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Flux and storage of energy in nonequilibrium stationary states
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Systems kept out of equilibrium in stationary states by an external source of energy store an energy �U =
U − U0. U0 is the internal energy at equilibrium state, obtained after the shutdown of energy input. We determine
�U for two model systems: ideal gas and a Lennard-Jones fluid. �U depends not only on the total energy flux,
JU , but also on the mode of energy transfer into the system. We use three different modes of energy transfer where
the energy flux per unit volume is (i) constant, (ii) proportional to the local temperature, and (iii) proportional
to the local density. We show that �U/JU = τ is minimized in the stationary states formed in these systems,
irrespective of the mode of energy transfer. τ is the characteristic timescale of energy outflow from the system
immediately after the shutdown of energy flux. We prove that τ is minimized in stable states of the Rayleigh-
Benard cell.
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I. INTRODUCTION

Systems out of equilibrium are notoriously difficult to de-
scribe in a single coherent methodology based on variational
principles. Principles such as Prigogine minimum entropy
production [1], Attard second entropy variation [2], or Ziegler
maximum entropy production [3] suggested over the last
100 years have not reached the same status as the maximum
entropy principle known from equilibrium thermodynamics
[4–6]. A new paradigm, such as the driven lattice gas system,
is believed to become an “Ising model” for nonequilibrium
statistical physics [7–12]. Steady state thermodynamics is yet
another description framework for nonequilibrium stationary
states, which is still being developed [13–16]. Here we present
a different approach to stationary states, based on two quanti-
ties: the energy stored in nonequilibrium states, �U , and the
total energy flux, JU , in these states.

The second law of thermodynamics states that the entropy
of a system has its maximum value at the equilibrium state.
Entropy, S, is a function of state; thus for an isolated system
of N molecules of total internal energy, U , enclosed in a
volume, V , the entropy has a fixed value S = S(U,V, N ).
Internal constraints make it possible to divide the system
into n isolated subsystems of entropies Si = S(Ui,Vi, Ni ) for
i = 1, . . . , n, where

∑n
i Ni = N ,

∑n
i Vi = V ,

∑n
i Ui = U . The

maximum entropy principle states [17,18] that S(U,V, N ) �∑n
i Si. We develop a similar methodology for nonequilibrium

stationary states, by introducing internal constraints in these
states. Next we make a conjecture on variational principles for
these states. We do not claim the generality of this conjecture
but simply prove it for three studied cases. In order to illustrate
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our methodology we study two systems: ideal gas and a
Lennard-Jones (LJ) fluid. Next we test our methodology on
two competing states in the Rayleigh-Benard (RB) cell [19].
Summarizing our results obtained for these systems, we find
that �U is minimized in nonequilibrium stationary states for a
fixed JU . Minimization is with respect to all constrained states
of the system, similarly as in equilibrium thermodynamics.
Due to the lack of a general theoretical framework for de-
scribing the nonequilibrium systems under consideration, we
are not able to formulate a general argument for the validity
of the conjectured principle. Nevertheless, it is plausible that,
under well-defined conditions, the energy storage obeys some
sort of variational principle. In the search for this principle we
employed dimensional analysis and considered the relevant
physical quantities. This analysis suggests the ratio �U/JU ,
which has the dimension of time and a nice physical interpre-
tation, as a candidate for the quantity to be extremized.

II. IDEAL GAS BETWEEN TWO PLANAR WALLS

An ideal gas is confined between two planar walls of
surface area A located at z = ±L. The temperature of the
walls is constant T−L = TL = T0. Energy is supplied to the
volume of the fluid (e.g., by microwaves). In stationary states
the total flux of energy into the system, JU , matches the total
flux at the walls. In the hydrodynamic limit, the time evolution
of the system is given by the conservation laws for mass, mo-
mentum, and energy supplemented by the relations between
thermodynamic forces and fluxes and thermodynamic equa-
tions of state. For an ideal gas U = (3/2)NkBT , p = ρkBT ,
where U is the internal energy, p is the pressure, ρ = N/V is
the number density of the ideal gas, V is the volume, N is the
number of gas particles, and kB is the Boltzmann constant.
We observed in our previous simulations and calculations
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[20,21] for gas-liquid evaporating systems that mechanical
equilibrium is established very fast (in comparison to heat
flow). Therefore we also expect a constant pressure across
the system in this case. The stationary state satisfies v = 0
(gas velocity), p = const [20,21]. These two equations come
from the conservation of mass and momentum. (The same
results, i.e., v = 0 and p = const in the stationary states are
also obtained in MD simulations of the Lennard-Jones sys-
tem described later.) The conservation of energy is given by
∇ · jε(r) = σε, where jε(r) is local heat flux and σε is the
external heat source. The integral of σε over the volume is∫

