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Local smoothing in sandpiles: Spanning avalanches, bifurcation, and temporal oscillations
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The manipulation of the self-organized critical systems by repeatedly deliberate local relaxations (local
smoothing) is considered. During a local smoothing, the grains diffuse to the neighboring regions, causing a
smoothening of the height filed over the system. The local smoothings are controlled by a parameter ζ which
is related to the number of local smoothening events in an avalanche. The system shows some new (mass
and time) scales, leading to some oscillatory behaviors. A bifurcation occurs at some ζ value, above which
some oscillations are observed for the mean number of grains, and also in the autocorrelation functions. These
oscillations are associated with spanning avalanches which are due to the accumulation of grains in the smoothed
system. The analysis of the rare event waiting time confirms also the appearance of a new time scale.
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I. INTRODUCTION

The critical-state dynamics of avalanches has been the
center of attention since the advent of the self-organized
critical (SOC) systems [1–3]. Sandpiles, as the prototype of
SOC systems, are slowly driven and evolve (without tuning
of any external parameter) toward a steady critical state
which is characterized by long-range spatial correlations and
power-law behaviors. The nonlinearity of this model arises
from a threshold value in such a way that when the local
number of grains in some point of the system exceeds the
threshold, the grains start to spread throughout the sample.
Some experiments which are based on this idea show such
nonlinearities. An example is in Ref. [3] which tested this
model on realistic sandpiles at the angle of repose. The
dynamics of the resulting avalanches is governed by the local
updates (relaxations) depending on the state of sites at the
moment, i.e., a domino effect (chain of relaxations) runs over
the system which is mainly affected by the minimally stable
sites (MSS) [1]. The latter (MSSs) are defined as the sites
which become unstable under a single stimulation, i.e., adding
a grain. The cluster comprised of MSSs is determinative
for the dynamics of the underlying avalanche. When this
cluster is very dense, i.e., the number of MSSs is high, the
signal (caused by local stimulation) propagates throughout
the sample and spans nearly the whole the system. Under
the overall evolution of the system, other sorts of stable sites
(i.e., more-than-minimally stable sites) appear at an increasing
rate, which impede the propagation of the signal. In the steady
state, the MSS cluster becomes dilute such that most signals
are not spanning, i.e., signals become finite range [1]. In this
case, the added grains are accumulated in the system, causing
some large-scale (rare) events during which a large amount
of grains leave the system. The diluted structure of the MSS
cluster induces some critical behaviors which are reflected in
power-law behaviors [2], and also conformal invariance [2],
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etc. The connection of the system in the critical state to the
other statistical models is well understood and well studied.
Examples are the connection with the spanning trees [4], the
ghost models [4], and the q-state Potts model [5]. For a good
review, refer to [2].

The relation of the sandpiles to natural phenomena, such as
earthquakes [6], fluid propagation in reservoirs [7], and neu-
ronal activities [8], makes the characterization of their critical
dynamics worth studying. One output of such a study may
be understanding and controlling the rare (large-scale) events.
Importantly one may ask what the response of avalanches
is to the external manipulation of the spatial distribution of
grains or the propagation time scales. The example is the
sticking effects of grains [9,10]. Another interesting curiosity
to be addressed is the manipulation of the MSS cluster, i.e.,
how are the avalanches affected by the hand-made changes
in the grain configuration in the MSS cluster? An example
is the random relaxing of the MSS sites, under which one
may hope that the spatial extent (range) of the avalanches
decreases. This decrease is understood noting that every point
on the MSS cluster can be considered as an agent who, when
a signal is received, propagates (scatters) it symmetrically in
2d (d ≡ the spatial dimension) directions. Relaxing MSSs
means decreasing the abundance of these agents, which results
in decreasing the range of the corresponding avalanche. In
practice, however, the sandpiles due to their nonlinear struc-
ture, show richer structure with various behaviors under such
a manipulation, and need a detailed simulation, which is the
aim of the present paper.

