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Effects of competition between random sequential nucleation of point-sized seeds
and island growth by adsorption of finite-sized grains
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We study random sequential adsorption of particles from a pool onto a one-dimensional substrate following
ballistic deposition rules with separate nucleation and growth processes occurring simultaneously. Nucleation
describes the formation of point-sized seeds, and after a seed is sown, it acts as an attractor and grows in size
by the addition of grains of a fixed size. At each time step either an already-nucleated seed can increase in
size, or a new seed may be nucleated. We incorporate a parameter m to describe the relative rates of growth to
nucleation. We solve the model analytically to obtain a gap size distribution function and a general expression for
the jamming coverage as a function of m. We show that the jamming coverage θ (m) reaches its maximum value
of θ (m) = 1 in the limit m → ∞ following a power-law θ (∞) − θ (m) ∼ Km−1/2 for some constant K . We also
perform an extensive Monte Carlo simulation and find good agreement between analytic and numerical results.
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I. INTRODUCTION

The kinetics of a monolayer growth by surface adsorption,
deposition of particles onto solid substrates, has been studied
extensively over past decades [1–5]. One of the reasons for
this is that it finds applications that cover many topics in
physics, chemistry, biology, and other branches of science
and technology. There are numerous examples, such as the
adsorption of colloids, bacteria, protein or latex particles
on solid surfaces, macromolecules on biological membranes,
growth of atomic islands of metals or semiconductors, etc.,
which are of interest in science and technology [6–12]. The
development of a theoretical understanding of the kinetics of
adsorption poses many fundamental challenges owing to its
nonequilibrium nature which means that the well-developed
formalism of equilibrium statistical physics cannot be applied.
One of the litmus tests of the degree of its complexity is
that one can hardly make any progress analytically in more
than one dimension; most analytical work remains confined
to one spatial dimension [2,13,14]. The simplest case of
the random sequential adsorption (RSA) process was that
considered by Renyi in 1958 [15–17], which is known as the
“car parking” problem, in which one-dimensional cars of a
uniform length σ are parked sequentially at random available
positions in a car park of length L � σ . After a sufficiently
long time, all remaining gaps are shorter than σ , and no further
adsorption is possible at which point the expected coverage
is given by Renyi’s constant θ∞ = 0.747 5979 · · · . Typically,
RSA is considered as irreversible, and particle-particle in-
teractions are accounted for by not allowing overlaps. This
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minimalist model captures many generic features of deposi-
tion phenomena.

Many variants of the RSA model have devised suits of vari-
ous special conditions occurring in real systems: for example,
to model protein adsorption onto DNA, the case of binding
with overlaps [18] and reversible binding [19] have been
analyzed. In 1992, Talbot and Ricci [20] proposed a ballistic
deposition model to take into account strong self-attraction
effects. They assumed that if a particle falls on a vacant part
of the substrate it is adsorbed (as in the standard RSA model)
and, if it falls on an already adsorbed particle, then it is
adsorbed only if it can reach the substrate following a steepest
decent path; otherwise the deposition attempt is rejected [21].

The attempt is rejected only when it fails to reach the
surface. In 1995, Pagonabarraga et al. proposed yet another
variant in which a particle can reach the surface along an
inclined direction [22]. Viot et al. [23] considered a gener-
alized ballistic deposition model in which identical particles
land and roll either joining an existing cluster or adsorbing
to the substrate and become a new nuclei. Whereas their
theoretical analysis is similar to what we present below since
our model differs from theirs, our results are also different.
The deposition of a competitive binary mixture of finite-sized
particles has been considered [24,25]. The RSA of the mixture
of particles of different uniform sizes has been studied [26,27]
as well as a model of Boyer et al. [28] in which adsorbed
(rectangular) particles can change size upon adsorption by
“toppling” from their short to long edges. The RSA model
in the presence of precursor-layer diffusion and desorption
has also been studied where accelerated RSA and growth and
coalescence has been considered as a special case [29,30]. An
extension to a two-dimensional RSA was simulated by Purvis
et al. [31]. Recently, a variant of RSA to the adsorption of
particles modeling mobile patches has been proposed moti-
vated by the coverage of oil droplets by DNA-functionalized
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colloidal particles [32]. The shapes of the depositing particles
have also been considered in [33] and Subashiev and Luryi
[34] have studied the RSA of shrinking or expanding particles.

