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Comment on “Lagrangian formulation and symmetrical description of liquid dynamics”
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Trachenko [Trachenko, Phys. Rev. E 96, 062134 (2017)] has argued for creating a Lagrangian formulation of
liquid dynamics. This Comment shows that the proposed two-field Lagrangian does not describe dynamics of
liquid in a correct way. Other claims on the symmetric description of liquid dynamics and on the similarity of
Maxwell and Frenkel characteristic times are discussed.
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In a recent paper [1] the author claimed that he was able
to represent a Lagrangian formulation of liquid dynamics
and that “the proposed Lagrangian provides new mechanisms
for the interplay between the dissipative and mass terms.”
Furthermore, the author claimed he “demonstrated the equiva-
lence of hydrodynamic and solid-state approaches to liquids,”
which is represented as “symmetry of liquid description.” In
this Comment we discuss statements and results of Ref. [1]
that we disagree with.

(1) The essence of liquid dynamics is in the viscoelasticity
of liquid; on macroscopic scales the density fluctuations in
liquid are constrained by local conservation laws, while on
microscopic scales the liquid behaves as an elastic medium.
Numerous theories have been applied to the analytical de-
scription of the viscoelastic transition in liquids [2–7]. How-
ever, in Ref. [1] the author did not start from the whole set
of balance equations for conserved quantities, but considered
a macroscopic equation for the velocity field only and made
use of the well-known empiric extrapolation by Frenkel [2,4],
which makes sense only for transverse dynamics. Therefore,
in making a general claim about the formulation of a gen-
eral symmetric description of liquid dynamics the author is
not correct—the given and well-known Frenkel formulation
is solely for transverse components of current fluctuations.
The Frenkel extrapolation is equivalent to the treatment of a
system of two balance equations: for transverse components
of the mass current and of the stress tensor. Furthermore, the
relaxation time of longitudial components of the stress tensor
coupled to density fluctuations is τL = DL/(c2

∞ − c2
s ) [6–8],

with DL, c∞, and cs being longitudinal kinematic viscosity,
high-frequency and adiabatic speeds of sound, respectively,
in contrast to the case of transverse dynamics. Using the
formulation of the Lagrange description of liquid dynamics
proposed in Ref. [1], it is impossible to describe longitudinal
dynamics with adiabatic propagation of macroscopic sound in
liquids and the positive dispersion of acoustic excitations. The
general case of liquid dynamics must be formulated via a set
of equations containing additionally a continuity equation for
density fluctuations and explicit treatment of heat fluctuations.

(2) The author of Ref. [1] admits that in his macroscopic
equation “τ formally is Maxwell relaxation time” as it must be
according to the well-known theories of transverse excitations

in liquids [2,8]. However, after that he makes the claim that “at
the microscopic level, Frenkel’s theory approximately iden-
tifies this time with the time between consecutive diffusive
jumps in the liquid.” Note that in making this claim the
author does not show any numeric evidence, although the
numerical checks would immediately clarify the possibility
to replace the collective Maxwell relaxation time τM by the
single-particle Frenkel time τF . Moreover, all the “Frenkel
line” approach to dynamics of supercritical fluids proposed
in Ref. [9] is based on the supposedly fundamental role of
the single-particle Frenkel time in collective dynamics. De-
spite knowing about a large difference between the Maxwell
and Frenkel times [10] the author advocates the incorrect
identification of τM by τF in the transverse dynamics. Even
a simple application of the Stokes-Einstein ratio provides
evidence of an order of magnitude difference between the
slow Frenkel time and the fast Maxwell relaxation for dense
liquids [11].

Here we show the estimation of the Frenkel time τF ac-
cording to its definition in Ref. [9] as “the average time it takes
an atom to move the average interparticle distance” using the
mean square displacements 〈R2〉(t ) and pair distribution func-
tions g(r), obtained in molecular dynamics (MD) simulations,
for the same Ar fluids at T = 205 and 450 K and a pressure of
10 kbar as in Ref. [1]. The MD simulations were performed on
a system of 2000 particles interacting via a standard Lennard-
Jones potential of Ar—first in the NPT ensemble and then,
upon equilibration at a given pressure, in the NV E ensemble.
It follows from our Fig. 1 [see the locations of straight black
lines which correspond to the time needed for the particle to
reach 〈R2

max〉 with Rmax being the position of first maximum of
g(r)] that the Frenkel time τF is equal for Ar fluid to 17.184 ps
at T = 205 K and to 2.645 ps at T = 450 K. For comparison,
the Maxwell relaxation times, obtained from shear viscosity
η calculated from the Green-Kubo integration of the shear
stress autocorrelation function and the high-frequency shear
modulus G∞ (see Ref. [12] for methodology of calculations of
G∞), have much smaller values: τM = 0.285 ps at 205 K and
τM = 0.092 ps at 450 K. These values and their ratios with
the Frenkel time τF are in agreement with similar estimations
in Ref. [10] for supercritical Ar at 280 K and in Ref. [11] for
supercritical Ne.
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FIG. 1. Frenkel time estimation for supercritical Ar at 205 and 450 K and corresponding pressures as in Ref. [1] via pair distribution
functions (a) and mean square displacements (b). The vertical bars in panel (b) show the time needed for particles to reach 〈R2

max〉 with Rmax

being the position of first maximum of g(r), shown in panel (a).

