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Models of infiltration into homogeneous and fractal porous media with localized sources
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We study a random-walk infiltration (RWI) model, in homogeneous and in fractal media, with small localized
sources at their boundaries. In this model, particles released at a source, maintained at a constant density value,
execute unbiased random walks over a lattice; a model that represents solute infiltration by diffusion into a
medium in contact with a reservoir of fixed concentration. A scaling approach shows that the infiltrated length,
area, or volume evolves in time as the number of distinct sites visited by a single random walker in the same
medium. This is consistent with numerical simulations of the lattice model and exact and numerical solutions of
the corresponding diffusion equation. In a Sierpinski carpet, the infiltrated area is expected to evolve as t2F/Pw
(Alexander-Orbach relation), where Df is the fractal dimension of the medium and Dy is the random-walk
dimension; the numerical integration of the diffusion equation supports this result with very good accuracy and
improves results of lattice random-walk simulations. In a Menger sponge in which Dr > Dy (i.e., a fractal with
a dimension close to 3), a linear time increase of the infiltrated volume is theoretically predicted and confirmed
numerically. Thus, no evidence of fractality can be observed in measurements of infiltrated volumes or masses
in media where random walks are not recurrent, although the tracer diffusion is anomalous. We compare our
findings with results for a fluid infiltration model in which the pressure head is constant at the source and the
front displacement is driven by the local gradient of that head. Exact solutions in two and three dimensions and
numerical results in a carpet show that this type of fluid infiltration is in the same universality class of RWI, with
an equivalence between the head and the particle concentration. These results set a relation between different
infiltration processes with localized sources and the recurrence properties of random walks in the same media.
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I. INTRODUCTION

An infiltration process takes place when the external sur-
face of an initially dry porous medium is in contact with
water source at a fixed pressure head. In this circumstance,
assuming that the Darcy law holds, the gradient of the pressure
head will move moisture into and through the pore spaces,
as schematically shown in Fig. 1(a). If the domain geometry
constrains the moisture to a one-dimensional horizontal flow,
then we can invoke a Green-Ampt [1] approximation and
assume a well-defined moving front S(¢) between filled and
empty pore spaces. Under this scenario, it would be expected
that the filled volume F'(¢) will increase in time as

F~1" (D

with the infiltration exponent n = 1/2 [2-4]. However, in
many systems a different exponent is measured [5—13] that
characterizes some type of anomalous transport (subdiffusive
if n < 1/2 and superdiffusive if n > 1/2).

A related process occurs when the porous medium is filled
with a static fluid and the external surface is in contact with a
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reservoir of the same fluid but with a different concentration
of a solute. This solute then infiltrates into or out of that
medium, depending on the concentration difference, with the
solute molecules moving diffusively; see Fig. 1(b). A model
for this process in a two-dimensional lattice was proposed
by Sapoval, Rosso, and Gouyet [14], and it was recently
extended to fractal lattices [15]: The solute is represented by
particles that execute random walks in the lattice and that
have a constant concentration at an external boundary. Here
this is termed random-walk infiltration (RWI). Reference [15]
used a scaling approach and numerical simulations to show
the relation among the exponent n, the fractal dimensions of
the infiltrated medium (Dp) and of the infiltration boundary
(Dp), and the random-walk dimension in that medium (Dy).
In this work, we study RWI in homogeneous and fractal
media with a small source at an external boundary and discuss
the close relation between this problem and fluid infiltration
in the same media. For two- and three-dimensional media, the
time evolutions of the infiltrated area and volume are obtained
from the solution of the diffusion equation and confirmed by
numerical simulations. A scaling approach is then used to
show that the infiltration has the same time evolution of the
number of distinct sites visited by a single random walker in
the infiltrated lattice. This leads to estimates of the infiltration
exponent in fractal media, including the prediction of an
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FIG. 1. (a) Schematic of fluid (blue) infiltration from a high-
pressure reservoir at the left into a porous media (solid in tan
color, nonfilled pores in white). (b) Infiltration of a solute (red)
from a reservoir at the left into a porous media initially without
that solute. The characteristic lengths sgms and S are indicated for
one-dimensional infiltration.

apparently normal infiltration in fractals where Dr > Dy, as
illustrated for a Menger sponge. In fluid infiltration, where
the sharp fluid front moves with a velocity proportional to the
pressure gradient, the analytical form of the time evolution of
the infiltrated area or volume in two- and three-dimensional
media exactly matches that seen in geometrically equivalent
RWI processes. Additional numerical simulations also reveal
similarities for fluid infiltration and RWI in Sierpinski obsta-
cle carpets. Together these results confirm the scaling equiva-
lence of fluid infiltration with RWI and establish a connection
between different infiltration models with localized sources
and the recurrence properties of random walks.