In this article, we propose a model that generalizes RSA to
describe two processes: (i) the nucleation of point-sized seeds
and (ii) the growth by the addition fixed-sized grains. Our aim
remains that of understanding the kinetics through which a
monolayer is formed. However, the distinction between the
rates of nucleation and growth may lead to dynamics which
differ significantly from Renyi’s classic car parking problem.
In particular, we assume that in each time interval either a seed
is sown or an already-sown seed grows. We include a tuning
parameter m, which regulates the rate of growth of existing
domains relative to the nucleation of new sites.

We solve the model analytically to find an approximate
expression for the coverage and for the jamming limit as a
function of m. For large values of m, island growth dominates
through the frequent ballistic deposition of grains; whereas
for small m, growth occurs at a relatively small rate, and
the nucleation of fresh seeds is dominant. We also give an
algorithm to simulate the model numerically. We find excel-
lent agreement between our analytical and numerical results
revealing that the proposed integrodifferential equation of the
model accurately describes the behavior of the algorithm.
We show that the jamming coverage reaches the maximum
jamming coverage θ (m) → 1 in the limit m → ∞ following
a power-law θ (m) ∼ 1 − Km−1/2 for some constant K .

The paper is organized as follows: In Sec. II, the model is
introduced, and the algorithm for simulating it is described.
Section III contains a theoretical approach to solve the model
to find the gap size distribution function and the behavior in
the jamming limit. Numerical results are presented in Sec. IV
alongside a comparison with the analytical solutions. The
results are discussed, and conclusions drawn in Sec. V.

II. DEFINITION OF THE MODEL

We introduce a new class of RSA which consists of two
processes: first, nucleation—in which a point-sized seed is
deposited in a gap on a substrate, and subsequently, growth—
through which the island domains grow by the deposition of
a grain of a positive size. Only one such event can occur
in each time interval. The nucleation step is identical to
classic RSA in that it occurs randomly at any point in a gap
with equal probability. The deviation from RSA is that the
seeds have zero size. Growth occurs through the deposition
of domains of finite size σ > 0 as in RSA, although these
are only deposited ballistically—so that they are adjacent to
an existing domain (whereas in RSA, deposition is typically
at a randomly determined location in a gap). Any attempt to
deposit a seed or a grain on an existing island is ignored.

The islands thus have sizes which increase from zero (for
a newly nucleated domain) in steps of σ with the only upper
bound being the size of the substrate simulated. The length
of a gap is defined by the difference in locations of its ends,
whether these are a seed, a large island, or the end of the
domain.

The only quantity we have yet to specify is the relative fre-
quency of growth (deposition of a σ -sized block) to nucleation
(seed deposition). We denote this my m so that when m > 1
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FIG. 1. Schematic of the processes occurring in our model on
the global scale; random sequential nucleation of seeds is shown on
the right, and island growth deposition of a grain of positive size is
shown in the center.

growth dominates and for m < 1 nucleation occurs more fre-
quently. These processes are illustrated in Figs. 1 and 2. The
process may be simpler to understand by giving the algorithm
used in our simulations. We start with a single empty substrate
of length L � 1, that is, a single gap. Commentary on the
effect of steps is given in italic text.

(i) Generate a random number R1 from a uniform distribu-
tion on the interval (0, L).

(ii) If R1 falls in a gap, let X be the location of the left-hand
edge of gap, and let Y be the length of the gap. If R1 falls on
an existing island, go to step (iv).
This method of choosing points for deposition means that
larger gaps are chosen preferentially.
The role of R1 is simply to choose a gap in which to deposit a
particle, we next determine what is deposited in the gap, and
where it is deposited.

