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Geometry-induced interface pinning at completely wet walls
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We study complete wetting of solid walls that are patterned by parallel nanogrooves of depth D and width
L with a periodicity of 2L. The wall is formed of a material which interacts with the fluid via a long-range
potential and exhibits first-order wetting transition at temperature Tw , should the wall be planar. Using a nonlocal
density functional theory we show that at a fixed temperature T > Tw the process of complete wetting depends
sensitively on two microscopic length scales L+

c and L−
c . If the corrugation parameter L is greater than L+

c , the
process is continuous similar to complete wetting on a planar wall. For L−

c < L < L+
c , the complete wetting

exhibits first-order depinning transition corresponding to an abrupt unbinding of the liquid-gas interface from
the wall. Finally, for L < L−

c the interface remains pinned at the wall even at bulk liquid-gas coexistence. This
implies that nanomodification of substrate surfaces can always change their wetting character from hydrophilic
into hydrophobic, in direct contrast to the macroscopic Wenzel law. The resulting surface phase diagram reveals
a close analogy between the depinning and prewetting transitions including the nature of their critical points.

DOI: 10.1103/PhysRevE.99.040801

The recent advances in nanophysics have not only revealed
promising possibilities in modern technologies but also in-
duced new theoretical challenges. This includes a particularly
important problem that has attracted enormous interest across
different scientific branches and which can be formulated as
follows: what is the effect of a solid surface structure on its
wetting properties? On a macroscopic level, the influence of
a nonplanar structure on adsorption behavior of the substrate
can be described by Wenzel’s law [1]

cos θ∗ = r cos θ, (1)

which relates Young’s contact angle θ of a liquid droplet on
a planar surface with an apparent contact angle θ∗ of a liquid
droplet on a structured surface. Since the roughness parameter
r > 1, Eq. (1) implies that θ∗ > θ if θ > π

2 and θ∗ < θ if
θ < π

2 meaning that the wetting and drying properties are
amplified by the surface structure.

Nevertheless, it turns out that the behavior of fluids ad-
sorbed at rough substrates is, at a minimum, much more
complex [2–9], especially upon decreasing the length-scale
characterizing structure of the solid surface [10–16]. Further
aspects, such that the surface geometry, the nature of micro-
scopic forces, line tension contribution, strong packing effects
that fluid molecules experience near the wall, etc., are all
ignored in the phenomenological Wenzel law, yet they are
crucial for obtaining the full picture. In particular, it has been
recognized that interfacial phenomena occurring on structured
substrates depend on the nature of wetting properties of the
pertinent planar substrate [17–24]: If the planar substrate
experiences continuous (critical) wetting transition [25–27]
at temperature Tw (and at bulk liquid-gas coexistence) which
corresponds to vanishing of the contact angle, θ (Tw ) = 0, the
corrugated substrate also exhibits continuous wetting transi-
tion at the same temperature. The character of the wetting
transition is also unchanged if the planar substrate exhibits

first-order wetting but in this case the wetting temperature
of the corrugated substrate is shifted toward lower values,
qualitatively in line with Eq. (1) [18,20,21]. Moreover, the
wetting can be preceded by unbending (or filling) transition
corresponding to an abrupt condensation of the fluid inside
the wall troughs, provided the corrugation amplitude is suffi-
ciently large.

These predictions are based on a mesoscopic analysis of
the liquid-gas interface interacting with the solid wall ac-
cording to an effective (binding) potential [25]. However, if
the substrate structure is microscopic, i.e., on the scale of
molecular diameters, a more detailed treatment of an adsorbed
fluid is needed. In this work, we consider a model substrate
formed by a solid planar wall into which a one-dimensional
array of rectangular grooves of depth D and width L is
etched with a periodicity P = 2L. The groove parameters
D and L are deemed to be microscopically small, while
the length of the grooves Ly along the remaining Cartesian
axis is assumed to be macroscopically long, so that the wall
corrugation breaks the translation symmetry of the system
only in one direction (cf. Fig. 1). The wall is in contact
with a bulk gas at a (subcritical) temperature T > Tw and
the chemical potential μ < μsat (T ), where Tw is the wetting
temperature at which first-order wetting transition occurs at
the corresponding planar wall and μsat (T ) is the chemical
potential at bulk liquid-gas coexistence. For planar walls the
process μ → μsat (T ) is known as complete wetting and can
be characterized by an unbinding of the liquid-gas interface
mean height � which eventually diverges according to the
power law � ∼ |δμ|−βco where δμ = μ − μsat and the critical
exponent βco = 1/3 for systems with long-ranged (dispersion)
forces [25–27]. We also recall that for first-order wetting
the singular behavior of the surface free energy at Tw ex-
tends to T > Tw and below μsat, giving rise to a finite jump
in �(μ); this prewetting transition terminates at the surface
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FIG. 1. Sketch of a cross section of the model substrate with
microscopic grooves of depth D and width L. The system is assumed
to be periodic along the x axis with a periodicity of P = 2L and
translation invariant along the y axis.