Despite the simple features of the fractal media studied
here, we recall that they were used in recent laboratory studies
of anomalous transport. For instance, infiltration of a fluid in
horizontal Hele-Shaw cells with obstacles distributed as in the
Sierpinski carpets was studied in Ref. [11] and Darcy-like
flow in media formed by sequences of Menger sponges was
studied in Ref. [16]. In both cases, good agreement with
simulation results or with scaling approaches were obtained.
Hence it is expected that the scope of the work herein will
benefit our understanding of transport in porous materials of
current geological and technological interest.

This work is organized as follows. In Sec. II, the RWI
model and the basic quantities to be measured are presented,
and the example of infiltration in two dimensions with a
linear boundary is discussed. In Sec. III, we study RWI with
localized sources in two- and three-dimensional homogeneous
media and in fractal lattices embedded in two and three di-
mensions and establish the connection with recurrence proper-
ties of random walks. In Sec. IV, we study fluid infiltration in
homogneous media and in a fractal. In Sec. V, we summarize
our results and present our conclusions.

II. RANDOM-WALK INFILTRATION
A. Model definition

RWI is defined as a process in which particles are re-
leased from a static source with constant concentration and in
which those particles execute random walks in a lattice with
excluded volume interaction. We denote as a the edge of a
lattice site, which can be occupied by at most one particle at
a time. In the time unit 7, each particle attempts to hop to a
randomly chosen nearest-neighbor site. The hop is allowed
only if that site is empty; otherwise. the particle does not
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FIG. 2. (a) Initial configurations of RWI in a line with a particle
at the source x = 0. A new particle is inserted at the origin as soon as
the initial particle moves to the neighboring site. (b) Configuration
developed after some time, in which the particle at the source is
blocked and the closest vacancy is at x = Sa. (c) Configuration after
a few steps of RWI in a square lattice with a line source at x = 0. The
arrows indicate the possible hops of the infiltrated and of the source
particles.

move. The diffusion coefficient of a free particle in a free
lattice of dimension d is

Cl2

T 24t

Figures 2(a) and 2(b) illustrate the RWI in one dimension
with a point source at x = 0 and all sites with x > 0 empty at
t = 0. As the particle at the source moves to x = a, another
particle immediately refills the source [Fig. 2(a)]; in this
situation, only the particle at x = a can move and the only hop
allowed for this particle is to the right. Figure 2(b) shows a
configuration after several particles have entered the lattice, in
which only the particles at large distance from the origin can
move. The particle at the source is also unable to move in this
situation; it will move only when the site at x = a is vacant,
which requires diffusion of several intermediate particles.

An equivalent model is RWI in the region x > 0 of a square
lattice with a line source at x = 0, as shown in Fig. 2(c).
Again, when one particle leaves the line x = 0, another par-
ticle is immediately added to that point.

For the simulation of RWI, we adopt an algorithm in which
the particles that attempt to hop are sequentially chosen at
random from a list that includes all infiltrated particles and all
particles at the source. Thus, there is no preferential choice of
particles at the front or at the source for the first hop attempts.
This brings to the model an additional randomization factor to
that of the choice of the hop directions.

(@)

B. Continuous limit

Let p(7,t) be the particle density at position 7 at time ¢,
given in number of particles per lattice site. Here we derive an
equation for its evolution in the continuous limit.

For simplicity, consider the one-dimensional case shown
in Figs. 2(a) and 2(b). The density at position x changes from
time ¢t — T to time ¢ as the master equation
plx,t)—px,t—1) = %p(x —a,t —1)[1 —px,t —1)]

+ipx4at—1)l—plx,t —1)]
— 30t = Ol = px —a,t = 1)]
— 3ot = D[l = plx +a,1 —1)].

3)
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In the right-hand size of Eq. (3), the first and second terms
account for the hops from neighboring sites to the position
x, which are possible only if this site is not occupied; the
third and fourth terms account for the hops from site x to
neighboring sites, which are possible only if those sites are not
occupied. The joint probabilities in Eq. (3) were factorized,
which considers that the densities at neighboring positions are
uncorrelated; this assumption is similar to the independent
cluster approximation which is also applicable for problems
of diffusion, aggregation, and fragmentation, with or without
particle injection [17,18]. This assumption cancels the
crossed terms in the master equation. In the continuous
limit, we consider r‘;—f ~ p(x,t)— p(x,t —t) and

SN [p(x— a1 —T) = 2p(x,1 — 1)+ plx+a,t — )],
which give

ap 3%p
i Do @
where D is given in Eq. (2). This is the one-dimensional
diffusion equation. Generalization of the above arguments to
higher dimensions is straightforward, which leads to

ap 5

oy = DV~<p. 5)
The boundary conditions are p = 1 at the source at all times
and p(7,t = 0) = 0 at all points but the source.

Within the approximations in Eq. (3), the excluded volume
condition of the RWI model does not affect the collective
diffusion coefficient D because the frustrated hop of a particle
in one direction is compensated by the frustration of the hop
of another particle in the opposite direction. However, if the
tracer diffusion coefficient is measured (i.e., the coefficient
characterizing the motion of a particular particle), then it is
expected to be smaller than D due to the frustration of many
hop attempts.