(iii) Determine whether nucleation or growth occurs:
In place of the gap which actually occupies the interval
(X, X + Y ), consider the gap as being the larger interval
(X − mσ, X + Y + mσ ).
Let R2 be a random variable taken from a uniform distribution
on the interval (X − mσ, X + Y + mσ ).
A gap can be terminated by two seeds, two grains, or a grain
and a seed (or in the two cases x = 0 and x = L, the end of the
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FIG. 2. Illustration of the quantities involved in one deposition
event in our model.
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domain and either a seed or a gap): How a gap is terminated
has no influence on what deposition processes occur in the
gap.

(iiia) If X − mσ < R2 < X then deposit the grain of size
σ in the location (X, X + σ ); the effect of this is to reduce
the gap from the interval (X, X + Y ) to (X + σ, X + Y ). This
constitutes growth of the left island by ballistic deposition of a
grain of size σ .

(iiib) If X < R2 < X + Y , then deposit a seed nucleus
(size zero) at x = R2; the effect of this is to replace the gap
on the interval (X, X + Y ) with two gaps, which are given by
the intervals (X, R2) and (R2, X + Y ). This constitutes random
sequential nucleation of a zero-sized seed.

(iiic) If X + Y < R2 < X + Y + mσ , then deposit a grain
of size σ in the location (X + Y − σ, X + Y ); the effect of this
is to reduce the gap from the interval (X, X + Y ) to (X, X +
Y − σ ). This constitutes growth of the right island by ballistic
deposition of a grain of size σ .
The effect of this is that the probability of nucleation in this
gap is Y/(Y +2mσ ), and the probability of growth in this gap
is 2mσ/(Y +2mσ ) so the relative rate of growth to nucleation
is 2mσ/Y .
The effect of large values of m is to make island growth by
deposition of grains occur at a faster rate relative to nucleation
of fresh seeds; and, conversely, the effect of small m is to make
growth occur at a slower rate, thus favoring nucleation. The
quantity m can be viewed as a relative rate parameter.
The reason we are describing grain deposition as ballistic, is
that we assume the grain, once deposited on the substrate, is
mobile and is attracted to the already-deposited grains, thus
it moves to the closest end point (whether grain or seed) and
stops moving when it comes into contact with a grain or a seed.

(iv) Increase time by one and repeat from (i). It is impor-
tant to increase time even when the attempt at deposition fails
since we are interested in the dynamics of the process and how
it slows at later times.

III. ANALYTICAL APPROACH

A. Description of the mean behavior

To solve the model analytically, we need to appreciate the
fact that the random sequential nucleation of point-sized seeds
is equivalent to binary fragmentation of gaps. Placing a seed
in a gap divides a gap of size x into two smaller gaps, one of
size y and the other of size x − y (with 0 < y < x). In general,
binary fragmentation is described by the equation,

∂c(x, t )

∂t
= −c(x, t )

∫ x

0
F (y, x − y)dy

+ 2
∫ ∞

x
F (x, y − x)c(y, t )dy, (1)

where c(x, t ) denotes the expected number of gaps of length
x at time t . The first term on the right-hand side of (1)
describes the rate at which a particle (gap) of size x is divided
into two particles of size y and x − y, and the second term
describes a particle of size y � x breaking into two smaller
particles of sizes x and y − x [35]. The choice of the kernel
F (x, y) describes the rate at which the particles fragment.
The case F (x, y) = 1 is known as the Yule-Furry process [36]
or a random scission process [37]. The corresponding rate

equation for the random sequential nucleation of point-sized
seeds is therefore,

∂c(x, t )

∂t
= −xc(x, t ) + 2

∫ ∞

x
c(y, t )dy, (2)

where c(x, t ) is the gap size distribution function.
To describe the creation of a gap of size x due to growth

of an island into a gap of size x + σ , we add a term of the
form 2mσc(x + σ, t ). Gaps of size x are also destroyed due
to the growth of islands on both sides, so it is described
by 2mσc(x, t ). Thus, the governing equation for c(x, t ) for
random sequential nucleation and growth is given by the
integrodifferential equation,

∂c(x, t )

∂t
= −xc(x, t ) + 2

∫ ∞

x
c(y, t )dy + 2mσc(x + σ, t )

− 2mσc(x, t ), (for x � σ ), (3)

∂c(x, t )

∂t
= −xc(x, t ) + 2

∫ ∞

x
c(y, t )dy

+ 2mσc(x + σ, t ), (for x < σ ). (4)

Note that each gap is either bordered by a grain or by a seed.
The factor m is added as a tuning parameter that tunes the
strength of attraction for the growth of the grain. This model
describes the expected value of the stochastic algorithm given
in Sec. II. Typically, there will be fluctuations, and the results
of this analysis of the mean behavior will only be obtained by
taking the average over many realizations of the algorithm.