critical point Tsc. Schematically, the surface phase diagram
for complete wetting at a planar wall is displayed in Fig. 2,
together with three illustrative adsorption isotherms. Here we
also show the L-δμ phase diagram corresponding to our model
substrate which summarizes the main results of this work. It
demonstrates three possible adsorption scenarios, depending
on L: (i) the adsorption is continuous similar to complete
wetting on a planar wall if the corrugation parameter L is
greater than a certain critical value L+

c ; (ii) for L below L+
c

but above L−
c the adsorption exhibits first-order depinning

transition at some value μ(L) < μsat corresponding to an
abrupt depinning of the interface from the wall followed by
a continuous divergence of the interface height as μ → μsat;
(iii) finally, for L < L−

c the interface remains pinned at the
wall even at μsat preventing complete wetting despite Young’s
contact angle θ = 0.

We have obtained our results using a microscopic density
functional theory (DFT) [28], which has proven to be an

FIG. 2. A comparison between surface phase diagrams for a
planar wall exhibiting first-order wetting transition at temperature Tw

(top left) and a periodically corrugated wall at a fixed temperature
T > Tw (bottom left). Also shown are three adsorption isotherms cor-
responding to thermodynamic paths denoted in the phase diagrams.

extraordinary useful tool for a description of structure and
phase behavior of inhomogeneous fluids [29]. All the infor-
mation about the given model fluid properties is embraced in
the intrinsic free-energy functional F [ρ] of the local one-body
fluid density ρ(r) which, for simple fluids, can be decomposed
in a perturbative manner as follows:

F [ρ] = Fid[ρ] + Frep[ρ] + Fatt[ρ] . (2)

Here, Fid = β−1
∫

dr ρ(r){ln [ρ(r)�3] − 1} is the ideal gas
contribution to the free energy where β = 1/kBT is the inverse
temperature and � is the thermal de Broglie wavelength. The
excess part of the free-energy functional due to the fluid-fluid
interactions is further separated to the repulsive portion Frep,
which is mapped onto a system of hard spheres with a diam-
eter σ within the nonlocal Rosenfeld fundamental-measure-
theory functional [30], and the attractive part which we treat
in the mean-field manner Fatt = 1

2

∫∫
dr dr′ρ(r)ρ(r′)uatt (|r −

r′|). For the attractive part of the fluid-fluid interaction, uatt (r),
we have chosen the truncated and nonshifted Lennard-Jones-
like potential

uatt (r) =

⎧⎪⎨
⎪⎩

0; r < σ

−4ε
(

σ
r

)6
; σ < r < rc

0; r > rc,

(3)

where the parameters ε and σ are used as the energy and
length-scale units, respectively, and where the potential cutoff
is set to rc = 2.5σ . The microscopic model accounts accu-
rately for the short-ranged fluid correlations (and thus the
packing effects) and satisfies exact statistical mechanical sum
rules [31]. The confining wall (illustrated in Fig. 1) steps
into the theory within the external potential V (r) = V (x, z)
which is obtained by integrating the wall-fluid atom-atom
interactions φw(r) over the whole volume of the wall. With the
wall atoms assumed to be distributed uniformly with a density
ρw and interacting with the fluid atoms via the Lennard-
Jones (LJ) potential φw(r) = 4εw[(σ/r)12 − (σ/r)6], the wall
potential can be expressed as

V (r) = Vπ (z) +
∞∑

n=−∞
VD(x + 2nL, z), (4)

except for the region corresponding to the domain of the wall
in which case V (x, z) = ∞ as the wall is impenetrable. The
potential VD(x, z) of a single pillar of height D and width
L can be split into the repulsive and attractive contributions
VD(x, z) = V6(x, z) + V12(x, z) where

