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Recurrence dynamics of particulate transport with reversible blockage:
From a single channel to a bundle of coupled channels
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We model a particulate flow of constant velocity through confined geometries, ranging from a single channel to
a bundle of Nc identical coupled channels, under conditions of reversible blockage. Quantities of interest include
the exiting particle flux (or throughput) and the probability that the bundle is open. For a constant entering flux,
the bundle evolves through a transient regime to a steady state. We present analytic solutions for the stationary
properties of a single channel with capacity N � 3 and for a bundle of channels each of capacity N = 1. For
larger values of N and Nc, the system’s steady state behavior is explored by numerical simulation. Depending
on the deblocking time, the exiting flux either increases monotonically with intensity or displays a maximum at
a finite intensity. For large N we observe an abrupt change from a state with few blockages to one in which the
bundle is permanently blocked and the exiting flux is due entirely to the release of blocked particles. We also
compare the relative efficiency of coupled and uncoupled bundles. For N = 1 the coupled system is always more
efficient, but for N > 1 the behavior is more complex.
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I. INTRODUCTION

Many physical and biological processes feature particle
flow in confined geometries. Examples include vehicular
and pedestrian traffic [1,2], filtration of particle suspensions,
and the flow of macromolecules or ions through micro- or
nanochannels [3–5]. In biology, an important example is flux
regulation mediated by pore-forming membrane proteins. The
transport of ions and water through these channels is primarily
a single-file process, i.e., cations and water molecules cannot
pass each other within the channel [5]. Moreover, these flux
regulatory channels can be clogged by toxins or medicines,
with significant consequences. Recent studies of tracer dif-
fusion of biased (or active) particles in a crowded, narrow
channel revealed a nontrivial relationship between the exerted
force and the mean velocity, as well as asymmetric density
profiles of the environment [6–9].

Some information systems, such as telecommunication
[10] and computing networks [11,12], as well as trunked mo-
bile radio systems and air traffic [13–15], are also amenable
to the channel description.

A blockage may be caused by either “extrinsic” or “intrin-
sic” mechanisms. The former refers to the situation where the
number of particles present somehow exceeds the channel car-
rying capacity, and is the focus of this article. The latter mech-
anism arises from collective effects such as those encountered
in filtration processes. In this case, while isolated particles can
pass through a mesh hole, clogging occurs when two or more
particles arrive in near concurrence, causing one to impede
the other. This effect, due to the delicate interplay between
the spatiotemporal closeness of the particles and the confining
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geometry, could be seen as setting the capacity of a channel
to greater than one, which establishes a connection between
both types of blocking mechanisms. A model based on this
phenomenology successfully accounted for experimental data
[16,17]. Microscopic models of particulate transport can in-
clude many specific properties of particle-particle interaction,
particle-wall interaction, particle polydispersity, network ge-
ometry, and hydrodynamic forces [18–20]. Such approaches
are useful for obtaining quantitative physical quantities, but
they require a large number of potentially elusive parameters.
Another approach is that of simple statistical physics models,
which can be considered as phenomenological but employ a
limited number of relevant parameters. These approaches aim
to reveal the general properties associated with the restricted
number of physical parameters.

These approaches include the totally asymmetric simple
exclusion process (TASEP) [21,22], in which the exclusion ef-
fects dominate the particle transport. In other situations where
the carrying capacity of a channel is limited, Gabrielli et al.
introduced a class of stochastic models in which blockages oc-
cur when the threshold number of particles inside the channel
is exceeded [23,24]. In these stochastic models, the particle
transit times within the channels are identical, and the mean
particle density is low enough to prevent exclusion effects.
The blockage is triggered when the number of particles within
the channel at a given time exceeds the channel capacity.
The original model considered one channel with capacity
N = 2; i.e., two particles must be simultaneously present in
the channel to block the system. Particles enter at random
times according to a Poisson process of intensity λ and exit, if
no blockage occurs, after a fixed transit time τ . Subsequently,
several generalizations were studied, including a higher block-
ing threshold (N > 2) [25], an inhomogeneous entering flux
[26], and multiple channels [27,28]. When the blockage is
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reversible, the system is reactivated after a constant waiting
time, τb. This mechanism gives rise to a transient regime
leading to a steady state [29]. In this article we associate the
last two generalizations.

Queuing theory [30,31] provides an alternative description
of reversible blocking phenomena. This framework is typi-
cally used to describe customers arriving at a server, according
to one given distribution, and receiving service according to
another distribution. If all the elementary steps are Markov
processes, the time evolution of the state probabilities can be
described by systems of linear differential equations. In accor-
dance with this approach, we recently introduced Markovian
models of blockage [32,33] for which exact solutions can be
obtained.

This paper is organized as follows: We first consider the
single-channel model in Sec. II, for which exact solutions are
available for N = 1, 2, 3 and simulation results for greater
values of N . We also compare our results with the previously
introduced Markovian models. In Sec. III a channel bundle
model consisting of Nc identical channels each of capacity N
and sharing an incoming flux is presented. Exact results are
obtained for N = 1, as well as numerical simulation results
for larger values of N . These allow us to observe and explain
some results in the limit of large N or Nc. In Sec. IV, we
compare the efficiency of different configurations of channels
in conveying a particulate flux of given intensity. Finally, in
Sec. V we summarize our results.