B. Special case

Combining (3) and (4), we obtain

∂c

∂t
= −xc(x, t ) + 2

∫ ∞

x
c(y, t )dy + 2mσc(x + σ, t )

− 2mσc(x, t )H (x − σ ). (5)

In the limit σ → 0+, we obtain

∂c

∂t
= −xc(x, t ) + 2

∫ ∞

x
c(y, t )dy + 2μ

∂c

∂x
, (6)

where μ = mσ 2. We note that this case, where the island
nucleus formally has zero size, is somewhat esoteric; however,
the analytical solution of this case is more straightforward
than the general case, and presenting the solution of this case
motivates the solution of the more general case that we derive
later.

Equation (6) can be solved by use of Laplace transforms
since

c(s, t ) =
∫ ∞

0
c(x, t )e−sxdx, (7)

c(0, t ) = lim
s→∞ sc(s, t ) (8)

imply that (6) can be rewritten as

∂c

∂t
= ∂c

∂s
+ 2

s
[c(0, t ) − c(s, t )] + 2μsc(s, t )

− 2μ lim
ŝ→+∞

ŝ c(̂s, t ). (9)
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If we assume c(s, t ) is a rational polynomial, namely, c(s, t ) =
A(t )/[s + B(t )], then we find

dB

dt
= 1,

1

A

dA

dt
= 2

B
− 2μB, (10)

hence,

B(t ) = t + β, (11)

A(t ) = α(t + β )2e−μt2−2μβt , (12)

where α, β are arbitrary constants.
In the case of σ → 0+, the total coverage θ̃ (t ; m) = 1 −∫ ∞

0 xc(x, t )dx is of course unity in the large time limit (that
is, θ̃ → 1− as t → +∞), but the kinetics by which this limit
is approached are complicated, being given by

1 − θ̃ (t ; m) = 1

L

∫ L

0
xc(x, t )dx

= A(t )

LB(t )2
= αe−μt2−2μβt

L
. (13)

Typically, this decay is extremely rapid (e−μt2
); however, if

μ were small, then an intermediate timescale, where 1 − θ̃ ∼
O(1/t ), could be observed; and if β were large whereas μ

small, then exponential decay might be seen (1 − θ̃ ∼ e−μβt ).
In the case of β = 0, this simplifies a little to B = t, A =
αte−μt2

, and 1 − θ̃ = (α/L)e−μt2
.

The form of the resulting solution of (6),

c(x, t ) = A(t )e−xB(t ) (14)

motivates the use of this formula as an ansatz for the solution
of the more general problem (3) to (4) in which σ > 0
and where we are interested in the solution at O(1) times.
Dimensional analysis (ct ∼ −xc) implies that the gap size
x has the units of inverse time, thus B(t ) should have units
of time so that the argument of the exponential function is
dimensionless. Therefore we assume B(t ) ∼ t , taking β = 0
since we do not expect the gap length distribution to be
exponential at t = 0.

In order to obtain exact solutions for A(t ), we substitute
the ansatz (14) into the rate equation (3) for x > σ , which
(following application of dB/dt = 1) gives the differential
equation,

d ln A

dt
= 2

t
− 2mσ (1 − e−σ t ) (15)

for A(t ), where ln(·) = loge(·) is the natural logarithm (base
e), and hence A(t ) is given by

A(t ) = A0t2 exp[−2mσ t + 2m(1 − e−σ t )]. (16)

C. Solution of the general case at early times

The integrodifferential equation (3) should be solved sub-
ject to the initial data,

c(x, 0) = δ(x − L), with L � 1, (17)

where L is the length of the substrate. If we define moments
of the distribution c(x, t ) by

In(t ) =
∫ ∞

0
xnc(x, t )dx, (18)

then the initial conditions (17) imply

I0(0) = 1, I1(0) = L. (19)

However, given the ansatz (14), we have

I0(t ) = A(t )

B(t )
, I1(t ) = A(t )

B(t )2
, (20)

thus for t = 0 we have B(0) = β and A(0) = β2 giving
I0(0) = β and I1(0) = β2.