V σε = JU . The local flux of energy per unit area is propor-
tional to the local temperature gradient jε = −κ∇T , where κ

is the thermal conductivity and thus

−κ∇2T (r) = σε. (1)

We solve Eq. (i) for three forms of the source term describing
different manners of energy supply: (i) σε = λ1, (ii) σε =
λ2T (z), and (iii) σε = λ3ρ(z). The equations are transformed
into dimensionless form by rescaling the variables z̃ = z/L,
T̃ = T/T0 and ρ̃ = ρ/ρ0 together with (i) λ̃1 = λ1L2/(κT0),
(ii) λ̃2 = λ2L2/κ , and (iii) λ̃3 = λ3L2ρ0/(κT0), with λi >

0, i = 1, 2, 3. Here ρ0 is the number density of the ideal
gas at temperature T0 and pressure p0. The temperature is a
function of coordinate z only. In all these cases we introduce
energy directly into the volume. This mode of energy transfer
is well known by, e.g., electromagnetic waves (microwaves,
visible light, etc.). If we couple a microwave device with a
thermovision camera we can in principle add energy to hotter
places (where density is low) or to less hot spots, where
density is high. Thus the three modes of energy transfer are
physically feasible.

For case (i) the equation for the stationary tempera-
ture profile is d2T̃ (z̃)/dz̃2 = −λ̃1 with symmetric boundary
conditions T̃ (−1) = T̃ (1) = 1. This equation has the solu-
tion T̃ (z̃) = − λ̃1

2 (z̃2 − 1) + 1. The energy of this stationary
state is calculated using the assumption of local equilib-
rium. The energy density field U/(V ρ0T0) = ε[T̃ (z̃), ρ̃(z̃)] =
(3/2)kBρ̃(z̃)T̃ (z̃) for an ideal gas. Upon rescaling by the equi-
librium value U0/(V ρ0T0) = ε0 = (3/2)kB, the dimensionless
local energy density ε̃ = ε/ε0 obeys ε̃(T̃ (z̃), ρ̃(z̃))/T̃ (z̃) =
ρ̃(z̃). Our system does not exchange molecules with the en-
vironment; therefore the number of particles is constant. This
condition is given by the equation

∫ 1
−1 ρ̃(z̃) dz̃ = 2 and thus

implies
∫ 1
−1 dz̃ε̃(T̃ (z̃), ρ̃(z̃))/T̃ (z̃) = 2. The reduced pressure

obeys p̃ = T̃ (z̃)ρ̃(z̃) = ε̃(T̃ (z̃), ρ̃(z̃)), thus since p̃ is constant,
so is ε̃. We obtain ε̃ as

ε̃ = 2∫ 1
−1 dz̃/T̃ (z̃)

. (2)

Integrating the temperature profile we obtain

ε̃(λ̃1) =
√

λ̃1(λ̃1 + 2)

2tanh−1
(√

λ̃1

λ̃1+2

) . (3)

For cases (ii) and (iii) of the external flux see the Supplemental
Material [22].

We introduce a rigid, impenetrable, adiabatic wall in the
system at z = z1. The wall divides the system into two sub-

systems (1) and (2). The internal energy at equilibrium is
U0 = 2LAε0, the same as in the unconstrained system. We
calculate the storage of energy over its equilibrium value,
�U1 + �U2 = U1 + U2 − U0 in the same way as presented
above. The division into two subsystems satisfies the follow-
ing conditions in our methodology: (a) The subsystems are in
mutual equilibrium after the shutdown of energy input, so that
no additional fluxes appear after removal of the constraints
at equilibrium. (b) The subsystems reach a stationary state
characterized by U1, U2 and fluxes JU1 , JU2 . (c) The mode of
energy transfer to each subsystem is the same. Since JU =
A

∫ L
−L σε dz, we obtain for case (1)

�U

JU
= ε0

λ1
(ε̃ − 1) (4)

and

�U1 + �U2 − U0

JU1 + JU2

= ε0

λ1
[ f1(z̃1) + f2(z̃1) − 1] (5)

with

f1(z̃1) =
(1 − z̃1)

√
	

(1)
− (	(1)

− + 2)

