rates to
distant qubits should be sought, or, alternatively, additional
measures can be taken such that render the baths effectively
local [67,68].

APPENDIX D: DYNAMICS AND THE HEAT CURRENTS

Equations of motions for the relevant dynamical observ-
ables of our system are determined from the master equation
(5) and given by

d

dt

〈
ˆ̃σ z

L

〉 = cos2 θ [GL(−ωL)〈A〉 − GL(ωL)〈B〉]

+ 1

2
sin2 θ [GL(ω1)〈AD〉 − GL(−ω1)〈BC〉

+ GL(−ω2)〈AC〉 − GL(ω2)〈BD〉], (D1)

d

dt

〈
ˆ̃σ z

R

〉 = cos2 θ [GR(−�)〈C〉 − GR(�)〈D〉]

+ 1

2
sin2 θ [−GL(ω1)〈AD〉 + GL(−ω1)〈BC〉

+ GL(−ω2)〈AC〉 − GL(ω2)〈BD〉], (D2)

d

dt

〈
ˆ̃σ z

L
ˆ̃σ z

R

〉 = cos2 θ
[
GL(−ωL)

〈
A ˆ̃σ z

R

〉 − GL(ωL)
〈
B ˆ̃σ z

R

〉
+ GR(−�)

〈
D ˆ̃σ z

L

〉 − GR(�)
〈
C ˆ̃σ z

L

〉]
, (D3)

where we introduce the operators A = (1 − ˆ̃σ z
L), B = (1 +

ˆ̃σ z
L), C = (1 − ˆ̃σ z

R), and D = (1 + ˆ̃σ z
R).

The heat currents evaluate to

JL = 1
2ωL cos2 θ [GL(−ωL)〈A〉 − GL(ωL)〈B〉]
+ 1

4 sin2 θ [ω1GL(−ω1)〈BC〉 − ω1GL(ω1)〈AD〉
−ω2GL(ω2)〈BD〉 + ω2GL(−ω2)〈AC〉], (D4)

JR = 1
2� cos2 θ [GR(−�)〈C〉 − GR(�)〈D〉]. (D5)

Substitution of the transformed operators relation given in
Eq. (A8) to Eq. (D5) yields the heat current relation in
terms of bare operators and given in Eq. (7). Even though
Eqs. (D1)–(D5) are easy to solve, the analytical expressions
are too cumbersome to report, but we have confirmed that
JL + JR = 0 at the steady state.
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