This apparent contradiction between the initial conditions
(17) and the ansatz (14) with (16) lies in considering an early
time asymptotic analysis of the system. At early times since
the substrate is almost entirely empty, there are a few gaps,
gaps are typically large, and nucleation dominates growth,
thus we have I0 = O(1) and I1 = O(L). In this early time
regime, we note that the gap shrinkage due to growth σ is
infinitesimally small in comparison with the size of the gaps,
that is, σ � L, and thus we approximate the dynamics of the
system (5) by (6). By integrating, we note that, to leading
order, we have

dI0

dt
= I1 − 2μc(0, t ),

dI1

dt
= −2μI0, (21)

together with (19). Thus, at early times, we have

I0 = c(0, t ) ∼ 1 + Lt, I1 ∼ L − 2μt . (22)

Introducing the rescaling,

τ = Lt, q = sL, (23)

with c(p, 0) = e−Lp and G(q, τ ) = c(p, t ), we rewrite the
governing equation (9),

p
∂c

∂t
− p

∂c

∂ p
= 2(μp2 − 1)c + 2I0(t ) − 2pμc(0, t ), (24)

at leading order, as

q
∂G

∂τ
− q

∂G

∂q
= 2(1 + τ − G), (25)

with G(q, 0) = e−q. This can be solved by the method of
characteristics (giving eu = 1 + τ/q and r = q + τ ) which
gives the solution,

G(q, τ ) = (1 + τ − q) + (q + τ − 1 + e−q−τ )

(
q

q + τ

)2

.

(26)

Inverting the transformations (23), we find

c(s, t ) = Lt2

s + t
+ t2 + 2ts

(t + s)2
+ s2e−Ls−Lt

(s + t )2
, (27)

which implies

c(x, t ) ∼ Lt2e−xt + (2 − xt )te−xt + H (x − L)

× [e−Ltδ(x − L) + te−xt (xt − Lt − 2)]. (28)

042110-4



EFFECTS OF COMPETITION BETWEEN RANDOM … PHYSICAL REVIEW E 99, 042110 (2019)

Here, the leading order term c(x, t ) ∼ Lt2e−xt implies A(t ) ∼
Lt2 for t � 1, so the constant A0 in (16) should be given
by A0 = L. Solving (15) for A(t ) subject to this matching
condition gives

A(t ) = Lt2e−2mσ t+2mσ (1−e−σ t ). (29)

The asymptotic solution of Eq. (3) in the limit L � 1 and
for σ < x < L is therefore,

c(x, t ) = Lt2e2m(1−e−σ t )e−(x+2mσ )t for x � σ, (30)

whereas this has been derived in the formal limit t � 1, it
provides a good approximation for longer times as well. The
above solution implies that we can still recover the solution
of the binary fragmentation process by taking σ = 0 [35]. It
is important to mention that the solution for c(x, t ) alone is
enough to provide us with all the interesting information that
we need.

D. Behaviour of the coverage

One of the most important quantities of interest in the
process of RSA is the coverage, which is defined by

θ̃ (t ; m) = 1 − 1

L

∫ L

0
xc(x, t )dx. (31)

Denoting the units or dimensions of a term by [·], and
considering the terms in Eq. (5), we note that [x] = 1/[t],
which is consistent with the term ext in (28). Furthermore,
since L is the length of the substrate, we have [L] = [x] and
[
∫

xc(x, t )dx] = [x], thus [c] = [x]−1 = [t], which is consis-
tent with the prefactor on the right-hand side of Eq. (30).

Equation (31) describes the fraction of substrate covered
by deposited particles (̃θ being dimensionless). In the classic
car parking case of RSA, only 74.759% of the total substrate
is covered. We now investigate how the ballistic deposition
of particles with random sequential nucleation changes the
jammed state and kinetics of jamming.