II. SINGLE-CHANNEL MODEL

Particles with identical constant velocity, v, are injected
into a channel of length L, according to a Poisson distribution
of mean intensity λ. Given no blockage occurs, the particle
transit time is τ = L/v. An instantaneous blockage occurs if
N particles are simultaneously present, and lasts for time τb >

τ . In the limit τb → ∞, there is no steady state and the exiting
flux falls to zero [25]. Here, we focus instead on reversible
blockages, during which the N particles are retained, and
no more may enter the channel. After the deblocking time,
the channel instantaneously releases all N particles, resetting
to the empty state, thereby allowing new ones to enter. The
dynamics is therefore a recurring cycle of alternating open and
closed states that ultimately leads to a stationary state.

In an average steady state recurrence cycle, the channel is
open for an average time 〈t〉 and blocked for a fixed time τb.
The stationary probability that the system is open is therefore

po(λ) = 〈t〉
〈t〉 + τb

, (1)

where the denominator represents the total mean time of a
recurrence. The stationary output flux is then given by the
ratio of the mean number of particles released during one
cycle to the cycle period,

j(λ) = 〈m〉 + N

〈t〉 + τb
, (2)

where 〈m〉 is the mean number of output particles between
two successive blockages. By equating the number of entering
particles in one period to those exiting we obtain the following

“number balance”:

〈m〉 + N = λ〈t〉. (3)

Finally from the above three equations we deduce that

j(λ) = λpo(λ). (4)

The latter relation does not depend on the existence of a cycle,
as it is the result of number conservation. The output flux is
equal to the entering one minus the part that is rejected when
the channel is in the closed state.

By taking the limit λτ � 1, the mean blockage time and
the mean number of exiting particles between blockages be-
have asymptotically as 〈t〉 � τb and 〈m〉 � N , respectively.
Therefore, for a given τb, the probability that the channel is
open is close to unity and the flux j(λ) � λ. Blockages rarely
occur at low λ. In this limit, the mean blockage time can be
estimated by noting that a blockage occurs when a batch of
particles enters in a finite duration τ , leading to 〈t〉 = τ (N−1)!

(λτ )N

[25]. Expanding po(λ) to first order gives

po(λ) � 1

1 + (λτ )N τb

(N−1!)τ

. (5)

When λτ � 1, blockages are very frequent, and both the
mean number of exiting particles between blockages, 〈m〉,
and mean time between blockages, 〈t〉, approach zero. The
resulting flux consists entirely of successive releases of the
blocked particles, j(λ) = N/τb and po(λ) � 0. In this limit,
〈t〉 corresponds to the time necessary for N particles to enter
an empty channel, N/λ. The open probability and the flux in
this high intensity limit are therefore

po(λ) � N

N + λτb
(6)

and

j(λ) � Nλ

N + λτb
. (7)

A. Solvable models: N � 3

For small capacities, N ∈ [1, 2, 3], the time evolution of the
process can be expressed by analytically tractable differential
or integrodifferential equations [29]. For larger values of N ,
the time evolution cannot be solved by any known means.

We first consider N = 1, which corresponds to a stochastic
switch. The transit time τ is an irrelevant variable because no
particle can exit the channel without having already blocked
it. For N > 1, it is possible for particles to pass through the
channel without causing a blockage. Let po(t ) denote the
probability that the channel is open at time t . Its time evolution
obeys

d po(t )

dt
= −λpo(t ) + λpo(t − τb). (8)

The loss term corresponds to the entrance of a particle at time
t , while the channel is open, causing the channel to block. The
gain term corresponds to the exit of a particle that became
blocked at time t − τb, with the subsequent reopening of the
channel at time t .

The mean output flux at time t is given by

j(t ) = λpo(t − τb), (9)
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which corresponds to the release of a blocked particle that en-
tered at t − τb. Applying the time Laplace transform, f̃ (u) =∫ ∞

0 dte−ut f (t ), to Eqs. (8) and (9) gives

p̃o(u) = 1

λ + u − λe−uτb
(10)

and

j̃(u) = λe−uτb

λ + u − λe−uτb
. (11)

Expanding the denominator of Eq. (10) in terms of
λe−uτb/(λ + u) allows one to easily invert the Laplace
transform, term by term, giving

po(t ) =
∞∑

n=0

[λ(t − nτb)]n

n!
e−λ(t−nτb)θ (t − nτb), (12)

where θ (t ) is the Heaviside function. The stationary open
probability, po(λ), and flux, j(λ), can be obtained from
Eqs. (10) and (11) by using f̃ (u) � f (λ)

u :

po(λ) = 1

1 + λτb
(13)

and

j(λ) = λ

1 + λτb
. (14)

These results can be easily inferred from Eqs. (1) and (2) by
setting 〈m〉 = 0 and 〈t〉 = 1/λ. The exiting particle flux is
controlled by the incoming flux λ and the time of blockage,
τb.