We call such a local external relaxation the local smooth-
ing. We control the strength of the local smoothings by a pa-
rameter, namely ζ , which is defined as follows: Suppose that
after n1 topplings, n2 local smoothings (to be defined later)
are applied, then ζ ≡ n2

n1
. Simply, when n1 local topplings

end, then n2 local smoothings are applied. Actually we have
seen that the results are independent of how this is arranged.
Under applying local smoothings, the system shows some
interesting nonlinear behaviors. We reveal that the avalanches
are robust against applying the local smoothings (their
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large-scale behaviors do not change considerably) up to a
point (ζ ∗) at which a bifurcation takes place and the system
experiences a new regime within which some oscillations oc-
cur between two limits. Above ζ ∗, along with the ζ -dependent
oscillations of the grain number average, the autocorrelation
functions also oscillate with some ζ -dependent frequencies.
As ζ increases further, a new time scale in the rare event
waiting time (REWT) appears and becomes dominant as ζ

becomes larger than some threshold, i.e., ζ � ζc.
Let us first define the model in a square L × L lattice in

the ζ = 0 limit, which is the ordinary Bak-Tang-Wiesenfeld
(BTW) model. In this model, each site i has an integer height
(the number of grains) Ei � 1. At the initial state, one can
set randomly the height of each site with the restriction Ei �
Ec ≡ 4n, in which n is an arbitrary integer, and is set to 10
in this paper. At each time step a grain (as a single stim-
ulation) is added to a randomly chosen site (Ei → Ei + 1).
This can be considered as a slow external drive and leads
to a fast relaxation process (avalanche) within the system.
This relaxation consists of a conservative redistribution of the
grains at the sites, i.e., if the height of a site exceeds Ec, then
Ei → Ei + �i, j in which �i, j = −Ec if i = j, �i, j = n if i
and j are neighbors, and zero otherwise. A toppling may cause
the nearest-neighbor sites to become unstable (have a height
larger than Ec) and topple in their own turn and so on, until all
sites over the lattice are stable.

Now let us introduce the local smoothings. A local smooth-
ing is defined as the action in which a site is chosen randomly
and is checked for a more stable configuration. To do this,
the height of its neighbors is checked. Suppose that the
selected site is i with nearest neighbors i1, i2, i3, and i4.
Among these neighbors, we label imax as the site in which
E (imax) = Max{Ei}4

i=1, and imin as the site in which E (imin) =
Min{Ei}4

i=1. A local smoothing is composed of two updates:
δE1 ≡ int{[E (imax) − E (i)]/2} grains (if positive) flow from
the site imax to i, and then δE2 ≡ int{[E (i) − E (imin)]/2}
grains (if positive) flow from the site i to imin, in which int[x]
is the integer part of x. In the case of more than one site having
the same (maximum or minimum) height, the site from or
into which the grains flow is chosen randomly. If the site i
is locally maximum (minimum), automatically no grain flows
into (from) the site to the neighbors. No local smoothing is
applied to the unstable sites. Therefore, we have two kinds of
relaxation: the sites which are unstable topple and the sites
which are chosen for local smoothings moderate their local
height gradient. We call the first procedure as the toppling
and the second one as the local smoothing. This problem can
also be called a diffusive sandpile model, in which the grains
are lubricated such that they have the chance to slip to the
neighboring sites. The local relaxation in a fillip has been
schematically shown in Fig. 1.

Let us consider the problem from another point of view.
Applying local relaxations (local smoothings) means that the
system is being smoothed and the number of MSSs decreases,
i.e., the avalanches become lower in range, and the toppling
events in the avalanches decrease. As a result, the number of
grains that leave the system decrease, and accordingly, the
balance between external drive and the dissipated grains is
displaced. This cannot last for much time, since the average
height of the system, which grows with the external drive,

FIG. 1. Schematic of a fillip. The shaded sites are affected [δE1

(δE2) energy units transfer from (into) the site imax (imin)] by the fillip.
For the rules of the energy transfer (δE1 and δE2) refer to the text.

cannot become larger than Eth ≡ Ec. In other words, when
Ē → Eth under external drives, some very large avalanches
take place. This can be understood noting that in this limit the
number of MSSs is nearly close to L2.