In the present case, there is always space for nucleation as
the seeds do not have any width (by definition). Seeds do not
directly contribute to the coverage; however, they influence
the jamming kinetics since the presence of multiple nuclei
within σ of each other prevent the deposition of grains and
reduce the rate of island growth.

In this model, the jamming coverage is the state when
there are no more gaps available for the growth of particles of
size σ . Once this state is achieved, it is no longer necessary
to continue considering the process of nucleation since the
coverage can no longer change.

It is interesting to determine how the kinetics of jamming
differs in this model from that of standard RSA. To find the
jamming coverage, it is more convenient to consider the rate
equation for the coverage rather than the coverage itself. We
differentiate the definition of θ with respect to time t , giving

d θ̃

dt
= − 1

L

∫ ∞

0
x
∂c(x, t )

∂t
dx,

= − 1

L

∫ σ

0
x
∂c(x, t )

∂t
dx − 1

L

∫ ∞

σ

x
∂c(x, t )

∂t
dx. (32)

In the first integral, we substitute the rate equation for x <

σ , namely, (4), and in the last integral, we substitute the rate

equation for x � σ , namely, (3). Thus,

d θ̃

dt
= 2mσ 2

L

∫ ∞

σ

c(x, t )dx. (33)

This equation describes the increase in coverage due to the
growth by adsorption of finite-sized particles, which can only
land in gaps whose size x exceeds the grain length σ , that is,
x � σ . The right-hand side of Eq. (33) bears the dimension of
inverse time as it should. Since θ̃ (t, m)|t=0 = 0, by (14) and
(29), we find

θ̃ (t ; m) = 2m
∫ σ t

0
s exp[2m(1 − e−s) − (2m + 1)s]ds.

(34)

When we discuss the jamming coverage, we take the limit
t → ∞ and so define θ (m) = limt→∞ θ̃ (t ; m), giving

θ (m) = 2m
∫ ∞

0
s exp[2m(1 − e−s) − (2m + 1)s]ds. (35)

Since θ is a dimensionless quantity and, in the limit of large
substrate length L, the only length in the system is σ , thus the
final coverage should be independent of σ—a nontrivial and
interesting result. In Fig. 3(a), we plot the analytical solution
for jamming coverage given by (35) to show how the jamming
coverage θ (m) varies with the strength of attraction m.

To further quantify how the coverage θ depends on m,
we plot ln[θ (∞) − θ (m)] against ln(m) in Fig. 3(b), finding
a straight line. We only find a perfect straight line if we
choose limm→∞ θ (m) = 1, and then the slope is equal to
1/2. By using Laplace’s method [38] in (35), with large m,
the dominant term comes from the neighborhood of s = 0,
and writing u = s

√
m, we obtain the first two terms of the

expansion, which are given by

θ (m) ∼ 2
∫ ∞

0
ue−u2

exp

(
u3 − 3u

3
√

m

)
du, (36)

hence one finds that θ (∞) = 1. Including the next order term,
we obtain θ (m) = 1 − Km−1/2 for all m, where K = √

π/4 ≈
0.4431.

IV. NUMERICAL SIMULATION

Here, we address the questions, such as “what are the
dynamics of the process? and “what is the effect of the
tuning parameter m?” Our goal is to verify and illustrate
the theoretical results through numerical simulations of the
nucleation and growth algorithm to show that the model is
well understood.

The simulations are restricted to a substrate of finite length
L. For sufficiently large L (compared to the grain size, that is,
L � σ ), the effects of finite-size L are negligible. We follow
the algorithmic steps (i)–(iv) given in Sec. II, which are also
illustrated in Fig. 2. The timescale in the simulations is given
by the number of attempts to nucleate a seed or to grow a
grain, regardless of whether the attempt is successful or not.
Using this timescale and expressing all lengths in terms of σ ,
the simulation results can be directly compared to the solution
of the rate equations (3) and (4) and the solution for the
jamming limit (35).
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(a)

(b)

FIG. 3. (a) We show how θ (m) varies with m. (b) We plot
ln[θ (∞) − θ (m)] versus ln[m] and find a perfectly straight line
with a slope almost equal to 1/2 only if we choose θ (∞) = 1,
implying that the jamming coverage θ (m) reaches its maximum
value of θ (m) = 1 following a power-law θ (m) ∼ 1 − Km1/2 for
some constant K .