V6(x, z) = −π

3
εwσ 6ρw[ψ6(x, z) − ψ6(x, z − D)

−ψ6(x − L, z) + ψ6(x − L, z − D)] (5)

and

V12(x, z) = πεwσ 12ρw[ψ12(x, z) − ψ12(x, z − D)

−ψ12(x − L, z) + ψ12(x − L, z − D)] (6)

with

ψ6(x, z) = 2x4 + x2z2 + 2z4

2x3z3
√

x2 + z2
(7)
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and

ψ12(x, z) = 1

128

128x16 + 448x14z2 + 560x12z4 + 280x10z6 + 35x8z8 + 280x6z10 + 560x4z12 + 448z14x2 + 128z16

z9x9(x2 + z2)7/2
− 1

z9
. (8)

Finally, the potential Vπ (z) in (4) is the standard 9-3 LJ
potential induced by a planar wall spanning the volume z < 0.

The equilibrium density profile is obtained by minimizing
the grand potential functional

[ρ(r)] = F [ρ(r)] +
∫

ρ(r)[V (r) − μ]dr, (9)

which is solved iteratively on a two-dimensional grid with a
uniform spacing of 0.1σ . The minimization determines the
equilibrium density profile ρ(r) and also the thermodynamic
grand potential  = min[ρ(r)]. Having set the wall parame-
ter εwρw = ε/σ 3 we find the wetting temperature of the planar
wall Tw ≈ 0.8Tc, where Tc is the bulk critical temperature of
the fluid.

In Fig. 3 we display the surface phase diagram in the
L-δμ projection obtained from the DFT for T = 0.92Tc > Tw

and the grooves depth D = 10σ . The phase diagram shows
the line corresponding to first-order depinning transition at
which the grand potentials obtained by minimizing of (9) for
the pinned (low adsorption) and depinned (high adsorption)
states are equal. The line connects the (horizontal) bulk co-
existence line at L−

c ≈ 4σ meaning that below this threshold
the wall structure prevents complete wetting. The depinning
line terminates at the critical point L+

c ≈ 11σ above which the
depinning is continuous. For L > L+

c , a unique solution for
the density profile is always obtained regardless of the initial
state which the minimization of (9) starts from. However,
below Lc, the function (L) exhibits two local minima within

0 2 4 6 8 10 12 14

-0.010

-0.005

0.000

δμ/ε

L/σ

FIG. 3. The surface phase diagram as obtained from DFT for
T = 0.92Tc and D = 10σ . The line displays the loci of the first-order
depinning transition and terminates at the critical distance L+

c ≈ 11σ

above which the transition is continuous. Below L−
c ≈ 4σ the gas-

liquid interface remains pinned at the wall (which is thus not wet)
even at saturation δμ = 0 represented by the horizontal line. Also
shown are the spinodal lines (dashed) which denote the limit of
stability of the depinned state (the lower one) and the pinned state
(the upper one). The symbols × (+) indicate the points for which the
corresponding binding potentials are plotted in Fig. 5 (Fig. 6).

the interval constrained by the spinodal lines which are also
shown in Fig. 3. Therefore, this interval indicates a range
of metastable extensions of either solution characteristic to
first-order transitions. The spinodals display the loci where
one of the two minima in (L) vanishes and becomes an
inflection (cf. Fig. 6 below), i.e., the limit of stability of the
corresponding (pinned or depinned) configuration.

To illustrate the change in the structure of the fluid at
the depinning transition we show in Fig. 4 density profiles
(over three periods) corresponding to coexisting pinned and
depinned states for L = 5σ and L = 10σ . The two examples
differ rather remarkably; for low L, the depinned state pos-
sesses a thick wetting layer with an essentially flat interface,
while the upper part of the wall is only microscopically wet
in the pinned state. For large L, the width of the wetting film
after the transition is substantially smaller and exhibits distinct
periodic corrugation of the liquid-gas interface which follows
closely the lateral inhomogeneity in the wall potential. Before
the transition, liquid droplets that are pinned at the wall edges
are now present, as the width of the pillars is large enough
to accommodate them. One should also notice the strongly
inhomogeneous fluid structure in the grooves showing pro-
nounced layering that get connected at the depinned states;
this suggests that the transition can also be viewed as bridging
of the condensed phase filling the grooves.