II. MEAN-FIELD ANALYSIS

The critical absorbing states in sandpiles are hyper-uniform
with long-range spatial anticorrelations. Periodic perturbation
to such a state could generate some temporal oscillations [11].
Let us consider the problem in the mean-field (MF) level.
Consider a square lattice with N = L2 sites and 4L boundary
sites. Suppose that the avalanche mass (number of toppled
sites in an avalanche) at time T had been A(T ), and one
energy unit is added at T + 1, and also the average height at
time T (T th injection) is considered to be Ē (T ). When one
energy unit is added to the system, then the average energy
is raised by 1/N . But some energy is dissipated from the
boundaries. In the mean-field level, we should first calculate
the probability that a boundary site had been unstable in the
previous avalanche. This probability is simply the number of
boundary sites (4L) times the probability that a random chosen
site is involved in the avalanche. The latter is equal to A(T )/N .
All in all, we reach the following result for the time-dependent
average energy:

Ē (T + 1) = Ē (T ) + 1

N
− 4L

A(T )

N
. (1)

The above analysis reveals that in the steady state in which
Ē (T + 1) = Ē (T ), we have Ā(T ) = 1

4L . Now consider the
effect of local smoothing. We suppose that its effect is de-
creasing the range of the corresponding avalanches A′(T ), and
also suppose that A′(T ) is proportional to A(T ) (the same
avalanche in the absence of local smoothing). The proportion-
ality constant is surely ζ dependent, i.e., A′(T ) = f (ζ )A(T ).
In this case, under the conditions that the zero-smoothing
ζ = 0 system is in the steady state, we have

Ē (T + 1) = Ē (T ) + 1

N
[1 − f (ζ )]. (2)

This means that Ē grows linearly with time (with the propor-
tionality constant 1

N [1 − f (ζ )]. This growing takes place up to
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FIG. 2. Generated 128 × 128 samples for ζ = 0, ζ = 4, ζ = 8, ζ = 10, ζ = 16, ζ = 24, ζ = 32, and ζ = 48 (from left to right and top to
bottom).

a time that Ē → Eth at which the avalanche mass reaches the
system size. In this case A(T ) ≈ N = L2. In this case Eq. (1)
shows that

Ē (T + 1) = Ē (T ) − (4L − 1). (3)

In this case the average energy decreases abruptly by 4L − 1.
To continue, we introduce the probability of Ē (T + 1) = z,
conditioned to Ē (T ) = M, which is found to be

P(ĒT +1 = z|ĒT = M ) =
{
δz,M+ 1

N (1− f (ζ )) M < Eth,

δz,M−4L+1 M ≈ Eth.
(4)

One of the important quantities in the analysis of the dy-
namical systems is the branching ratio defined by b(M ) ≡
E[ ĒT +1

M |ĒT = M]. For a given M, if b(M ) > 1 then the aver-
age Ē grows, and if b(M ) < 1 then it decreases. The above
calculations show that

b(M ) =
{

1 + 1− f (ζ )
NM M < Eth,

1 − 4L−1
M M ≈ Eth,

(5)

in which E[ ] is the expectation value. Note that when b(M ) >

1 [b(M ) < 1], then for a given M, the average number of
grains of the system will increase (here linearly) (decrease,

here abruptly) with T . This relation predicts that a bifurcation
takes place at a nonzero ζ , above which some oscillations
occur. For the first branch, the mean height increases linearly
with T up to time at which Ē ≈ Eth. At this point the aver-
age height drops abruptly by δĒ ≈ −4L (the lower branch).
This is accompanied with some large avalanches, which are
named as spanning avalanches (SA). This dropping should be
independent of ζ .

To test these predictions, we have calculated and plotted Ē
in terms of T for various rates of ζ in Fig. 4(a). Two separate
regimes are distinguishable in this figure: In the primitive
times it increases linearly, and for large enough times it enters
a new regime, e.g., for ζ = 0 it is nearly constant. However,
for nonzero ζ we see that some oscillations arise in which
the average grain number drops abruptly after a linear part
in accordance with the prediction of the MF approach. In the
inset of this figure we have plotted the difference between
these two limits (among which Ē oscillates) Ē1 − Ē2 in
terms of ζ , which quantifies these oscillations. This figure
characterizes the bifurcation point at which the transition to
the oscillatory regime takes place. Actually Ē1 − Ē2 starts
from zero in small enough ζ and at some L-dependent
bifurcation point (ζ ∗) grows rapidly, and then saturates

FIG. 3. : Roughness of the 128 × 128 samples for ζ = 0, ζ = 4, ζ = 8, ζ = 10, ζ = 16, ζ = 24, ζ = 32, and ζ = 48 (from left to right
and top to bottom).
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FIG. 4. (a) The (shifted) height average in terms of T (the number of injections) for various rates of ζ . Inset: Ē1 − Ē2 in terms of ζ . (b) Mass
as a function of time T for various rates of ζ and L.

immediately. The fact that after the saturation, Ē1 − Ē2

becomes almost independent of ζ confirms the prediction of
the MF calculations. We also have observed that ζ ∗ varies
more or less linearly with log L. In the following, we see that
the physics of these two regimes are different.