We now consider the N = 2 model; i.e., blockage occurs
when two particles are simultaneously in the channel, for
which exact results have already been obtained [29]. Here
we propose an alternative, simpler derivation using the state
probabilities of the channel. Let p0(t ) and p1(t ) denote the
probability that an open channel contains zero particles or
one particle, respectively, and p2(t ) be the probability that
it contains two particles and is therefore blocked. The time
evolution of these probabilities is given by

d p0

dt
= −λp0(t ) + λe−λτ p0(t − τ ) + λp1(t − τb), (15)

d p1

dt
= −λe−λτ p0(t − τ ) − λp1(t ) + λp0(t ), (16)

d p2

dt
= −λp1(t − τb) + λp1(t ), (17)

with the following initial conditions:

p0(0) = 1, p1(0) = p2(0) = 0. (18)

In Eq. (15), the loss term corresponds to the entrance
of a particle in the empty channel at time t . The two gain
terms λe−λτ p0(t − τ ) and λp1(t − τb) correspond to a particle
exiting the channel at time t and a channel release (with a
blockage occurring at time t − τb), respectively. In Eq. (16),
the two loss terms describe either a particle exiting the oc-
cupied channel at time t or a particle entering the occupied
channel. The gain term corresponds to a particle entering
a free channel. In Eq. (17), the loss term corresponds to
a channel release and the gain term to a particle entering
a channel with one particle already inside. Summing the

three equations verifies that the total probability is conserved:
p0(t ) + p1(t ) + p2(t ) = 1.

Taking the Laplace transform of Eqs. (15)–(17) gives
[
u + λ(1 − e−τ (u+λ) )

]
p̃0(u) − λe−uτb p̃1(u) = 1, (19)

−λ(1 − e−τ (u+λ) ) p̃0(u) + (λ + u) p̃1(u) = 0, (20)

−λ(1 − e−uτb ) p̃1(u) + up̃2(u) = 0. (21)

These simultaneous equations may be solved to give

p̃0(u) = u + λ

�
, (22)

p̃1(u) = λ

�
(1 − e−τ (u+λ) ), (23)

p̃2(u) = λ2

u�
(1 − e−uτb )(1 − e−τ (u+λ) ), (24)

where

� = (u + λ)2 − λ(λ + u)e−τ (u+λ) − λ2e−uτb (1 − e−τ (u+λ) ).
(25)

The mean exiting flux j(t ) is the sum of two contributions:
the exit of a particle from an open channel and the release of
two particles from a closed channel. j(t ) is therefore given by

j(t ) = λe−λτ p0(t − τ ) + 2λp1(t − τb). (26)

By using Eqs. (22) and (23), the Laplace transform of the
output flux j̃(u) is

j̃(u) = λ

�
[(u + λ)e−(u+λ)τ + 2λe−uτb (1 − e−τ (u+λ) )]. (27)

As expected, we recover the results of Ref. [29] and the time-
dependent mean flux can be obtained by a Laplace inversion
of Eq. (27).

We here focus on the key quantities, namely, the stationary
probability po(λ) that the system is open and the mean flux
j(λ). po(λ) is the sum of the two stationary probabilities p0

and p1, each obtained by evaluating limu→0 up̃i(u) with i =
0, 1:

po(λ) = 2 − e−λτ

2 + λτb − (1 + λτb)e−λτ
, (28)

and

j(λ) = λ
2 − e−λτ

2 + λτb − (1 + λτb)e−λτ
. (29)

Figure 1 displays j(λ) versus λτ for different integer values
of τb from 3 to 12. The dashed lines correspond to the
asymptotic values of the exiting flux limλ−>∞ j(λ) = 2

τb
. One

first observes that the stationary flux reaches the asymptotic
values more rapidly as τb increases. Moreover, j(λ) displays a
maximum when τb is larger than 7. It is possible to obtain the
exact value of τb for which the flux j(λ) displays a maximum
at a finite value of λ [32] by solving ∂ j(λ)

∂λ
= 0. A real solution

for λ exists if τb > 6.2. Note that for N = 1 the flux is always
a monotonically increasing function of λ.

For N = 3, the complete kinetic description of the model
is cumbersome so we restrict our attention to the stationary
quantities for which analytical expressions have been obtained
[25]. In particular, the mean time to blockage starting from an
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FIG. 1. Exiting flux j(λ) versus λ for N = 2 and τb =
3, 4, . . . , 12 from top to bottom. The blue curves show cases where
the flux increases monotonically with λ. The green curves show cases
where the flux displays a maximum at a finite value of λ. The dotted
lines correspond to the asymptotic values of the flux, Eq. (7).

empty channel is given by

λ〈t〉 = 2eν sinh(gν) + geλτ

−g − 2 sinh(gν)e−ν + eν (sinh(gν) + gcosh(gν))
+ 1

(30)
for λτ > 2 ln(2) and

λ〈t〉 = 2eν sin(gν) + geλτ

−g − 2 sin(gν)e−ν + eν (sin(gν) + gcos(gν))
+ 1

(31)
for λτ < 2 ln(2), where g =

√
|1 − 4e−λτ | and ν = λτ

2 (note
that these correct the expressions given in Ref. [25]). The
two stationary quantities po(λ) and j(λ) are obtained by
inserting this result in Eqs. (1) and (2). Figure 2 displays
j(λ) as a function of λτ for different values of τb. There are
several differences compared with the N = 2 model. First, a
maximum exiting flux occurs if the blockage time τb > 3.6,
which is significantly smaller for N = 2 (τb > 6.2). Second,
the asymptotic values are reached at a lower value of λ, and
finally, the intensity λ at which j(λ) is maximum is also
shifted towards larger intensity.