This continuous limit is expected to be valid only for ¢ >
7, where average particle displacements are much larger than
the lattice constant a. In this case, the density p(7, t) slowly
varies in time and we can compare RWI data with the solution
of the diffusion equation if available.

C. Basic quantities

In RWI, we denote as I(¢) the number of infiltrated sites
of the lattice at time f; this quantity is hereafter termed
the infiltration. In the continuous description, / is obtained
by integration of the density p through the available space.
In one, two, and three dimensions, / respectively represents
the total length, area, and volume infiltrated by the random
walkers. The infiltration is expected to scale as a power law
in time with exponent n, similarly to the fluid infiltration in
Eq. (1) (a discussion on the relation between RWI and fluid
infiltration is postponed to Sec. IV).

We also calculate the root-mean-square (rms) distance of
the infiltrated particles from the source, spms(?); see illustra-
tion in Fig. 1(a). In RWI, a large fraction of the infiltrated
particles move in regions with low density, so that sgys is
expected to follow the same scaling law of free random walks
in that medium:

srms ~ 1170V (6)
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FIG. 3. [(a) and (b)] Sections of size 100« of an infiltrated square
lattice with a line source at the left in the two indicated times. [(c) and
(d)] The corresponding concentration distributions calculated numer-
ically (green squares) and analytically (blue curves).

where Dy is the random-walk dimension. In Euclidean lat-
tices, we have normal diffusion with Dy = 2, while in fractal
lattices we expect subdiffusion with Dy > 2.

If the medium has a fractal dimension Dy (Dr = d in the
cases of Euclidean lattices in d dimensions), then we define a
characteristic infiltrated size S by the equation

I =SPr. (7)

S may be interpreted as a characteristic radius of a region
in which all infiltrated particles are symmetrically located
around the source with no empty site between them. In fluid
infiltration, the radius of the infiltrated region has the same
scaling as S (Sec. IV). Figures 1(a) and 1(b) illustrate this def-
inition in effectively one-dimensional infiltration problems.
The quantities calculated here are presented in terms of the
dimensionless time
T ®)

This is the average number of hop attempts of a particle that
was located at the infiltration boundary at t = 0.

1l
Q=

D. Example: RWI in a square lattice with a line source

Figures 3(a) and 3(b) show configurations of an infil-
trated square lattice at 7 = 1000 and 7' = 4000, respectively,
considering a line source at x = 0. Figures 3(c) and 3(d)
show the corresponding density distributions. In each time,
the numerical data are averages over 20 configurations and
source length 1000a. Figures 3(c) and 3(d) also show the
exact solution of Eq. (4), p(x,t) =1 — erf[x/(Z«/D_t)], where
erf (u) denotes the error function of u.

There is a very good agreement between RWI data and
the solution of the diffusion equation in this case. This was
noted in Ref. [14]. Discrepancies between the RWI and the
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continuous model are observed only at positions x larger than
/Dt by a factor of order 10 [not shown in Figs. 3(c) and 3(d)],
since the diffusion equation fails to represent the RWI in these
regions (e.g., the infinitely long empty region in RWI due to
the finite particle velocity).

The infiltration in this geometry scales as I ~ T''/? and
Eq. (7) implies that the characteristic infiltration length also
scales as S ~ T''/2. This is the same scaling observed for the
rms distance sgys (7).

E. Interpretation and relation with other models

RWI may represent the diffusive motion of a chemical
species in a fluid that fills the pores of a medium in contact
with a reservoir (the source) of that species. This interpreta-
tion suggests the application of the model to infiltration of
solutes in rocks or soils in cases where advective transport
is negligible. A particle in this model is not necessarily equiv-
alent to a solute molecule but may represent a large number of
molecules that entered the medium; in this case, the presence
or absence of a particle represents a local solute concentration
above or below a given threshold, respectively. Consider, for
instance, the application of this molecular interpretation to
the configuration of Fig. 2(b), in which particle hops from
the source are not allowed due to excluded volume effect. It
represents a case in which the region of the medium near the
reservoir has a density of molecules approximately equal to
that of the reservoir. In length scales smaller than the size of
a lattice site, molecular diffusion has not ceased inside and
outside the medium, but the net flux from the source to the
medium is zero.

The infiltrated region has many empty sites (vacancies)
in the neighborhood of the infiltrated particles, as illustrated
in Figs. 3(a) and 3(b) for the case of a line source in two
dimensions. The random walks of particles are equivalent
to random walks of these vacancies, with excluded volume
conditions and with the same diffusion coefficient D. When
a vacancy reaches the source, it is immediately annihilated;
this corresponds to the instantaneous refilling of the source
in RWI. Thus, from the point of view of vacancy diffusion,
we have a classical trapping problem [19,20]. Letting o =
1 — p be the density of vacancies, it also obeys the diffusion
equation (5); however, the boundary condition is o = O at the
source.