(3) Let us consider the Lagrangian formulation of liquid
dynamics proposed by Trachenko [1]. His Eq. (10) (here and
hereafter references to the equations of Ref. [1] are implied)
for the description of the transverse flow of viscous liquid
describes a one-dimensional propagation of damped waves of
the transverse velocity field v(x, t ) with the the shear wave
velocity c. In view of the present dissipative term ∼∂v/∂t ,
the equation is not time reversible, and thus the construction
of a variational formulation for it meets some problems. One
possible way to solve this task is to embed Eq. (10) of
Ref. [1] into some self-adjoint set of equations [13]. Such a
way is used in some problems of electrodynamics, thermal
elasticity, etc. [14], and Ref. [1] follows this way too. For
this purpose the author introduces an auxiliary field, φ2(x, t )
[apart from φ1(x, t ) ≡ v(x, t )], and postulates for this pair of
fields the equations (22). Since the set (22) is self-adjoint,
the equations can be considered as Euler-Lagrange equations.
The corresponding Lagrangian function can be built by means
of a known procedure [15]; such a function is presented in
Eq. (21).

The proposed Lagrangian description is invariant under
time translations t �→ t + λ, λ ∈ R. Consequently, there exists
a corresponding Noether conserved quantity, called in Ref. [1]
the energy. For the solution φ1 = φ0 exp(− t

2τ
) cos(kx − ωt )

to be a damped wave and the dual amplifying wave φ2(x, t ) =
φ1(−x,−t ), see Eq. (23) in Ref. [1], the energy E = φ2

0ω
2

(which actually is a mean energy density) is positive.
Note that the equality (23) implies a partial choice of

solution made by hand. Thus the following conclusion is
erroneous: “...a Lagrangian formulation of a nonreversible
dissipative process necessitates two waves moving in the
opposite space-time directions, resulting in this sense in the
reversibility of the Lagrangian description.”

Actually, the Lagrangian is invariant under a time reversal,
i.e., the transformation,

t �→ −t, φ1 �→ φ2, φ2 �→ φ1,

even without the constraint (23), i.e., when both degrees of
freedom φ1 and φ2 are independent of one another. One
can select the solution φ2 = 0 and arrive at E = 0 what-
ever solution for φ1 is chosen. Another choice, φ2(x, t ) =
−φ1(−x,−t ) instead of Eq. (23), yields a negative value
for E . Thus the energy density E (or the Hamiltonian H)

is not a useful quantity and has little to do with physical
properties of the transverse velocity field φ1(x, t ) = v(x, t ).
One should use instead another definition, for example, the
density of kinetic energy ε = ρv2/2 ≡ ρφ2

1/2, where ρ is a
mass density. The mean value of ε reveals dissipation, but then
the physical treatment of the field φ2, which reveals the gain
of the analogous quantity ρφ2

2/2, is questionable.
Nonphysical features of the Lagrangian and Hamiltonian

descriptions proposed in Ref. [1] will be more evident from
the following discussion. When analyzing wave solutions of
his Eq. (10), the author notes the similarity of the dispersion
relation (12) to that of the tachyon field [16]. Actually, his
Eqs. (10) and (22) and the Lagrangian (21) are likely related
to the tachyon theory much closely than to the theory of liquid.
Indeed, within the Lagrangian formalism an arbitrary (except
nondegenerate, smooth, etc.) transformation of variables is
admissible. Let us perform two consequent substitutions of
the variables φ1 and φ2. The first one,

φ1 = e−t/2τ φ̃1, φ2 = et/2τ φ̃2,

removes the “dissipative” term (20) from the Lagrangian (21).
The second one,

φ̃1 = 1√
2

(ψ1 + ψ2), φ̃2 = 1√
2

(ψ1 − ψ2),

splits the Lagrangian into a difference of two free-field parts:

L = 1

2

[(
∂ψ1

∂t

)2

− c2

(
∂ψ1

∂x

)2

+ 1

4τ 2
ψ2

1

]

− 1

2

[(
∂ψ2

∂t

)2

− c2

(
∂ψ2

∂x

)2

+ 1

4τ 2
ψ2

2

]
.

Each line describes the free Klein-Gordon field with imag-
inary mass m = i /2τ , i.e., a scalar tachyon field [16,17].
The corresponding energy is a difference of partial energies
related to the ψ1 and ψ2 fields, and thus it can acquire an
arbitrary positive or negative value; i.e., it is not positively
defined. In other words, such a system has no vacuum, and
thus it is nonphysical. The alternative use of a complex field
suggested in Ref. [1], say φ = 1√

2
(φ1 + i φ2), instead of the

real fields φ1 and φ2, retains this nonphysical peculiarity since
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a choice of variables does not affect the general properties of
the Lagrangian.

In summary, the Langrangian formulation of liquid dy-
namics claimed in Ref. [1] is in fact incorrect, because it
is focused solely on the transverse velocity field and not on
liquid dynamics in general. Furthermore, as we have shown,
the proposed two-field Lagrangian does not correspond to
the description of “two waves moving in the opposite space-
time directions,” but rather corresponds to the two dynamic
processes, one of which is losing kinetic energy (in the con-

ventional sense) and the second of which is unphysical with
gaining the energy. The proposed Hamiltonian description is
ill-posed since it is based on the conserved energy which is
neither additive nor positively defined. All that has nothing in
common with processes in liquid dynamics. Another proposal
by Trachenko to interpret the collective Maxwell relaxation
time via the single-particle Frenkel time is incorrect, because
of a huge difference between them, which excludes the defini-
tive role of the Frenkel time in the emergence of the gap for
transverse excitations [18].
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