
PHYSICAL REVIEW E 99, 040301(R) (2019)
Rapid Communications

Critical transitions in heterogeneous networks: Loss of low-degree nodes
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A large number of real networks show abrupt phase transition phenomena in response to environmental
changes. In this case, cascading phenomena can induce drastic and discontinuous changes in the system state
and lead to collapse. Although complex network theory has been used to investigate these drastic events, we are
still unable to predict them effectively. We here analyze collapse phenomena by proposing a minimal two-state
dynamic on a complex network and introducing the effect of local connectivities on the evolution of network
nodes. We find that a heterogeneous system of interconnected components presents a mixed response to stress
and can serve as a control indicator. In particular, before the critical transition point is reached a severe loss of
low-degree nodes is observed, masked by the minimal failure of higher-degree nodes. Accordingly, we suggest
that a significant reduction in less connected nodes can indicate impending global failure.
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Many natural, economic, and social systems exhibit abrupt
phase transition phenomena in response to environmental
changes [1–11]. Examples include epidemic spreading, traffic
networks, climatic and ecosystems changes, cell networks,
and heart and brain dynamics. In this context, complex net-
work theory has been applied to both real and humanly
constructed systems and has provided useful statistical mea-
surements and indicators able to describe such complex phe-
nomena [12–14]. Recently a similar approach was used to
investigate economic data [15]. It was found that combining
a simple dynamics of internal and external failure with a
reversal process of recovery in an interacting network reveals
critical transitions in the percentage of active nodes and
hystereses that cause the phase-flipping phenomena seen in
fluctuating stock market indices. That formulation is also able
to describe a more general class of processes [15].

In this contribution, we propose a generalization that takes
into account network heterogeneity induced by topology, sim-
ilarly to studies on epidemic spreading [16]. By using this
approach, we show that the route toward the critical point is
shaped by the connectivity class of the nodes, with significant
consequences on the formulation of effective indicators of
transition forecasting.

a. Dynamical model on networks. We consider a two-state
dynamic model [15] where an “active” node can fail either
because of internal factors with an intrinsic transition rate
pa or because of external influences with a rate ps. External
failures are due to factors external to the node and occur when
the number of its failed neighbors exceeds a certain threshold,
thus denoting a compromised functionality by a loss of feed-
back in interactions with other nodes. Internal failure occurs
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when intrinsic stresses exceed a certain level. Nodes recover at
a rate pr when they are able to mitigate destructive functional
alterations. Compared to the original model [15] we introduce
an equal mean recovery time from both external and internal
failures and use transition rate instead of recovery time to
describe the rescue process as a single transition from failed
to active. We also examine heterogeneity in node connectivity.
Specifically, the effective rate of a node’s external failure
takes into account the degree-dependent probability that it
will be exposed to a fraction of failed nodes that exceeds a
threshold. The threshold value depends on network degree,
i.e., a damaged neighborhood must be defined locally with
respect to the original local connectivity. In our model, we set
this threshold at 50% of the node’s original neighborhood size,
based on the hypothesis that a particular node is insensitive
to extrinsic failure if at least half of its neighbors are safe.
Slight variations of this threshold do not alter our analysis sig-
nificantly. This approach models several dynamical processes
occurring in real networks, from the functional regulation of
interacting cells, to epidemic and information spreading, to
financial market crashes [15,17,18]. In addition, the proposed
model shares similarities with the Watts model and with other
generalizations analyzing cascades in networks with no intrin-
sic failure and recovery dynamics, and with homogeneous and
normally distributed thresholds [19–21].

b. Mean-field theory. By adopting a mean-field approach
it is possible to write a balance equation that regulates the
dynamics of the fraction of active nodes for each degree class,

df k
A (t )

dt
= pr

[
1 − f k

A (t )
] − (pa + psRk ) f k

A (t ), (1)

where f k
A is the fraction of active nodes in the kth class

and Rk is the average probability that the neighborhood
of a node of degree k is damaged. This factor takes into
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account the effective probability θk that a node of degree
k connects to a failed neighbor and all the configurations
in which the number of active neighbors is less than or
equal to the threshold m(k) = k/2 (rounded down to the
nearest integer), i.e., Rk = ∑m(k)

j=0 ( k
k − j)θ

k− j
k (1 − θk ) j , with

θk = ∑
k′ P(k′|k) f k′

Fn
and f k

F = 1 − f k
A . By definition, P(k′|k)

is the probability that a node of degree k is connected to
a node of degree k′. Notably, f k