The one-dimensional version of RWI [Fig. 2(a)] is equiv-
alent to the trapping of the vacancies by a static trap at the
origin. This model was originally proposed by Weiss, Kopel-
man, and Havlin [21]. The increase of the infiltration as ¢!/2,
which is observed in RWI, is equivalent to the trapping rate
decay as t~!/2. Despite the apparent simplicity, that trapping
model has some nontrivial features; for instance, the distance
from the origin of the nearest vacancy increases anomalously
as t!/4[21]. Similar anomalies were recently observed in other
trapping models [22].

The square lattice version of RWI [Fig. 2(c)] was first
proposed by Sapoval, Rosso, and Gouyet [14] for investi-
gating the properties of the interface of a conducting cluster
formed by the particles connected to the source. Subsequently,
it motivated the proposal of the gradient percolation problem
[23,24]. In a recent work, RWI in deterministic fractals was

studied, also with the sources at flat boundaries [15], which
helped to understand scaling properties of infiltration models.

III. RWI WITH LOCALIZED SOURCES

Here we consider the RWI models defined in Sec. IT A
with a point source localized in the neighborhood of an
impenetrable boundary, as illustrated in Figs. 4(a) (d = 2) and
4(b) (d = 3). This geometry is chosen to represent a large
porous medium with a narrow hole at a surface which is in
contact with a reservoir of the solute. The same geometry
is also considered in simulations of RWI in determininistic
fractals embedded in two- and three-dimensional lattices.

For simplicity, solutions of the diffusion equation (5) will
be obtained with the source in media that are infinitely large in
all directions (i.e., without the impenetrable boundary). This
is expected to provide the same time scaling of the relevant
quantities.

A. Infiltration in homogeneous media
1. Two dimensions

In this case, an equivalent diffusion model considers an
infinite line source of radius a and constant density p(r <
a,t > 0) = 1 placed in an infinite three-dimensional domain
initially with p(r > a,t = 0) = 0. The subsequent change in
the density in a plain of fixed z is governed by the diffusion
equation

ap D8(3p
—_— T — — r—

= t)=0.
ot r or Br)’ r>a, plr = o00,1) ©)

Reference [25] (pp. 87 and 88) provides a closed solution
for this problem, from which we can calculate the amount
fluxed into the region r > a per unit area and time, F =
—D(g—f ), Assuming for convenience that D = 1/4 and a =
1 [which leads to T = ¢ in Eq. (8)], the solution for large times
is

1 1 1
2| InT =2y (InT —2y)?

l—vy
(lnT—2y)2"'}’
(10)

where y = 0.57722 is Euler’s constant and 7 is defined in
Eq. (8). From this we can calculate the infiltration through a
simple integration in time; this is denoted as Ipg to stress that
it results from the solution of a diffusion equation. Integrating
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FIG. 4. Initial condition of RWI with a point source (red circle
and sphere) and an impenetrable boundary at x = 0 (blue) in (a) two
and (b) three dimensions.
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FIG. 5. RWI from a point source in two dimensions: (a) In-
filtration versus 7/InT (red squares) and a linear fit of the data
(dashed blue line); (b) rms distance from the source versus 772 (blue
triangles) and a linear fit of the data (dashed green line) whose slope
is 0.499. The inset in (a) compares results in two configurations (blue
line and orange squares).

the first bracketed term on the right-hand side of Eq. (10), the
infiltration in the half plane x > 0 [as in the RWI geometry of
Fig. 4(a)] is, to leading order,

i par =TT 11
DE(I)—ﬂfO —Em- (11)

We performed simulations of RWI in square lattices of
lateral size L = 2000 with a point source in the middle of a
borderupto 7 = 2 x 10*, which led to the injection of more
than 3 x 10° particles. The number of configurations used to
calculate I and sgys was 103 (i.e., this is the number of times
in which particles were injected in an empty lattice).

Figure 5(a) shows I (the number of infiltrated lattice sites)
as a function of 7/In T. The inset of Fig. 5(a) shows that the
data obtained in two different configurations are very close
to each other. This means that the accuracy of the averaged
data is very high, so that the standard deviations in the main
plot are much smaller than the size of the data points. The
excellent linear fit in that plot confirms that / has the same
logarithmic corrected time scaling predicted by the continuous
model [Eq. (11)]. Figure 5(b) shows a bilogarithmic plot of
srus as a function of 7', which confirms the diffusive increase
of that average displacement; the accuracy was similar to that
of 1.

The characteristic length of the infiltration [Eq. (7)] scales
as S~ (T/In T)'/2. Thus, it is smaller than the rms distance
srMs due to the logarithmic correction.