4tanh−1
(√ 	

(1)
−

	
(1)
− +2

) and

f2(z̃1) =
(1 + z̃1)

√
	

(1)
+ (	(1)

+ + 2)

4tanh−1
(√ 	

(1)
+

	
(1)
+ +2

) , (6)

where z̃1 = L1/L, 	
(1)
− = λ̃1(1 − z̃1)2, and 	

(1)
+ = λ̃1(1 +

z̃1)2. By inspection, in the range 0 � z̃1 < 1 the func-
tions fi(z̃1), i = 1, 2 are positive and lie above their tangent
lines at z̃1 = 0, i.e., fi(z̃1) > f ′

i (z̃1)|z̃1=0z̃1 + ε
2 , i = 1, 2 for

fixed λ̃1 > 0. Since f1(z̃1) = f2(−z̃1) one has f ′
1(z̃1)|z̃1=0 =

− f ′
2(z̃1)|z̃1=0 and hence f1(z̃1) + f2(z̃1) > 2 ε

2 , which proves
that

�U1 + �U2

JU1 + JU2

� �U

JU
. (7)

The equality holds only for equal partition of the system into
two subsystems (z1 = 0). This equation states that the energy
stored in two subsystems is larger than in the unconstrained
system [23] for a fixed flux JU = JU1 + JU2 . Cases (ii) and
(iii) also satisfy Eq. (7) (discussed in Ref. [22]). Additionally
in the Supplemental Material we present calculations of case
(i) with κ = const

√
T (expected for the dilute gas), which

further confirm Eq. (7) for this system. It is well understood
that a true ideal gas would have noninteracting particles with
a zero collision cross section. We use the equation of state
of the ideal gas as an approximation for the interacting gas
characterized by finite, temperature-dependent, κ .

III. LENNARD-JONES LIQUID IN A RECTANGULAR BOX

In order to perform analytical calculations for the ideal
gas model we had to assume local equilibrium. This assump-
tion is inherent in irreversible thermodynamics equations. In
order to test our analytical results for the ideal gas model
we performed molecular dynamics (MD) simulations of a
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FIG. 1. LJ simulation box with the shaded region in the middle
dividing the system into (1) and (2) subsystems of size L1 and
L2, respectively. The finite size of this wall precludes interactions
between the molecules in different subsystems. Heating is indicated
by the red arrows. Cooling is performed at the boundaries at a
distance b0 from two walls and shown schematically by the green
arrows. The fluxes JU1 and JU2 in and out are equal in the stationary
state. The total size of the system L is fixed.

LJ system. MD simulations provided qualitatively the same
results as analytical calculations presented in the previous
section. In the MD simulations Newton equations of motion
are solved; thus no assumptions concerning local equilibrium
or constancy of heat conductivity are made. Nevertheless,
during MD simulations our system stays quite close to local
equilibrium. In general we can expect a violation of the local
equilibrium assumption only when the flux of the energy
flowing across the system is faster than the process of local
distribution of energy between all degrees of freedom. Such
conditions are expected in, e.g., shock waves.

In all the simulations we set the flux constant for the
system and subsystems: JU = JU1 + JU2 . We also set the same
JU for all the modes of energy transfer into the system.
Thus we make a comparison between different cases using
only one parameter, the energy �U stored in a system. MD
simulations [24,25] (Fig. 1) were performed in the system of
fixed number N = 266 240 of LJ atoms. The simulation box
was divided into two subsystems (1) and (2) of sizes L1 and L2,
respectively. The total size L1 + L2 of the box was constant.
Energy was added only to the regions (1) and (2) (Fig. 1)
once per 10 time steps in three manners (i), (ii), and (iii) as
described for the ideal gas model. When the flux of energy was
proportional to the density each LJ atom received the same
amount of kinetic energy. For flux proportional to temperature
the portion of energy added to each atom was proportional
to its kinetic energy. For energy flux proportional to density
the same amount of energy was added to the same volume,
i.e., all the atoms in a given volume received a given amount
of energy equally shared between them. All temperature and
density profiles in the stationary states are shown in Ref. [22]
for the system with and without internal walls. In Fig. 2(a)
we show the dependence of the energy �U stored in the
system, as a function of the size L1 of one subsystem for fixed
fluxes JU = JU1 + JU2 . This figure contains results for all three
scenarios of the energy transfer. All physical quantities are
given in LJ units. When L1 = L2, �U reaches a minimal value
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FIG. 2. (a) Energy stored �u1 + �u2 per LJ atom in subsystems
(1) and (2) as a function of the size of one subsystem L1 for a
fixed flux JU = JU1 + JU2 . The flux of energy per unit volume is
constant (red triangles), proportional to temperature (black circles),
or proportional to density(green squares). The minimal value of
�U1 + �U2 = �U is equal to the value for the unconstrained system
for L1 = L2 [see Eq. (7)]. (b) The energy (per particle) in subsystem
(1) as a function of L1. This energy scales as U1/V ∼ L2