III. NUMERICAL RESULTS

In the MF approach, we claimed that these oscillations are
due to two branches in Eq. (5). In this section we present the
numerical results. The samples have been shown in Figs. 2 and
3. It is seen that the configurations become smoother under the
application of fillips.

Figure 4(b) visualizes this event, in which a new character-
istic reference point appears for large enough ζ . In this figure
we have shown the mass of the avalanches (≡ the number of
distinct toppled sites in the avalanche) as a function of time for
various rates of ζ and L. Consider for example L = 64 in the
regime ζ � 8, for which the masses of some avalanches reach
the system size, i.e., the top points in the figure whose mass
is almost (64)2 = 4096. These avalanches are the mentioned
SAs, and are absent in small ζ . The SAs and the abrupt drop
of average height occur simultaneously and therefore have
the same origin [both belong to the lower branch of Eq. (5)].
The avalanches that belong to the first branch, whose mean
sizes grow linearly with the injections are called deformed
avalanches (DAs). The mean size of DAs depends on Eth − Ē .

It is notable that the microstates which grow with time in
the observed quasistationary state are transient. The existence
of transient states in the quasisteady state may lead to new
studies, and new insights may come up for the phenomena of
SOC as a whole.

Although these figures are helpful for understanding the
phenomenon, some other tests are necessary to quantify it.
The autocorrelation function of the mass noise {m(T )}Tmax

T =1 [in
which m(T ) is the mass of T th avalanche, and Tmax is the
maximum T in our analysis] is defined as

fmass(T0) ≡ 〈m(T )m(T + T0)〉T − (〈m(T )〉T )2 (6)

in which the T average of an arbitrary statistical ob-
servable is defined by [12] 〈O〉T ≡ 1

Tmax

∑Tmax
T =0 O[m(T )].

Figure 5(a) shows the rescaled autocorrelation function
of m(T ) defined by Amass(T ) ≡ [〈m(T )〉T ]−2 fmass(T ). Also
the power spectrum (PS) is defined by PSmass(ω) ≡
limTmax→∞ 1

Tmax
| ∫ Tmax

0 dT m(T ) exp [−iωT ]|2, and is propor-
tional to the Fourier transform of Amass(T ). The same defi-
nitions hold also for the activity noise.

As is seen in Fig. 5(a), as ζ increases (more precisely for
ζ � 8), some oscillatory behaviors appear. These oscillatory
behaviors are due to the new reference point that was men-
tioned above. In other words, the oscillations in Ē (T ) are re-
sponsible for this oscillatory autocorrelation. The most robust
(long-range) oscillations are found for ζ ≈ 16 for L = 256. It
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FIG. 5. (a) Time dependence of mass autocorrelation function (L = 256). (b) Mass power spectrum in terms of frequency. Inset: the peaks
of PS (solid squares) and average frequencies of Ē (solid circles) for L = 32, 64, 128, and 256 (from top to bottom).
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is notable that these ζ values are L dependent. To strengthen
the connection of these oscillations and the oscillations for
Ē (T ), one should calculate the power spectrum of the noise
(here the mass) and find its peak. The resulting frequencies
can then be compared with the frequencies of the oscillations
of Ē (T ). This is done in Fig. 5(b) for L = 256. For small
ζ values (ζ = 2 in this figure), one finds no peak, whereas
for larger ζ a peak appears which runs with ζ . In the inset,
the position of these peaks (ωPS, the solid squares) has been
shown for some lattice sizes, along with the average angular