2. Three dimensions

In this case, the equivalent diffusion model has a
spherical point source of radius a and constant density
p(r < a,t >0)=1,placed in a infinite domain initially with
po(r > a,t = 0) = 0. The subsequent change in the potential
in r > a is governed by the diffusion equation

ap D8<28,0
_ 22

=29 8r>’ r>a, u(r—>o00,t)=0. (12)

The analytical solution (Ref. [25], pp. 102 and 103) is

= gerfc<r_“> (13)
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FIG. 6. Results for infiltration from a point source in three di-
mensions: (a) Infiltration versus 7' (orange squares) and a linear fit
of the data (dashed green line); (b) rms distance from the source
versus 7' (green triangles) and a linear fit of the data (dashed blue
line) whose slope is 0.500.

The amount fluxed into the region r > a per unit area and time
is given as

ou D D
or),_, a t

From this we can calculate the infiltration Ipg through a simple
integration in time. Considering D = 1/6 and a = 1 [which
leads to T =t in Eq. (8)] and integrating only in the region
x 2> 0 [as in Fig. 4(b)], we obtain

t
4
Iog =2rr/ Far=Tr 4+ T (15)
0

3 VT

Our simulations of RWI were run up to 7 =2 x 10* in a
lattice with lateral size L = 700; I and sgryms were averaged
over 10° configurations, which also provides these quantities
with high accuracy. Approximately 10* particles were injected
in each configuration.

Figure 6(a) shows [ as a function of T'; the linear fit
confirms that it has the same scaling as Ipg in Eq. (15). The
characteristic length of the infiltration [Eq. (7)] consequently
scales as § ~ T'/3. Figure 6(b) shows a bilogarithmic plot of
srMs as a function of 7', which confirms the diffusive increase
of that average distance. In this case, we also observe that
the characteristic length S defined from the infiltrated volume
does not have the diffusive scaling of the rms distance from
the source.

B. Scaling approach for the infiltration

Here we explore the observation of Sec. IIE that RWI
is equivalent to the problem of trapping of vacancies at the
source. It implies that the infiltration rate % is equal to the
probability Pyapping () of a vacancy to be trapped at the source
at time ¢. This is the probability that the first passage of
the vacancy at the source occurs at time ¢. For long times,
it is independent of the source position, but it is strongly
dependent on the spatial dimension [20,26].

I is obtained by the integration of the first passage proba-
bility. Since this probability can be obtained as a property of
a single random walk, 7 is equal to the sum of this probability
over the hops of a single walker up to time . When the walker
hops to a site for the first time, the number of distinct visited

sites increases by one unit; thus, /() equals the number of
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FIG. 7. (a) First two stages of construction of the carpet with b =
3 and m = 1, with the impenetrable solid in blue. (b) Initial condition
for RWI in a carpet with a point source (red) at an outer boundary.
(c) Initial condition for RWI in a sponge with a point source (red) at
an outer boundary.

distinct sites visited by the walker in the medium up to time ¢,
which is denoted as Np(t) [20,26]. The infiltration exponent
n in Eq. (1) is the same exponent of the time scaling of
the number of distinct sites visited by a random walker; an
amplitude relating / and ¢", which is omitted in Eq. (1), may
depend on the boundary conditions.

In two dimensions, the dominant term in the scaling of the
number of distinct sites visited by a random walker is Np ~
t/Int [26]; this agrees with the simulation result for the RWI
in Sec. IIT A 1. In three dimensions, the dominant term is Np ~
t [26], which also agrees with our simulation results for RWI
(Sec. IIT A 2).

These results establish a relation between RWI and recur-
rence properties of lattice random walks. Moreover, since the
time evolution of the infiltration in RWI may also be predicted
by the diffusion equation with constant concentration at the
source, our approach also connects the solution of this equa-
tion with the recurrence properties of random walks.

C. Infiltration in Sierpinski carpets

Here we study RWI infiltration with localized sources in
fractals embedded in two dimensions combining the previous
scaling approach, numerical results of RWI, and results of
numerical integration of the diffusion equation.

The iterative construction of a Sierpinski carpet is illus-
trated in Fig. 7(a). We denote as b the scaling factor of the
carpet and m the number of subsquares removed in the first
iteration of the construction. At each stage of construction,
each subsquare is replaced by the generator (stage n = 1).
The removed subsquares represent the impenetrable (solid)
part of the medium and the empty subsquares form the
porous medium. The length of an outer border of the carpet

(a) oy (b) o g
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T 1/T027

FIG. 8. (a) Time evolution of the infiltration from a point source
in the SC with b = 3 and m = 1. The dashed line has the theoretically
predicted slope 0.903. (b) Scaled infiltration as a function of 1/¢%%
for RWI in the Sierpinski carpet. The solid line is a linear fit of the
data for 5 x 10> < T < 10°.

after n iterations is L = b". The fractal is obtained after an
infinite number of iterations, with fractal dimension Dr =
In (b* — m)/Inb. The initial condition for RWI in a carpet
with a point source is shown in Fig. 7(b).