Some more details about the depinning transition can be
obtained by constructing the binding potential W (�), i.e., the
constrained free energy per unit length at the fixed mean
height of the adsorbed film � (from the grooves bottom),
W (�) = minρ(r)[ρ(r)]|�/Ly, so that the mean-field equilib-
rium state is given by the global minimum of W (�). For this,
we minimize the grand potential (9) as a subject of fixed
adsorption [32] � = ∫

dx
∫

dz[ρ(x, z) − ρb] where ρb(μ) is
the bulk fluid density. In Fig. 5 we display the binding
potentials corresponding to the three points laying on the

FIG. 4. Equilibrium density profiles of pinned (left) and de-
pinned (right) coexisting wetting states for L = 5σ (upper panels)
and L = 10σ (bottom panels).

040801-3



ALEXANDR MALIJEVSKÝ PHYSICAL REVIEW E 99, 040801(R) (2019)

6 8 10 12 14 16 18 20 22 24 26 28 30
-0.00420
-0.00415
-0.00410
-0.00405

10 12 14 16 18 20
-0.00135
-0.00130
-0.00125
-0.00120

10 12 14 16 18

0.00050

0.00055

0.00060

Wσ/ε
(a)

(b)
Wσ/ε

l/σ
(c)

l/σ

Wσ/ε

l/σ

FIG. 5. Binding potentials for (a) L = 5σ , (b) L = 8σ , and
(c) L = 11σ , corresponding to the coexistence of the pinned and
the depinned state. In all the cases, the binding potential exhibits
two local minima of the same depth which essentially merge when
L = 11σ indicating a close proximity to the critical point L+

c .

depinning line as depicted in Fig. 3. For the lowest value of
L, the binding potential possesses two distinct local minima
of the same depths that are separated by a well pronounced
free-energy barrier. On increasing L, i.e., by approaching L+

c ,
the free-energy barrier is lowered, as well as the gap between
the two minima which eventually merge at the critical point.
Clearly, this is only the second minimum of W (�), the position
of which depends on L, with the first minimum being always
located near D corresponding to the grooves top.

In Fig. 6 we also show the binding potentials for the
points away of the depinning transition at the fixed chemical
potential. The effect of varying L is now different; namely,
it determines the depths of the two competing free-energy

10 15 20
-0.0029

-0.0028

-0.0027

10 15 20
-0.0020

-0.0019

-0.0018

10 15 20
-0.0008

-0.0007

-0.0006

-0.0005

10 15 20

-0.0003

-0.0002

-0.0001

0.0000
(d)(c)

(b)

Wσ/ε

Wσ/εWσ/ε

l/σ

(a)

l/σ

Wσ/ε

l/σ l/σ

FIG. 6. Binding potentials for various values of L: (a) L = 6 σ ,
(b) L = 7 σ , (c) L = 9 σ and (d) L = 10 σ , as obtained from DFT
at the fixed chemical potential μ = −3.98 ε corresponding to the de-
pinning transition for L = 8 σ . For the lowest (L = 6 σ ) and the high-
est (L = 10 σ ) value of the corrugation parameter displayed, one of
the two local minima disappears suggesting that these states are
already beyond the spinodal points of the transition (cf. Fig. 3).

minima but their locations remain unchanged within the
whole interval of L between the spinodal points (cf. Fig. 3) be-
yond which only one local minimum in W (�) exists. This can
be explained as follows. Within the sharp-kink approximation
[25], the binding potential of the system in the depinned state
can be written as

W (�) = 2(� − D)Lδμ�ρ + AL

(� − D)2
+ AL

�2
(� > D) .

(10)

Here, the first term on the right-hand side is the free-energy
cost for the presence of the metastable liquid (ignoring the
constant contribution due to the filled grooves) and the re-
maining terms account for the local effective interaction be-
tween the wall and the liquid-gas interface which is consid-
ered to be flat. This interaction is approximated by a simple
quadratic power law in the inverse height of the interface
with the amplitude (Hamaker constant) A = π�ρρwεwσ 6/3,
where �ρ is the difference between the bulk coexisting densi-
ties. Therefore, within the approximation W (�) scales linearly
with L and hence the interface height is L independent, in
line with the DFT results. It should be emphasized that the
model (10) is only applicable to the depinned state (and
is meaningful only above the lower spinodal of the phase
diagram) and has no relevance to the nature of the depinning
transition. Indeed, the full model would rely on a definition of
two distinct fluid configurations (pinned and depinned states)
and would not thus be able to predict the presence of the
critical point L+

c . However, Eq. (10) can be further used to
find a correspondence between our substrate model involving
grooves and a simple planar wall covered by a wetting film of
width �π , for which the dominating contribution to the binding
potential is