1 . It is not
an extensive quantity, since the energy at equilibrium U0/V ∼ const.
(c) The characteristic time τ of energy out-flow from the subsystem
(1) after the shutdown of energy flux into the subsystem. Energy
decreases as exp(−t/τ ) (see Ref. [22]) with an initial decay time
τ = 2�U1/JU1 . Factor 2 appears because the outflow of energy is
only by one wall.

(equal to the value obtained for the unconstrained system) as
expected from Eq. (7). In Fig. 2(b) we show the scaling of the
energy per particle stored in the subsystem (1) as a function of
the size of the subsystem L1. Finally we observe that after the
shutdown of energy flux into the system, the energy decreases
as exp(−t/τ ) (see Ref. [22]) at short times, with a decay time
τ = �U/JU [Fig. 2(c)]. In summary, the MD simulations of
LJ fluid confirm Eq. (7). In most of our simulations the system
was in a single-phase state, but we also confirmed Eq. (7)
for the two-phase nonequilibrium system. We observed a
spontaneous phase separation and the two phases present in
the stationary state with a liquid at the cold boundary and a
heated gas inside the simulation box. In these simulations we
could not obtain stationary states with convection as in the RB
cell irrespective of the value of the energy flux input into the
system.

IV. TWO-DIMENSIONAL RAYLEIGH-BENARD SYSTEM
OF HARD DISKS (HDS)

We further tested Eq. (7) in the RB cell (Fig. 3) for two
competing stationary states. One is called the conductive state
Fig. 3(b) and second one the convective state as shown in
Fig. 3(c). For small temperature gradients the conductive
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FIG. 3. (a) �U/JU as a function of the lower plate dimensionless
temperature, T ∗ in the RB two-dimensional system. The vertical
solid line marks RB instability at about T ∗ = T ∗

RB = 15.5. The open
squares are the MD data for the constrained system in the conductive
state (for all T ∗) with wall in the middle (see panel b). The open
circles are the MD data for the unconstrained system in the con-
ductive state (b) for T < TRB and convective state (c) for T > TRB.
(b) Snapshots of the stationary velocity field (at T ∗ = 17) in the
conductive state (constrained state). (c) Snapshots of the stationary
velocity field in the convective state, stable for T ∗ > T ∗

RB.

state is stable, while for large temperature gradients it is
the convective state that is stable. We use the internal walls
to stabilize the conductive state above the transition to the
convective state. This methodology allows for comparison
of �U/JU for both states at the same gravitational field and
temperatures at the walls.

Disks of diameter σ and mass m, were placed in a rectan-
gular simulation box of size Lxd × Lyd (where d = σ/

√
0.4).

Two sizes were studied: 50d × 100d (the small system) and
100d × 100d (the large system). The dimensionless density,
ρ∗ = Nσ 2/(LxLyd2) = 0.4. The upper plate had a constant
temperature T0, and the lower plate was heated to temper-
atures T = T ∗ × T0, with T ∗ � 1. All disks were subjected
to a gravitational force F = m(0,−g). The HD fluid was
simulated with event-driven dynamics, where disks followed
parabolic trajectories between collisions. The disks collided in
an elastic manner with the side walls and between themselves.
The collisions with the upper and lower plates allowed for a

transfer the thermal energy to the system. Upon collision with
the upper or lower plate the disc velocity was drawn from the
Maxwell distribution corresponding to the temperature of the
plate, and the direction was chosen randomly from 0 to 180◦
angles with respect to the plate [26]. The total energy of the
system is the sum of the kinetic and potential energy of the
disks (details are given in Ref. [22]).