The number of distinct sites visited by a random walker in
this fractal is expected to scale as

D
Np ~ 1272 D= 2D—F, (16)
w

where Dy is the spectral (or fracton) dimension. Equation (16)
is known as Alexander-Orbach (AO) relation [19,27]; it is
based on the assumption of homogeneous distribution of the
random-walker position within the accessible fractal volume
at time ¢. However, the AO relation has been criticized in the
past due to deviations observed in some numerical results; for
a discussion, see Ref. [19], Ch. 7, and Ref. [28].

For RWI, Egs. (1) and (16) give the infiltration exponent
n = Dg/Dy. In the carpet of Fig. 7(a), Dr =In8/In3 =
1.8928.... Reference [29] conjectured that the exact value
of the random-walk dimension in this carpet is Dy = 2 +
In (10/9)/1n3 = 2.0959...; this value agrees with the nu-
merical estimates 2.101(22) [30] and 2.106(16) [31]. Us-
ing the exact Dr and the conjectured Dy, we obtain n =
0.903....

We performed simulations of RWI in the seventh stage of
construction of this carpet up to T = 10°. Averages were also
taken over 10° configurations, with more than 10* injected
particles in each one; thus, the accuracy of the data is similar
to that in Fig. 5.

In Fig. 8(a), we show a bilogarithmic plot of I versus T
in this fractal. The slope at long times is still slightly smaller
than the proposed value of n. This is consistent with previous
calculations of Np, in the carpets, which suggested corrections
to the AO relation [32,33]. In Fig. 8(b), we show the ratio
1/T%9% as a function of 1/T°27; the variable in the abscissa
is the one that provides the best linear fit of the data in the
range 5 x 10> < T < 10° (among other variables in the form
T ~* with positive 1). The convergence to a finite value at long
times confirms that the infiltration scales asymptotically with
the proposed value of n, and the small exponent in the abscissa
of Fig. 8(b) indicates the presence of large subdominant
corrections to the AO relation.
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FIG. 9. Solute diffusion into a third stage Sierpinski carpet with b = 3, m = 1. (a) The concentration contours after 120 000 time steps:
From right to left, p = 0.0.005, 0.01, 0.05, and from 0.1 to 0.9 in intervals of 0.1. Solid squares and pores are not distinguished by different
colors here. (b) The local time exponent n = d In Ipg /d In t; the dashed line has the theoretically predicted value 0.903.

For comparing different methods of solution for the RWI
problem, we also solved Eq. (5) numerically. We use a time
explicit finite-difference control volume solution for the solute
infiltration from a point source (o = 1) into the stage n = 3 of
the same Sierpinski carpet [Fig. 7(a)], with diffusivity D = 1
at the empty subsquares and with the solid squares repre-
senting areas of very low diffusivity D < 1. The numerical
solutions, similarly to that outlined in Ref. [34], involves a
3% x 3% mesh of square node-centered control volumes of side
length A = 1/3% and, to retain stability of the explicit scheme,
atime step At = 0.125 x AZ.

Figure 9(a) shows some concentration contours after
120000 time steps. The measure over time of this simula-
tion is the solute content Ipg, see Eq. (11), from which we
obtain the local time exponent n = d Inlpg/d Int. The key
observation in Fig. 9(b) is that this exponent approaches,
in long times, a constant value that is within fractions of a
percentage of the expected value of ~0.903. Consequently,
this solution significantly improves that of direct simulation
of RWI (Fig. 8). More importantly, it confirms with very good
accuracy that the AO relation is valid in a Sierpinski carpet,
advancing over the current and previous random-walk-based
methods.

The oscillations observed in Fig. 9(b) at long times re-
semble the log-periodic oscillations shown in Refs. [35,36] in
models of random walks in regular fractals. Some methods
were developed to treat data with this type of oscillation
[35,37], which may be helpful whenever accurate exponent
estimates are not available.

In Ref. [15], a scaling approach was used to relate the infil-
tration exponent n [Eq. (1)] and the random-walk dimension
Dy in cases where the source was one of the outer bound-
aries of the fractal. For a border with dimension Dg, it was
shown that

Dr — Dp
n=-——.

Dy A7)

This result may be extended to infiltration from a point source
in a carpet because, in this case, Dy = 0, which gives n =
Dp /Dy .

D. RWI in Menger sponges

A Menger sponge is iteratively constructed here by ex-
tending to three dimensions the procedure used to construct
the SCs: first, a cube is divided in b* subcubes and m sym-
metrically distributed subcubes are removed, which forms the
generator; each one of the subcubes is then divided following
the same rule, and this process is repeated indefinitely. The
fractal dimension of the sponge is Dy = In (b* — m)/ In b.