Fn
represents the fraction of

failed neighbors of degree k, i.e., the probability that a node
of degree k is failed conditioned on one of its neighbors
being active [20]. This is a dynamical variable satisfying
Eq. (1) with Rk = ∑m(k)−1

j=0 ( k − 1
k − j − 1)θ k− j−1

k (1 − θk ) j . Taking
into account all degree classes in the network and considering
both reference nodes and neighbors, Eq. (1) is a dynamical
system of order 2k. It is convenient to rewrite Eq. (1) by
multiplying both sides by 1/pa and by rescaling the time to
be dimensionless from τ = pat ,

df k
A (τ )

dτ
= p̃r

[
1 − f k

A (τ )
] − (1 + p̃sRk ) f k

A (τ ), (2)

where p̃r = pr/pa and p̃s = ps/pa. We investigate system
behavior by analyzing steady-state active fractions of nodes
for each connectivity class, by varying the dimensionless
parameters p̃r and p̃s, i.e., at different grades of internal
and external failures occurrence, and recovery capacity. In
particular, we numerically compute fixed points of Eq. (1)
by slowly varying the control parameter p̃r both for positive
(increments) and negative (decrements) directions at different
and constant values of p̃s. Fixed points calculated at p̃n

r are
used as the initial guess at p̃n+1

r . We test the behavior of the
model in (i) a random network, (ii) a scale-free topology,
and (iii) a spatially embedded network extracted from a finite
set of nodes and shaped by nearest-neighbor interactions. We
select these architectures because real networks are usually
heterogeneous and exhibit features common to both random
and regular networks or may show scale-free features such as
hubs.

c. Random networks. We consider a Poisson degree dis-
tribution characterized by P(k) = e−〈k〉〈k〉k/k!, and by a con-
ditional degree distribution P(k′|k) = k′P(k′)/〈k〉, peculiar of
uncorrelated networks. We set the mean degree of network
〈k〉 = 10 in our calculations, and restrict our analysis to k �
25 because this allows us to include the most significant frac-
tion of nodes (the distribution rapidly goes to zero when k >

〈k〉). Figure 1(a) shows that at p̃s = 100 the system undergoes
a clear discontinuous abrupt transition and hysteresis. Note
that each node subpopulation approaches the discontinuity
point differently. Low-degree nodes show a smooth and strong
decline in their fraction of active units. High-degree nodes
remain strong until they reach the critical point. In the extreme
cases of k = 1, 2 approximately 50%–70% of nodes are in
a failed state prior to the transition point. Figures 1(b)–1(d)
show that this behavior is qualitatively maintained at lower
values of p̃s, i.e., at lower values of the external failure rate,
although the transition point shifts at lower recovery rate
values. When p̃s = 1 the transition is smooth for all node sub-
populations. When we consider the global behavior of the en-
semble, by computing the total fraction of active nodes in the
network as fA = ∑

k P(k) f k
A , the differences disappear (black
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FIG. 1. Active fraction of nodes in a random uncorrelated net-
work computed by varying the parameter p̃r = pr/pa at differ-
ent values of p̃s = ps/pa. (a) p̃s = 100. (b) p̃s = 50. (c) p̃s = 10.
(d) p̃s = 1. Colored curves represent the active fraction of nodes for
different connectivity classes of nodes. Markers represent the total
active fraction of nodes in the network computed as

∑
k P(k) f k

A . High
values of spreading parameter show discontinuous transitions before
which a significant loss of low-degree nodes can be observed.

markers in Fig. 1). The total active fraction is discontinuous
in the asymptotic solutions at high values of the spreading
term and shows small variations prior to the transition, which
reproduces the behavior of high-degree nodes. The partial
smoothing of the global steady-state solutions as a function of
the control parameter before the transition point is primarily
due to the leaf (k = 1) and less connected nodes (k < 6), as
was found in the local analysis. Results computed at different
values of the threshold m(k) = 2k/3, k/3 (rounded down to
the nearest integer) show that this behavior is qualitatively
conserved also when nodes are more or less resistant to
neighbors failure (Fig. 2), despite a shift of the transition
point at lower and higher values of the spreading parameter,
respectively.