B. Simulation results: N > 3

As a result of strong time correlations between the transit-
ing particles, it is not possible to obtain analytic solutions for
N > 3. We therefore used numerical simulations to investigate
these cases. In order to benchmark our code, we compared the
simulation results for the stationary flux for N = 3 with the
exact expressions for three different values of τb. In Fig. 2 we
observe perfect agreement between the analytical expressions
and the simulation results.

FIG. 2. Exiting flux j(λ) versus λ for N = 3 and τb = 2, 3, . . . , 9
from top to bottom. The blue curves indicate cases where the
flux increases monotonically with λ. The green curves indicate the
cases where the fluxes display a maximum at a finite value of λ.
The black crosses show simulation results for τb = 3, 4, 6, which
match perfectly with the exact results. The dotted lines indicate the
asymptotic values of the flux, Eq. (7).

Figure 3 displays the stationary exiting flux as a function
of the intensity for different values of N and τb = 4. At low
intensity, the flux increases linearly, and at high intensity the

FIG. 3. Exiting particle flux j(λ) versus λ for N = 4, 6, 10, 20
and τb = 4. Dotted curves correspond to the asymptotic values at low
and high intensity.
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FIG. 4. Left: Critical values of τb as a function of N above which
the steady state flux of a single channel displays a maximum at finite
λ. Right: The corresponding values of λτ .

asymptotic behavior of the simulation results is well described
by Eq. (7). The behavior in the intermediate region is due
to complex dynamics that alternates between blockages and
sequences of uninterrupted transport. For N > 3, the station-
ary flux j(λ) may display a maximum at finite λτ , whose
amplitude increases with N . The stationary flux also exhibits a
minimum which is always smaller than the asymptotic value,
N/τb.

We performed a systematic study of the behavior of the
exiting flux as a function of λ, τb, and N . The flux always
displays a maximum when τb exceeds a threshold value.
Figure 4 shows that the critical value of τb decreases rapidly
with N , showing that the feature observed in Fig. 1 is very
general and occurs for smaller values of τb when N increases.
For τb below the critical value, the stationary flux is a mono-
tonically increasing function of λτ . The right-hand panel of
Fig. 4 shows the values of λτ corresponding to the critical
values of τb.

The behavior of the open probability po(λ), shown in
Fig. 5, is consistent with Eq. (4). In particular one observes
the appearance of a plateau whose length increases with N
(roughly as N/2). This corresponds to the situation where
blockage events are rare and the output flux is close to λ.

C. Markovian versus non-Markovian models

The physical assumption of constant transit and deblocking
times τ and τb, respectively, is responsible for strong memory
effects which prevent analytical solutions for general N from
being obtained. We therefore recently introduced Markovian
models [32,33], where the average transit and deblocking
times are stochastic variables given by exponential distribu-
tions of intensity μ and μ∗, respectively. The kinetic descrip-
tion of the Markovian model is given by a set of differential
equations for the time evolution of the state probabilities
P(i, t ) with i ∈ [0, . . . , N] giving the number of particles
in the channel. Unlike the non-Markovian model, analytic
solutions for the steady state properties can be obtained for
arbitrary N (some generalizations of the Markovian models
for which time-dependent solutions can be obtained and could
be investigated in the future [34,35]).

FIG. 5. Open probability po versus λτ for N = 4, 6, 10 and τb =
4. Dotted curves correspond to the asymptotic values at low and high
intensity.

The channel is open for a mean time 〈t〉 and blocked for
a mean time 1/μ∗. The stationary flux is obtained using the
previously employed recurrence arguments, giving

j(λ) = λ〈t〉
〈t〉 + 1/μ∗ . (32)

The average time for which the Markovian system is open
in a recurrence cycle is [32]

〈t〉 = 1

λ

N−1∑
j=0

N!

( j + 1)(N − j − 1)!

(μ

λ

) j
. (33)

To compare the two models, μ and μ∗ must be related
to τ , τb, and λ. Equation (32) with Eq. (2) shows that μ∗
must equal 1/τb. To obtain an expression for μ, we consider
the system’s behavior at low and high intensity. When λτ �
1, the non-Markovian transit time is equal to τ . The mean
transit time is 1/μ in the Markovian model. A first approach
is to therefore set μ = 1/τ . When λτ � 1, we expect μ

to decrease to zero. Figure 6 shows that the stationary flux
of the Markovian model is always larger than that of the
non-Markovian model. Even though the two models behave
similarly at small and large input intensity, they increasingly
deviate for intermediate intensities with increasing N .

To obtain an exact mapping (in the steady state) we equate
the mean blocking time of the two models. For N = 2 we
equate 〈t〉 given by Eq. (33) with the result for the non-
Markovian model [23], 〈t〉 = (2 − e−λτ )/(λ(1 − e−λτ )). The
expressions are identical when

μ = λ

eλτ − 1
. (34)

With this mapping, we recover the aforementioned expected
limiting behavior for both extremes of entering flux intensity.
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FIG. 6. Comparison of stationary exiting flux j(λ) versus λτ ob-
tained for the non-Markovian model (dotted curves), the Markovian
model by setting μ = 1/τ (dashed curves), and the Markovian model
by using Eq. (35) (solid curves), τb = 4.

We emphasize that the transient regimes of the two models are
different (see the Appendix for a similar model where time-
dependent analytic solutions are obtained).