Here we study RWI in the sponge with b = 5 and m = 27.
The initial condition for RWI with a point source in this
sponge is illustrated in Fig. 7(c). The fractal dimension is
Dr =1In98/In5 & 2.84880 and the estimate of the random-
walk dimension is Dy = 2.09(6) [15].

These values imply Dr > Dy . The AO relation [Eq. (16)]
is expected to be valid only when random walks are recurrent
in a given fractal, but this is not the case here. Instead, here
the accessible region for the infiltrated particles has a radius
~sgms and a volume of order Sglf/ls ~ tPr/Dw 5 ¢ e, this
region is much larger than the number of sites that the walker
can visit within a time ¢. This means that only a small fraction
of the accessible sites is visited, and this fraction tends to
zero asymptotically. In such cases, we expect that Np scales
linearly in time, and so / is also linear in time.

We simulated RWI in the fourth stage of construction of
the sponge up to 7 =2 x 10*. Averages were taken over
10° configurations and more than 1.5 x 10* particles were
injected in each configuration. Figure 10 shows that the in-
filtrated volume [ increases linearly in time in all the sim-
ulated time interval, which confirms the above prediction.
Note that the same scaling was obtained in a homogeneous
three-dimensional medium with a point source, as shown in
Sec. ITA 2.
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FIG. 10. Infiltrated volume as a function of time for RWI in the
Menger sponge. The solid line is a linear fit of the data.

It is interesting to observe that the infiltration in this fractal
is normal, although the diffusion of a single particle is clearly
anomalous (Dy > 2). The same observation is applicable to
other fractals where random walks are not recurrent, i.e.,
Dy < Dp. Consequently, in an infiltration experiment on
such a fractal with a localized source, the measurements of
infiltrated mass or volume will not show any anomaly, but the
same linear increase observed in a homogeneous medium. In
order to observe the anomaly, it is necessary to measure the
diffusion lengths of the infiltrated molecules (or of other tracer
particles).

RWI in the sponge also shows a failure of the scaling
relation (17), since that relation implies the AO relation for
Dgp = 0. Indeed, Eq. (17) was obtained in Ref. [15] under
the assumption that a finite fraction of a region of lateral
size spvms Was filled with infiltrated particles. This is actually
the case in two-dimensional systems with linear sources or
three-dimensional systems with planar sources. However, in a
fractal with large D, a point source is too small to fill a finite
fraction of a region with that size.

IV. RELATION WITH FLUID INFILTRATION

Here we consider infiltration of a fluid with a constant
pressure head 2 = 1 at a fixed boundary, which is the source of
the fluid molecules, and assume that the head vanishes at the
infiltration front. In the region limited by these boundaries, the
slowly varying pressure head / obeys the Laplace equation

VZh =0, (18)
and the velocity of the infiltration front obeys the Darcy law
7= —KVh, (19)

where K is the hydraulic conductivity. For simplicity, we
consider K = 1 in a homogeneous medium.

This model was numerically studied in several carpets with
different boundaries in Refs. [34] and [38]. The estimates of
the infiltration exponent n were in excellent agreement with

estimates from the RWI model and with the scaling relation
(17) [15]. Experiments with infiltration in finite stages of
construction of some carpets also showed good agreement
with those estimates [11].

Here we extend this comparison to infiltration with local-
ized sources.

A. Two dimensions and localized source

We consider the problem in a two-dimensional cylindrical
geometry, where a small source is located at » = a. Equation
(18) becomes

d oh
_<r_)=o, ha)=1, hR)=0,  (20)

ar \ dr
which gives the head profile
Inr —InR
=— 7 a<r<Rk (21)
Ina —InR
Equation (19) for the moving front becomes
oh dR
— <—> = — (22)
or),_p dt
and substitution of Eq. (21) gives
dR 1
= R(0) =a. (23)

dt ~ R(na—InR)
The solution for R(t) is

R2 a2 _ RZ
S (nR —loga)+ —1. (24)

In the limit of R >> a, i.e., when the front displacement is
much larger than the radius of the source, we have

NEAL 25
R~2(— ) .
<ln t ) (23)
The infiltrated area in this limit is
1
A~dr| — ). 26
d <ln t ) (26)

This is the same linear increase depleted by a logarith-
mic correction that we observed in RWI (Sec. III A 1). The
front radius R is equivalent to the length S defined for RWI
[Eqg. (7)], and R may be directly measured in an experiment.

B. Three dimensions and localized source

The model can be extended to three dimensions, where
Eq. (18) for the head leads to

9 <r2%) =0, ha)=1, h{R) =0 (27)

ar ar
with the same moving front condition as in the cylindrical case
oh dR
— — = —. (28)
or),_p dt
The solution of Eq. (27)ina < r < Ris
1 aR a
h=-—- — . (29)
rR—a R-—a
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FIG. 11. Area filled with fluid as a function of time in the carpet with b = 3 and m = 1. (a) The infiltration front at the point the fluid
reaches the horizontal boundary. (b) The log-log plot of the infiltration versus time.