d. Scale-free networks. We further investigate model be-
havior in a scale-free topology. In this case we consider
a degree distribution P(k) = k−γ with γ = 3. A finite-size
network of 10 000 nodes constructed with similar parameters
by using the BA (Barabási-Albert) algorithm [22] showed a
maximum degree of about 50. Therefore we use this cutoff
in the mean-field description with the aim to keep low the
dimensionality of the dynamical system and the computa-
tional cost. We also assume an uncorrelated network and adopt
the same conditional degree distribution used in the random
case. Active fractions of nodes in scale-free topology do not
show abrupt transitions also in case of high probabilities of
failures spreading [see Fig. 3(a)]. However, it is still possible
to observe a larger reduction in the partial fractions of active
nodes within the low-connectivity classes compared to the
highly connected ones. Interestingly, in this case, these larger
reductions are not masked when observing the global behavior
of the network. In fact, the total fraction of active nodes mostly
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FIG. 2. Active fraction of nodes at different threshold values in
a random uncorrelated network, computed by varying the parameter
p̃r = pr/pa at p̃s = 100. (a) m(k) = 2k/3. (b) m(k) = k/3. Colored
curves represent the active fraction of nodes for different connectivity
classes of nodes. Markers represent the total active fraction of nodes
in the network computed as

∑
k P(k) f k

A . The transition point in
(a) and (b) occurs at lower and higher values of the spreading
parameter, respectively, compared to m(k) = k/2, because of a lower
or higher resistance of nodes to neighbors failure. In both cases,
a significant loss of low-degree nodes can be observed before the
abrupt transition.

represents the behavior of less connected nodes which are
much more abundant than hubs in scale-free networks. Results
obtained with a cutoff of k = 100 and k = 200 do not show
significant differences [see Figs. 3(b) and 3(c)].

e. Spatially embedded regular networks. We finally de-
termine model solutions in the nonrandom regular networks
typical in interacting space-embedded systems in which units
are physically connected. In particular, we build a spatially
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FIG. 3. Active fraction of nodes computed by varying the pa-
rameter p̃r = pr/pa at p̃s = 100. (a) Scale-free uncorrelated network
(cutoff k = 50). (b) Scale-free uncorrelated network (cutoff k =
100). (c) Scale-free uncorrelated network (cutoff k = 200). (d) Spa-
tially embedded network (degree distribution and conditional degree
distribution calculated from a finite-size network; see text). Colored
curves represent the active fraction of nodes for different connectivity
classes of nodes. Markers represent the total active fraction of nodes
in the network computed as

∑
k P(k) f k

A . The scale-free topology
does not show abrupt transition in contrast to the spatially embedded
one. Larger variations in low-degree nodes compared to high-degree
nodes can be observed in both cases.

embedded network starting from a cubic lattice, fixing a
three-dimensional Moore neighborhood of range 1 to set the
connections. Then, we randomly remove links with pl =
0.3 to induce heterogeneities. Such topological properties
resemble the biological architecture of β-cell networks in
endocrine pancreatic islets, an emblematic case in which
communications are key in shaping emergent dynamics, cell
function, and fate [23–30]. Note that this architecture can
be representative of many other systems in which physical
constraints shape network topology, such as highways, water
distribution, and power grid networks. The resulting graph
is a spatial network of �11 000 nodes with a maximum of
26 neighbors per node. We compute statistics of the network
using normalized frequency of nodes degree and normalized
edge frequency between nodes of degree k and k′. Each
conditional probability P(k′|k) is normalized at 1. Figure 3(d)
shows that prior to the transition point when the recovery
rate values are decreasing, the active fraction of low-degree
nodes (here k = 4 is the lowest degree) changes smoothly and
more quickly than in high-degree nodes, in line with random
and scale-free uncorrelated networks. At the transition point
when the network globally collapses, the active fraction of all
node classes becomes discontinuous. In line with the random
network, the total fraction of active nodes is representative
of the high-degree nodes of the network, while the larger
reductions in the active fraction of lower degree nodes are
masked.

f. Validation of mean-field analysis. To check whether
mean-field theory correctly describes real networks behavior,
we further simulated the two-state dynamical model in three
finite-size networks of 10 000 nodes (11 056 for the spatially
embedded case) characterized by the three topologies dis-
cussed above. In this case, the stochastic nature of the process
is not smoothed by the thermodynamic limit. In particular,
numerical simulations are performed via random evolutions
of the networks by using a Monte Carlo method. All nodes are
initialized in an active or failed state depending on the initial
value of the parameter p̃r and on the direction of variation:
failed state for low p̃r and increments of the parameter,
active state for high p̃r and decrements of the parameter. To
compute steady-state average fractions of nodes we adiabati-
cally changed the control parameter and calculated the time-
averaged numbers of active nodes within each connectivity
class at every step, discarding a proper initial period to avoid
the effect of transient responses on steady-state estimates. We
then used the final state of the network to set the initial state
at the next p̃r value. Numerical simulations confirmed the
results obtained with the mean-field analysis (Fig. 4). When
varying the control parameter, the active fractions of nodes
show fluctuations around a smoothly varying mean value
that follows the mean-field solutions for all the connectivity
classes. Although the critical point is slightly shifted at lower
values of the control parameter, the emergent phenomena are
qualitatively unchanged.