The same procedure can be carried out for N = 3 using
Eqs. (30) and (31), but the resulting expression for μ is con-
siderably more complex. For general N we therefore propose
the following ansatz, taking a similar form as the mapping for
N = 2:

μ = 2λ/N

e2λτ/N − 1
, (35)

which behaves as 1/τ at low intensity and approaches zero
exponentially at large intensity. Substituting Eq. (35) into
Eq. (32) produces a lower bound of the stationary flux (solid
curves). Furthermore, the maximum of the flux is underes-
timated and shifted to a smaller intensity than in the non-
Markovian model. For N = 3 and N = 4, the curves are very
close to the results of the non-Markovian model. For N > 4,
the ansatz leads to a significant underestimation of the exiting
flux for small λτ .

III. BUNDLE MODEL

We now consider a bundle of Nc identical channels. Each
channel has the same properties as the single-channel model
above; i.e., blockage occurs when N particles are present in a
channel at the same time. In the following we assume that the
total intensity, � = λNc, is constant and is equally distributed
over the open channels. Thus, after k blockages the intensity
on each of these open Nc − k channels is

λk = λ
Nc

Nc − k
. (36)

Since a blocked channel releases all particles after finite time
τb, the system’s mean output flux evolves towards a nonzero
stationary value. The bundle has two states: open, in which at
least one of the constituent channels is open, and closed if all
the constituent channels are blocked. If a particle arrives while
the bundle is in the latter state, it is rejected.

Equations (1)–(3) cannot be applied to the channel bundle
in the steady state, as it does not cycle between closed and
empty states for finite intensity �. In the limit of very large
intensities, however, we have

Po(�) ∼ 1

�
(37)

and

lim
�→∞

〈M〉 = 0, (38)

where 〈M〉 is the mean number of exiting particles that are not
due to blockage releases, and

lim
�→∞

J (�) = NNc

τb
. (39)

In this limit the intensity is so high that all channels block
instantaneously and simultaneously and the blocked particles
are released after a time τb. The exiting flux is entirely the
result of these releases.

The analog of Eq. (4),

J (�) = �Po(�), (40)

is valid for arbitrary intensity since, as for the single-channel
case, it is a result of the conservation of particle number.

A. Exact solution: N = 1

When N > 1 a particle may traverse the channel in a time τ

without causing a blockage. In comparison, the N = 1 model
is singular as no unimpeded transit is possible: each entering
particle causes a blockage that lasts for a fixed time, τb. The
variable τ is thus absent in this model.

Despite the relative simplicity of the N = 1 model, its
dynamics cannot be written as a system of differential equa-
tions for the state probabilities P(i, t ), where i denotes the
number of blocked channels at time t (in the Appendix the full
time-dependent solution for Nc = 2 is presented). However, in
the stationary state, by applying detailed balance (known as
the “rate up–rate down” principle in queuing theory), one has

�P(i) = (i + 1)
P(i + 1)

τb
. (41)

Solving the difference equation and applying conservation of
the total probability leads to

P(k) = (�τb)k

k!
∑Nc

n=0
(�τb)n

n!

, k ∈ [0, Nc]. (42)

The stationary exiting flux is given by Eq. (40) with

Po = 1 − P(Nc) = 1 − (�τb)Nc

Nc!
∑Nc

n=0
(�τb)n

n!

. (43)
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The result can be written in the form

J (�) = �

(
1 − (�τb)Nc

e�τb	(1 + Nc,�τb)

)
, (44)

where 	(n, x) is the incomplete gamma function. The asymp-
totic behavior at small intensity � is

J = �

[
1 − (�τb)Nc

Nc!
+ O((�τb)Nc+1)

]
, (45)

whereas at large intensity the flux behaves as

J = Nc

τb

[
1 − 1

�τb
+ O

(
1

(�τb)2

)]
, (46)

whose leading term is in accordance with Eq. (39). For all
values of Nc, J (�) is always a monotonically increasing
function of �.

We note that the expression for P(Nc) is Erlang’s first
formula [31,36] for a stochastic queuing process with Nc

servers with exponential entry and service time distributions
under the condition that when all servers are busy an arrival
is rejected. Both models are “birth-and-death” processes that
have the same stationary solution. Their transient regimes,
however, are significantly different. See the Appendix.

B. Simulation results: N > 1

For the multichannel models, no exact solution can be
obtained for N > 1. Therefore, we have performed numerical
simulations to obtain the stationary exiting flux, J , and the
stationary probability that at least one channel is open, Po,
for bundles composed of different numbers of channels with
increasing capacity N and for τb = 4τ . All quantities were
investigated as a function of the mean incoming flux �. As
discussed in the previous section, the stationary flux rapidly
displays a maximum at a finite value of λτ when N > 1.

Figure 7 shows J as a function of �τ for Nc = 2, 10 and
for N = 2, 3, 4, 6, 10. When �τ � 1, the rate of incoming
particles is very small and the finite capacity of the channel
is rarely reached, meaning that blockage events are scarce.
The stationary exiting flux is therefore equal to the input flux,
J � �. This behavior is observed for a larger range of �τ for
larger values of N and Nc.