Substituting Eq. (29) in Eq. (28), we obtain the equation for
the movement of the front as

dR_ a

— =———, R0 =a. 30
dt R?2 —aR ) =a (30)
The solution for R(t) is
RP R &
— — — 4+ — =t 31
3a 2 6 (1)

In the limit where the front displacement is much larger than
the source radius, R > a, we have

R~ (3ar)'? (32)
and the infiltrated volume is
V = 4mat. (33)

Here the fluid infiltration shows the same linear time
increase of the RWI in three-dimensional homogeneous me-
dia. Note that the radius R, which may be experimentally
measured, has a subdiffusive scaling, which contrasts the rms
displacement of RWI; again, R is analogous to the length S
defined for RWI.

C. Extension to fractal media

We simulated the fluid infiltration model in the third stage
of construction of the carpet with b = 3 and m = 1 and with a
point source in an external boundary using the same control
volume finite-difference methods of Ref. [34]. Essentially,
at each time step, this involves the numerical solution of
V(KVh) =0, with K =1 in the spaces and K <« 1 in the
obstacles. In the current simulations, we use a 3° x 3° mesh of
square node centered control volumes of size A = 1/3° and a
time step of Ar = 0.005; as fully explained in Ref. [4], the
accuracy of the calculation is independent of the time step
size.

In Fig. 11(a), we show the infiltration front at the time in
which the fluid reaches the horizontal domain boundaries. In

Fig. 11(b), we show the time evolution of the infiltrated area.
This area scales with an exponent close to the theoretical value
0.903, which is also in agreement with that of RWI in the same
carpet (Sec. ITII C).

In this simulation, the dimension of the gate a for the
infiltration is 1/9 the size of the smallest obstacle dimension
in the carpet; we would expect values closer to the theory as
the relative size of the gate is reduced. In fact, simulations
on the geometry in Fig. 11 with coarse grids and thus wider
gates show a quadratic dependence between the exponent n
and gate size; in the continuous limit (¢ — 0), this quadratic
fit suggests an exponent n = 0.8994, which differs less than
0.5% from the theoretical value.

V. CONCLUSION

We studied a random-walk infiltration model with small
sources at the boundaries of homogeneous and fractal me-
dia. The model represents the penetration of a solute from
a reservoir in contact with a porous medium by a narrow
hole, viz. the source. A scaling approach proposes that the
number of infiltrated particles increases in time as the number
of distinct sites visited by a single random walker in the
same medium, Np(¢). This is confirmed by numerical results
obtained by direct simulations of the lattice model and by
integration of the diffusion equation that represents the model
in the continuous limit. In a Sierpinski carpet, the numerical
integration of the diffusion equation provides an exponent for
the time evolution of the infiltration which is very close to the
value of the Alexander-Orbach conjecture for Np, improving
previous results obtained from random-walk models. In a
Menger sponge where the fractal dimension is larger than
the random-walk dimension, the infiltrated volume increases
linearly in time, similarly to a homogeneous medium.

We also studied a fluid infiltration model in the same geom-
etry, with a constant pressure head at the source and with the
front displacement driven by the local gradient of that head.
Exact and numerical solutions in two and three dimensions
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FIG. 12. Despite the different natures of the conservation of the
RWI, diffusion equation, and fluid infiltration processes, they all have
identical scaling, Irwi ~ Ipg ~ Ifuia ~ ".

and in Sierpinski carpets show that the fluid infiltration model
is in the same universality class of the random-walk infiltra-
tion. The main difference between these models is the sharp
front of fluid infiltration, while in RWI the front is diffuse; in
Fig. 12, these differences are highlighted, as well as the differ-
ences between the random-walk infiltration in a lattice and the

solution of the corresponding diffusion equation. However,
in the two models, the evolution of the fronts are driven
by the gradient of two analogous fields, which are the fluid
head and the particle concentration. Note that the equivalence
between the two problems is observed in cases where random
walks are recurrent (carpets or two-dimensional media) and
not recurrent (three-dimensional homogeneous media). The
scaling approach then sets a relation between the different
infiltration models from localized sources and the recurrence
properties of random walks.

In fractal media where random walks are not recurrent,
we show the failure of a previous exponent relation for
infiltration from flat boundaries [15]. This is the case of the
Menger sponge studied here and of other fractals embedded
in three dimensions with the fractal dimension exceeding
the random-walk dimension (typically fractals with large di-
mensions and weak subdiffusion). In these cases, the normal
infiltration scaling of three-dimensional systems, I ~ ¢, is
obtained, which hides the fractality of the infiltrated medium.

As a final note, we recall that normal diffusion was already
observed in several fractals, i.e., Dy = 2 [39-41]. However,
infiltration may be anomalous in those systems because the
exponent n also depends on the dimension of the medium and
on the dimension of the source, as shown here for the case
of small localized sources and in previous works for extended
sources.
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