Our results show that adding heterogeneity to the math-
ematical representation of a dynamical network produces a
qualitatively different response from each connectivity class
of nodes. The leaf and less connected nodes display an
emergent behavior similar to that in sparse topologies, and
highly clustered nodes display abrupt transitions in their active
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FIG. 4. Active fraction of nodes numerically computed in a
finite-size (N = 10 000) random uncorrelated network computed by
varying the parameter p̃r = pr/pa at different values of p̃s = ps/pa.
(a) p̃s = 100. (b) p̃s = 1. (c) Comparison of global behavior between
numerical simulations and mean field at p̃s = 100. (d) Comparison
of global behavior between numerical simulations and mean field at
p̃s = 1. Colored points in (a) and (b) denote the active fraction of
nodes for different classes of nodes. Black curves and red squares
in (c) and (d) represent the total active fraction of nodes in the
network for mean field and simulations, respectively, computed as∑

k P(k) f k
A .

fraction that resemble the global behavior of strongly con-
nected networks responding to changes in control parameters.
This is in line with the increased failure probability of low-
degree nodes in small cascade regimes and with hysteresis
observed in similar threshold models [20,21]. However, these
formulations do not include recovery and intrinsic failure
and are based on different threshold rules. Our results are
also similar to the original Watts model [19] in the case
of large extrinsic failure probability, where threshold has
significant effects. It is worth mentioning that, in our case,
fixing the threshold to k/2 rounded down induces asymmetry
between even and odd degrees in the partial active fraction of
nodes. In particular, our choice makes odd degree nodes to
be susceptible to external failure at more than 50% of failed
neighbors. Instead, even nodes became susceptible exactly at
50% of failed neighbors and, thus, are more likely to fail. The
asymmetry changes by setting the threshold to k/3 or 2k/3,
and this is again mostly linked to the percentage of neighbors

which have to be failed to make the node susceptible. Notably,
while in scale-free networks the global fraction of active nodes
is strongly representative of less connected nodes, in random
and spatially embedded networks the opposite holds, and large
reductions in less connected nodes are masked in the global
response. In these specific cases, relying on a global indicator
of network functionality, such as the total fraction of active
nodes, is likely to be misleading and can significantly under-
estimate failure risk and the probability of critical collapses.
Indicators of catastrophic transitions based on slowing down
of the recovery dynamics from perturbations and flickering
phenomena in the state of the system have been proposed
in the literature [31,32]. In particular, they were applied to
the identification of catastrophic changes in climate, eco-
logic mutualistic communities, and depression development
[33–35]. These dynamical indicators have a different nature
compared to the steady states here analyzed, which instead are
not dynamical by definition. However, they are strictly linked
to critical bifurcation points and bistability of the dynamical
system and, thus, to the underlying steady solutions on which
we based our analysis. Here we suggest that monitoring
loss in leaf and less connected nodes in networks showing
critical discontinuous transitions gives additional perspectives
on catastrophic failure prediction. Moreover, if the intrin-
sic dynamics of the network is considerably faster than the
characteristic time which rules stressful parameters variation,
time-window measures of the average active fraction on nodes
based on their connectivity class have the potential to be
adopted in a dynamical perspective. Future investigations will
be devoted to a detailed time analysis using predictive indica-
tors based on the observed phenomena, as well as testing the
effects of other threshold rules and nodes correlation [36,37].

In conclusion, our results reveal that losing leaf and less
connected nodes in response to stress may be a general feature
of complex systems characterized by dynamical units whose
behavior is regulated in heterogeneous complex networks.
Based on the very general dynamics used to model nodes
evolution, we believe that the observed behavior has potential
impacts on understanding the response of several natural
and artificial systems upon degradation, and it will encour-
age expanded research investigating such possibility in real
scenarios.
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