To test the analytic solution for c(x, t ) of the rate equations
(3) and (4) given by (30), we need to choose a value for m
(e.g., m = 1), perform a simulation until no further island
growth is possible, and then extract the sizes of all gaps from
the simulation at a range of times t . The distribution of gap
sizes can then be constructed.

This histogram data in which height represents the number
of gaps within a given range of gap sizes (say of width 
x)
normalized so that the area under the curve gives the number
of gaps present in the system at time t regardless of their sizes.
Such data are shown in Fig. 4 on a ln-linear scale so that
the extremely small frequency of large gaps remains visible.
Plotting the data at a range of times clearly shows a family
of straight lines with time-dependent gradients and intercepts,
indicating the distribution is exponential in x.

For further verification, in the inset of Fig. 4, we plot
ln[c(x, t )/Lt2 against (x + 2σ )t + 2e−σ t and find that all the
data points at all times collapse onto a single straight line.
This is strong confirmation of the theory of Sec. III, and (30),
in particular. The inset of Fig. 4 confirms that the universal
distribution is exponential.

The coverage in the jamming limit is one of the most
interesting properties of generalized RSA processes. We find
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FIG. 4. Plots of the gap size distribution function c(x, t ) against x
shown on a ln-linear scale using ensemble averaged data for three dif-
ferent times. The inset shows the same data but with ln[c(x, t )/Lt2]
plotted against (x + σ )t + 2e−σ t to show that the data collapse only
a universal line. Here, σ = 10−6.

that the jamming coverage increases with the relative growth
rate m as expected; this is shown in Fig. 5. In the limit
m → ∞, the jamming coverage approaches the maximum
value of θ = 1. Comparing Figs. 5 and 3, we find excellent
agreement between simulation and theory. To determine how
the jamming coverage θ (m) depends on m, we plot ln[θ (∞) −
θ (m)] against ln(m) in the inset of Fig. 5 and find a straight
line. It is noteworthy that the final coverage is described by a
formula as simple as θ = 1 − Km−1/2 for some constant K .

V. DISCUSSION AND CONCLUSIONS

In this article, we have studied the formation of a mono-
layer through the nucleation of point-sized particles and
the subsequent growth by fixed-sized grains. We have as-
sumed that deposited domains or islands act as attractors
for grains (via ballistic deposition) and so increase in size,
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FIG. 5. Plots of the jamming coverage θ (m) against m, clearly
showing that as the strength of attraction (m) increases, the cor-
responding coverage increases sharply to its maximum value with
θ (m) → 1− as m → ∞.
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simultaneously with the nucleation of fresh sites by deposition
at random vacant locations. As well as the size of the grains
through which growth occurs (σ ), we have also incorporated
a parameter m to control the strength of the attraction by
increasing the apparent size of the seed or grain.

From the algorithm, we have derived an integrodifferential
equation which predicts the mean behavior of the stochastic
process. We have solved this model analytically determining
an ansatz for the gap size distribution function (14) and hence
an expression for the jamming coverage θ (m). Remarkably,
an explicit asymptotic approximation (28), for the gap size
distribution in the early timescale can be found using Laplace
transforms. This shows how the δ function initial conditions
(17) evolve to the intermediate dynamics and motivate the
form of the ansatz (14) which explains the behavior of the
system in the approach to jamming. We have performed
extensive Monte Carlo simulations based on an algorithm

for the process and found excellent agreement between the
numerical simulations and our analytical results.

To summarize, we have generalized RSA to include sep-
arate nucleation and growth processes, incorporating a pa-
rameter m, which defines the relative rates of grain growth
to seed nucleation. We have solved the model analytically to
find the gap size distribution function. We have shown that
the jamming coverage increases to complete saturation with
m following a power law. Our results provide insight into the
final coverage and how the morphology of the jamming state
depends on m.
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