Figure 8 shows the rescaled flux J/Nc versus the rescaled
intensity �/Nc for different values of Nc. In the low intensity
regime J is equal to � and displays a finite discontinuity at
�c. At high intensities the curve evolves towards an asymptote
and the best fit is given by

J � NcN

τb

(
1 − 3N

2�τb

)
. (47)

We observe an abrupt change of kinetic behavior: Below the
critical value �c, almost all particles cross the bundle without
triggering a significant number of blockages, whereas for
larger �, all channels are closed and the stationary flux is
essentially given by the release of blocked particles.

Figure 9 shows the rescaled flux J/N versus the rescaled
intensity �/N for different values of N for a given Nc = 10.
At a low input intensity, the exiting flux J is equal to � until
it reaches a maximum close to a critical value that closely
follows a logarithmic law, as shown in the inset of Fig. 9. For

FIG. 7. J (�) versus �τ for N = 2, 3, 4, 6, 10 and τb = 4, for
(top) Nc = 2, and (bottom) Nc = 10. The dashed lines correspond
to the asymptotic values, Eq. (39).

higher values of input intensity, the rescaled exiting flux, for
all values of N , rapidly collapses to a single curve, whose best
fit is again given by Eq. (47).

IV. FLUX OPTIMIZATION

Here we compare the stationary flux of a bundle of coupled
channels with that of a bundle of uncoupled channels and
one high capacity (HC) channel. The transport efficiency is
measured by the difference in output flux, �J . The systems
are chosen so that, in the limits of low and high input flux
intensity, �J = 0. In the low intensity limit, since blocking
events are rare, the exiting flux is equal the input flux �,
irrespective of the configuration. In the high intensity limit,
Eqs. (6) and (39) demonstrate that the exiting fluxes of the
single high capacity, bundled uncoupled or coupled channels
are also equal. Since the stationary flux of a bundle of coupled
channels displays nontrivial behavior with increasing Nc and
N , we therefore expect the same of �J .
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FIG. 8. Exiting flux of a channel bundle composed of Nc chan-
nels each with N = 10: J/Nc versus �τ/Nc for different values of Nc

and τb = 4. The dashed curves show the asymptotic behavior.

A. Coupled versus uncoupled channels

We first compare a channel bundle composed of Nc chan-
nels, each of capacity N . The entering flux, �, is equally
distributed over the coupled open channels. In contrast, the
Nc independent channels, each of capacity N , each receive

FIG. 9. Nc = 20: J/N versus �τ/N for different values of N and
τb = 4. The dashed curves correspond to the asymptotic behaviors.
The inset shows the value of � that maximizes the exiting flux as a
function of N and the red dashed line shows the logarithmic fit, of
form 2.73 log(0.89N ) + 0.65.

FIG. 10. Left: A bundle composed of Nc = 4 coupled channels,
each of capacity N = 2, sharing an incoming flux of intensity �.
Right: Four uncoupled channels, each of capacity N = 2, each
receiving an incoming flux of intensity �/4.

an incoming flux of intensity �/Nc. Figure 10 illustrates the
configurations compared. The difference in the output flux of
the two configurations is defined as

�J = JNc
N (�) − Nc jN (�/Nc). (48)

Simulation results comparing the output flux of each con-
figuration for Nc = 2, 5 and τb = 4 are shown in Fig. 11.
The differences are shown in the inset of the figure. At low
intensity, for all configurations, the output flux is approxi-
mately equal for each setup and linearly increases with �

until a critical value, which itself is a monotonically increasing
function of N .

The behavior for N = 1 can be understood quantitatively
using the results of Sec. III A and Eq. (14). At low intensity,
the flux difference is

�J = �2τb

Nc
+ O(�3), (49)

and at high density we find

�J � Nc(Nc − 1)

�τ 2
b

, (50)

and one can confirm that �J > 0 for 0 < � < ∞. We con-
clude that the coupled channels are always more efficient than
the uncoupled ones. The difference is maximized for a finite
value of �.

For all N > 1, we note the appearance of two maxima
in the flux difference with an intervening minimum. The in-
creased complexity is due to the presence of two characteristic
times, the transit time τ and the blockage time τb (while the
N = 1 system has only the latter).

Figure 12 shows the flux difference between the bundle
configurations at Nc = 2, N = 2, as a function of intensity
of entering flux, �, for different values of τb. For τb > 2 the
behavior is more complex after the first maximum, with the
appearance of a minimum followed by a second maximum
before tending towards zero.
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FIG. 11. Total exiting flux from the coupled (lines) and uncoupled (dotted) channel configurations. From left to right, Nc = 2, 5, τb = 4.
The insets show the difference between the two.

B. Single HC channel versus coupled LC channels

The transport efficiency of a single “high capacity” chan-
nel, with a bundle of several coupled channels, of a pro-
portionately reduced capacity, is now compared. The two
configurations are illustrated in Fig. 13. Figure 14 shows the
difference in the output stationary state flux between a single
HC channel and a bundle of Nc = 2, 5 coupled LC channels,
with different capacities. The flux difference in this case is

�J = jNcN (�) − JNc
N (�). (51)

For all N , the flux difference displays a minimum, followed
by a maximum, before tending towards zero for increasing

FIG. 12. Difference in the output flux between Nc = 2 coupled
and uncoupled channels, with N = 2 as a function of intensity �, for
different values of τb.

intensity. The amplitudes of the maxima are always greater
than those of the minima.