frequency (ω̄) obtained from the oscillations of Ē (T ) (the
solid circles). The fact that these frequencies are properly
matched shows that they have the same origin, i.e., the system
oscillates between two states: DAs and SAs. These frequen-
cies increase monotonically with ζ , revealing that the local
smoothings facilitate the creation of the SAs. The distribution
functions have also the capability to reflect the status of the
system in hand (Fig. 6), which should be power law for ζ = 0
[Fig. 6(a)]. However for nonzero ζ they change considerably,
especially a new mass scale (namely, m1) comes into play
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FIG. 7. (a) Time series of REWT and (b) its corresponding distribution with a new time scale. (c) The semi-log plot of ζ ∗ and ζc as a
function of system size, suggesting that ζ ∗, ζc = α ln L + β in which α = 1.9 ± 0.3 for ζ ∗, and α = 17.9 ± 2.0 for ζc. Note that αζ∗ < αζc .
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below which the linearity of the log-log graph is retained. The
slope of the graphs in small masses has been shown in the
left inset of this graph. Also a sharp peak is seen at mass =
65536 = (256)2, which are SAs in accordance with the above
calculations. A more precise look at this figure reveals that
m1 decreases (in a power-law fashion) with increasing ζ up to
some ζc (≈ 16 for L = 256). The same features are seen for
the distribution of the activity P(X ) [Fig. 6(b)].

To uncover the physics of ζc we need to investigate the
REWT. The REWT, which has deep connections with the kind
of activity noise, is defined as the waiting time between two
large avalanches, i.e., the avalanches with sizes larger than a
threshold value sthreshold (as a large event) which is fixed to be
2L2 here. We have observed that our results are more or less
independent of the exact value of this threshold. We define
REWT, denoted by τ (n), as the time interval between two
successive rare events s(Tn) and s(Tn+1). In other words if the
(n)th rare event occurs at time Tn [i.e., s(Tn) > sthreshold] and
the next rare event occurs at time Tn+1, then τ (n) ≡ Tn+1 − Tn.
Figures 7(a) and 7(b) show the results for REWT for L = 256.
It is interestingly seen from Fig. 7(a) that for 8 � ζ � 16
the aggregation of events is in two reference points, i.e.,
the corresponding distribution functions are doubly peaked,
whereas for ζ � 8 they are singly peaked. This can be better
seen in Fig. 7(b), in which the lower graphs correspond to
ζ > 8. We see that as ζ increases, the second peak grows,
whereas the first one weakens. If we show the amount of ζ at
which the abundance of these two peaks becomes the same by
ζc, then we interestingly see that this ζc coincides with the ζ

scale up to which m1 behaves as a power law in Figs. 6(a) and
6(b). For ζ � ζc we expect that a new characteristic τ governs
the system. In Fig. 7(c) we have shown ζ ∗ and ζc in terms of

system size L, which is best fitted to a logarithmic function.
Although both ζ ∗ and ζc diverge in the thermodynamic limit,
for any finite L we observe two crossovers as ζ is increased,
first to an oscillatory phase and then to a regime with a new
time scale in REWT.

IV. CONCLUSION

By smoothing (applying local smoothings on) the BTW
system, the system meets various regimes and various new
characteristic scales. For 0 � ζ � ζ ∗, although the range of
avalanches decrease with ζ (see Fig. 6 in which the abundance
of large avalanches is lower than that of ζ = 0 avalanches),
but no oscillations are found. These oscillations are also
reminiscent of quasiperiodic events in crystal plasticity [13].
In this interval a new mass scale (m1 in Fig. 6 which decreases
in a power-law fashion with ζ ) is found which corresponds
to the new τ scale in Fig. 7(b). A bifurcation takes place in
ζ = ζ ∗, in such a way that for ζ ∗ � ζ � ζc some long-range
oscillations are found [Fig. 5(a)]. As ζ increases further,
for ζc � ζ , Ē1 − Ē2 [Fig. 4(a)] as well as the mass scale m1

(Fig. 6) saturate. At this interval a new τ scale appears and
grows with ζ [Fig. 7(b)]. It is notable that these thresholds are
L dependent and for L = 256, ζ ∗ ≈ 8 and ζc ≈ 35.

According to these findings the attempt to smooth a sand-
pile causes the system to meet some unexpected regimes. This
smoothening may be translated to some deliberate artificial
bursts in the avalanches of natural SOC systems (e.g., arti-
ficial earthquakes in the real earthquakes). Our calculations
demonstrate that this causes some energies to accumulate in
the system, leading to spanning avalanches and oscillatory
behaviors.
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