For T ∗ = 1 the system reaches the thermal equilibrium
state with an internal energy U0. For T ∗ > 1 energy is being
pumped into the system at the bottom plate until the system
reaches a stationary state, characterized by the energy stored
in the system above its equilibrium value, �U = U − U0. In
the stationary state, this system is expected to conduct heat in
a conductive manner up to a temperature which corresponds to
the RB instability [19], T ∗

RB. This temperature (T ∗
RB) marks the

onset of the convective mode of heat transfer, characterized
by the formation of convective rolls. In our system measuring
100d × 100d , the transition temperature T ∗

RB is about 15.5.
For T ∗ > 15.5 we observe a convective state with a single roll
filling almost the whole area of the simulation box. However,
for the system measuring 50d × 100d , the system is too small
to develop rolls at all studied temperatures (up to T ∗ = 25).
This observation makes it possible to constrain the system
by the internal wall and stabilize the conductive state against
convective instability. We introduced a constraint into the
system by inserting a vertical adiabatic wall in the middle of
the 100d × 100d simulation box. The wall divides the system
into two 50d × 100d independent subsystems (1) and (2). The
50d × 100d subsystem is too small to develop even a single
convective roll for T ∗ > 15.5. Thus a conductive stationary
state is observed for each T ∗ that is considered. Next, by
removing the adiabatic wall for T ∗ > 15.5 we merge two
subsystems in the conductive state into a single 100d × 100d
system in the convective state. For T < T ∗

RB, the merging sub-
systems (1) and (2) do not change the conductive stationary
state and in particular �U1 + �U2 = �U for JU1 + JU2 = JU

at all temperatures T ∗ < T ∗
RB.

Figure 3 shows the results of the simulations. The conduc-
tive state [shown in Fig. 3(b)] is stable for T ∗ < T ∗

RB. In this
state the whole system and the subsystems satisfy the equa-
tions �U = �U1 + �U2 and JU = JU1 + JU2 . However, for
T ∗ > T ∗

RB the subsystems (1) and (2) are still in a conductive
state, while the whole system without the constraint reaches
a convective state [Fig. 3(c)]. We find �U/JU < (�U1 +
�U2)/(JU1 + JU2 ) for T ∗ > T ∗

RB as predicted by Eq. (7). Con-
cluding, in the RB cell �U/JU is minimized in stationary
states.

V. CONCLUSIONS AND FURTHER DISCUSSION

We have presented a methodology for the analysis of
nonequilibrium states, based on internal constraints known
from equilibrium thermodynamics. We have pointed out the
importance of the mode of energy transfer into the system and
introduced two quantities characterizing the nonequilibrium
stationary state: �U the excess energy stored in the nonequi-
librium state over the equilibrium value and τ = �U/JU ,
the characteristic time of energy outflow from the system
after shutdown of energy flux into the system. �U > 0 in all
examples discussed in this paper, because we used a reference
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equilibrium state of lower energy, rather than the energy of the
stationary state.

We observed that in all cases studied the quantity �U/JU is
minimized in stationary states. However, the following coun-
terexample suggests that this may not be a general principle
[27]. Consider a huge box with adiabatic walls attached to
our system by a thin heat-conducting wire ending at a point
inside our system. The point is chosen in such a way that the
temperature at this point is lower in the constrained system
than in the unconstrained one. Such a point always exists in
the systems studied. This box stores an extra energy during
the energy flow from our system to the box. The flow stops
when the temperature of the box reaches the stationary state
temperature in the point of choice in our system. This sort
of box does not influence the stationary state of the system
but, nonetheless, changes the total amount of energy stored
in the total system. Since in this way one an arbitrary large
amount of energy can be stored, we cannot claim that for
a fixed flux the energy stored in the system is minimized.
We can make many different variants of this counterexample,
in particular, allowing a small flux through this box and
in this way affecting the final nonequilibrium state of the
system. Since such situations are not eliminated by the current
formulation of prerequisites, their further analysis is needed.
Those prerequisites which are related to nonequilibrium states
require special attention. Indeed, the division of a system into

subsystems, so obvious for the equilibrium state, is not at all
obvious for nonequilibrium states. This is due to the crucial
role of surfaces bounding the system establishing the final
nonequilibrium, stationary state.

Our methodology and observations require further tests.
Such tests can be performed for chemical systems with many
competing stationary states or in hydrodynamic systems. One
example, which we are going to study, is the reaction be-
tween nitrogen dioxide and nitrogen tetroxide [28]. A system
consisting of these two chemical compounds is illuminated
by light. Light is absorbed by nitrogen dioxide but not by
nitrogen tetroxide. The absorption of light results in heating
of the sample and in an increase in the backward reaction
from tetroxide to dioxide. In this system many stationary
states appear. We hope that such a test will further support
our current observations.
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