Wπ (�π ) = δμ�ρ�π + A′

�2
π

, (11)

defined per unit area. The effective Hamaker constant A′ of the
planar wall is determined by equating the heights of the wet-
ting films at the corresponding substrates, �(δμ) = �π (δμ),
obtained by minimization of (10) and (11), respectively. This
leads to the condition(

1 − 1

�̃

)3

= y

2�̃3 − y
, (12)

for �̃ = �/D as a function of the scaling parameter y =
2A/(δμ�ρD3), which eventually yields A′ = �̃3A/y. It can
be checked easily, that A′ → ∞ for D → ∞ and A′ → A
for D → 0, as expected [33]. Using DFT, we test this result
by comparing the height of the depinned interface at the
structured wall with D = 10σ and L = 5σ and the potential
strength εw = ε, with that corresponding to the planar wall
with the potential strength ε′

w/εw = A′/A as obtained from
Eq. (12). The comparison shown in Fig. 7 reveals that the two
solutions, � and �π , are fairly close to each other, although
the interface height above the planar wall �π is systematically
slightly larger. For completeness, we also plot �(δμ) as ob-
tained directly from Eq. (12) which almost follows �π ; the
upshot is that while the asymptotic form of the planar binding
potential (11) works very accurately within the displayed
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FIG. 7. DFT results for the height of the wetting layers at the
structured wall (black solid line) with D = 10σ and L = 5σ , and the
planar wall (red dashed line) with the potential strength as given by
Eq. (12). Also shown is the result obtained by a direct solution of
Eq. (12) (blue dotted line).

interval, the binding potential for the structured wall (10)
provides still a reasonable approximation.

In summary, we have studied adsorption of a solid wall
structured by a linear array of parallel rectangular grooves
above the wetting temperature, so that Young’s contact angle
of the wall is zero. We have found that the presence of
the wall structure does not qualitatively change the process
of complete wetting unless the characteristic length of the
wall structure L is microscopically small. In this case, the
mechanism of complete wetting is via bridging of liquid layers
inside the grooves over the top of the wall. The corresponding
free-energy change involves a contribution associated with the
line tension τ pertinent to a contact of the liquid-gas interface
with the wall edges. This term competes within the excess

free energy with the surface tension effects as τ/L and is
thus increasingly relevant as L decreases. Its role becomes
dominant for L < L−

c such that the free-energy barrier cannot
be overcome even at the bulk coexistence δμ = 0 and the
bridging and complete wetting of the wall is thus not possible.
However, as our DFT calculations show, this is only in the
case when L is less than about four molecular diameters (σ ).
For larger L, the system experiences competition between two
free-energy minima giving rise to a first-order depinning tran-
sition. The edge effects and hence the transition is gradually
weaker as L increases and eventually becomes continuous at
L = L−

c (≈11σ ) where the barrier vanishes. For L � L+
c the

shape of the interface changes smoothly all the way along
its unbinding from the wall. The δμ-L phase diagram reveals
some analogy between prewetting and depinning transitions,
although the curvatures of the corresponding lines have oppo-
site signs.

This study can be extended in numerous ways. A natural
generalization of our model would treat the grooves width
L and the periodicity P as independent parameters; this, for
example, would convert Eq. (12) simply into (1 − 1/l̃3) =
xy/[�̃3 + (x − 1)y] with x = L/P but the phase behavior at
such a wall can be expected to be considerably more compli-
cated. Further, here we have deliberately chosen a sufficiently
high temperature in order to avoid prewetting at the wall;
for T < Tsc one expects competition between depinning and
prewetting. It would also be interesting to explore the D
dependence of the depinning phenomena and check possible
scaling properties as in Eq. (12). Finally, it should be noted
that in view of its pseudo-two-dimensional character and the
presence of long-range forces, the depinning transition would
not be rounded beyond the current mean-field analysis due
to thermal fluctuations and should thus be accessible in real
experiments.
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