V. DISCUSSION

We have presented a model of blockage in channel bundles
that may be relevant for various physical processes. The bun-
dle consists of Nc constituent channels, each with a capacity
of N . A particle transits through an open channel in time τ ,
but if N particles are simultaneously present in a channel, it is
blocked for a time τb, before being emptied. While blocked,
the entering flux is redistributed over the remaining open
channels. A bundle of channels is open if at least one of its
constituent channels is not blocked. If the entering stream is
of constant intensity the bundle evolves to a stationary state
with a steady exiting flux, or throughput, that depends on

FIG. 13. Left: A bundle composed of Nc = 4 channels, each with
capacity N = 2, sharing an incoming particle flux of intensity �.
Right: A single high capacity channel of capacity NNc = 8.

042119-9



BARRÉ, PAGE, TALBOT, AND VIOT PHYSICAL REVIEW E 99, 042119 (2019)

FIG. 14. Single HC channel versus coupled LC channels. From
top to bottom, Nc = 2, 5. All curves display a single maximum
followed by a single minimum, before tending to zero at high
intensity.

the intensity, τb, and N . In the steady state the exiting flux
is simply related to the probability that the bundle is open. For
a single channel with capacity N > 1 the exiting flux displays
a maximum value at finite intensity if τb is sufficiently large.
If not, the exiting flux increases monotonically with the inten-
sity. A Markovian model with stochastic transit and blockage
times, inspired by queuing theory, can be made to display
the same steady state behavior with an appropriate mapping
between the two models’ parameters. The transient behavior
is, however, quite different. This suggests that, in the steady
state, the details of the transport mechanisms and the triggered
releases are not important. For large N , the models display

an abrupt change from a state with few blockages to one in
which the bundle is permanently blocked and the output flux is
entirely due to the release of blocked particles. This behavior
raises new questions about whether more general relationships
describing the abrupt transitions in dynamics may be obtained
for general N and Nc. The transport efficiency of a bundle
in which the entering flux is equally distributed over the
open channels was also compared with a bundle composed
of independent channels. For N = 1, the coupled channels
always have a higher throughput, but for larger values of N
the behavior is more complex.
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APPENDIX A: FULL SOLUTION OF THE CHANNEL
BUNDLE WITH Nc = 2, N = 1

This model can be solved exactly by using an approach
similar to that used to solve the single-channel model with
N = 3 [25]. This requires introducing the partial probabilities
Q(n, t ) that at time t , n particles have entered such that at least
one channel is open. The open probability of the bundle is then
given by

Po(t ) =
∑
n�0

Q(n, t ). (A1)

Since blockage is not possible for n = 0, 1 the first two
probabilities are trivial:

Q(0, t ) = e−�t , (A2)

Q(1, t ) = �te−�t . (A3)

For n � 2, the probability Q(n, t ) can be written as

Q(n, t ) =
∫ ∞

0

n−1∏
i=0

dti�e−�ti

∫ ∞

0
dt ′e−�t ′

δ

(
t −

n−1∑
i=0

ti − t ′
)

×
n−2∏
j=1

θ (t j + t j+1 − τb)

×
n−1∏
k=1

(θ (τb − tk )e�(τb−tk ) + θ (tk − τb))

× θ (t ′ + tn−1 − τb) . (A4)

The n-fold integral corresponds to all events of n incoming
particles at the entry of the channel with the associated
constraint (δ function) which occurs between zero and t . The
first product of Heaviside functions expresses the fact that
a new particle can enter if both channels are not blocked,
which imposes the condition that the time since the entry of
the second-to-last particle is larger than τb. The last product
corresponds to both complementary situations: either the last
entered particle leads to a complete blockage of two channels
(the exponential factor expresses that no particle can enter
in a duration τ − tk) or only one channel is blocked by the
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last entered particle. The last Heaviside function imposes the
requirement that at least one channel be open at time t .

Taking the Laplace transform of Q(n, t ), the integral over
t0 is trivial and the integral over t ′ must be split into two parts,
which finally gives

Q̃(n, u) =
(

�

� + u

)2[
e−uτb

∫ τb

0
dte−�t r(n − 1, u, t )

+
∫ ∞

τb

dte−(�+u)t r(n − 1, u, t )

]
, (A5)

with tn−1 ≡ t . The function r(n − 1, t, u) is defined as

r(n−1, t, u)=
∫ ∞

0

n−2∏
i=1

dti�e−(�+u)ti
n−2∏
j=1

θ (t j + t j+1 − τb)

×
n−2∏
k=1

(θ (τb−tk )e�(τb−tk )+θ (tk −τb)). (A6)

By using Eq. (A6), one infers the recurrence relation between
r(n, u, t ) and r(n − 1, u, t ),

r(n, t, u) = �

∫ τb

max(τb−t,0)
dt ′e−(u+2�)t ′

e�τbr(n − 1, t ′, u)

+�

∫ ∞

τb

dt ′e−(�+u)t ′
r(n − 1, t ′, u) , (A7)

with the initial condition r(1, t, u) = 1.
We define the generating function G(z, t, u):

G(z, t, u) =
∞∑

n=1

zn−1r(n, t, u) . (A8)

Multiplying Eq. (A7) by zn and summing over n gives the
generating function G(z, t, u) which obeys a similar equation:

G(z, t, u) =1 + z
∫ τb

max(τb−t,0)
dt ′�e−(u+2�)t ′

e�τbG(z, t ′, u)

+ z
∫ ∞

τb

dt ′�e−(�+u)t ′
G(z, t ′, u) . (A9)

For t � τb, the right-hand side of Eq. (A9) is independent
of t , which gives that G(z, t, u) is then independent of t . For
t < τb, by taking the two first derivatives of Eq. (A9) with
respect to t , one can rewrite the integral equation, Eq. (A9), as
an ordinary differential equation

∂2G(z, t, u)

∂t2
− (2� + u)

∂G(z, t, u)

∂t

+ z2�2e−uτbG(z, t, u) = 0 , (A10)

whose solution is given by

G(z, t, u) = A(u)er1t + B(u)er2t , (A11)

where r1 and r2 are the solutions of the characteristic equation

r1,2 = 2� + u ±
√

(2� + u)2 − (2z�)2e−uτb

2
. (A12)

The functions A(u) and B(u) are determined by using the
boundary conditions. At t = 0, by using Eq. (A9), G(z, 0, u)

is expressed as

G(z, 0, u) = 1 + zG(z, τb, u)
�

� + u
e−(�+u)τb , (A13)

which gives

A(u)

(
1− z�e(r1−(�+u))τb

�+u

)
+B(u)

(
1− z�e(r2−(�+u))τb

�+u

)
= 1.

(A14)

Now, by using the first derivative of Eq. (A9) at t = τb, one
obtains the second boundary equation

∂G(z, t, u)

∂t

∣∣∣∣
t=τb

= z�e�τ G(z, 0, u) , (A15)

and by using Eq. (A11), one obtains

A(u)(r1e(r1−�)τb −z�)+B(u)(r2e(r2−�)τb −z�)=0. (A16)

In the Laplace space, the open probability P̃o(u) is given by

P̃o(u) =
∑
n�0

Q̃(n, u)

= Q̃(0, u) + Q̃(1, u) + e−uτb

(
�

� + u

)2

×
(∫ τb

0
dte−�t G(1, t, u) + e−�τbG(1, τb, u)

� + u

)
.

(A17)

By using Eq. (A5) and Eq. (A11), this can be expressed as

P̃o(u) = e−uτb

(
�

� + u

)2

×
[

A(u)

(
1 − e(r1−�)τb

� − r1
+ e(r1−�)τb

� + u

)

+ B(u)

(
1 − e(r2−�)τb

� − r2
+ e(r2−�)τb

� + u

)]

+ 1

� + u
+ �

(� + u)2
. (A18)

The functions A(u) and B(u) can be determined by using
the boundary conditions, but the lengthy expressions are not
displayed here. The output flux J (t ) is entirely due to the
release of blocked particles and is therefore given by

J (t ) = �Po(t − τb). (A19)

The stationary open probability is Po(∞) = limu→0 uP̃o(u).
By using Eq. (A18), the stationary open probability Po is then
given by

Po =
(

τb + 1

�

)
lim
u→0

[u(A(u) + B(u))]. (A20)

After a tedious but straightforward calculation, one finally
obtains

Po(∞) = 1 + �τb

1 + �τb + (�τb)2/2
, (A21)

which corresponds to the Erlang formula, Eq. (43).
Let us now compare with the stochastic model with Nc =2

and N = 1 with parameters � and μ∗. The state of the
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system is defined by the probabilities P0(t ), P1(t ), P2(t ) of
having zero, one, and two particles in the bundle at time t ,
respectively. They evolve according to the coupled differential
equations

dP0(t )

dt
= −�P0(t ) + μ∗P1(t ),

dP1(t )

dt
= �P0(t ) − (� + μ∗)P1(t ) + 2μ∗P2(t ),

dP2(t )

dt
= �P1(t ) − 2μ∗P2(t ). (A22)

Taking the Laplace transform, and solving the linear system
of algebraic equations, one obtains the Laplace transform of
the open probability, P̃o(u):

P̃o(u) = P̃0(u) + P̃1(u)

= (u + μ∗)(u + 2μ∗ + 2�)

u(u2 + (2� + 3μ∗)u + 2μ∗2 + 2μ∗� + �2)
.

(A23)

Finally, calculating the inverse Laplace transform and sub-
stituting μ∗ = 1/τb, one obtains

Po(t ) = Po(∞) + (�τb)2e−�(2+ 3
�τb

)t

1 + 2�τb + 2�2τ 2
b

[
cosh

(
t

τ ′
b

)

+
(

2�τ ′
b + 3

τ ′
b

τb

)
sinh

(
t

τ ′
b

)]
(A24)

with τ ′
b = τb√

1+4�τb
.

FIG. 15. Time evolution of the open probability Po(t ) for the non-
Markovian model (solid curves) and the Markovian model for Nc = 2
and N = 1 with � = 2 and τb = 4.

Figure 15 shows the time evolution of the open probability,
Po(t ), of the non-Markovian model and of the stochastic
model for � = 2 and τb = 4. While both models converge
to the same stationary state (with the same open probability
and output fluxes), the relaxation is significantly different,
except at short time (typically for t < 1/�). In particular, for
the nonstochastic model, the deterministic blockage release
mechanism leads to slow, oscillatory relaxation towards the
stationary state, whereas the relaxation is roughly exponential
and faster for the stochastic model.
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