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The recent paper “Finite size effects in the averaged eigenvalue density of Wigner random-sign real symmetric
matrices” by G. S. Dhesi and M. Ausloos [Phys. Rev. E 93, 062115 (2016)] uses the replica method to compute
the 1/N correction to the Wigner semicircle law for the ensemble of real symmetric random matrices with 0’s
down the diagonal, and upper triangular entries independently chosen from the values ±w with equal probability.
We point out that the results obtained are inconsistent with known results in the literature, as well as with
known large N series expansions for the trace of powers of these random matrices. An incorrect assumption
relating to the role of the diagonal terms at order 1/N appears to be the cause for the inconsistency. Moreover,
results already in the literature can be used to deduce the 1/N correction to the Wigner semicircle law for real
symmetric random matrices with entries drawn independently from distributions D1 (diagonal entries) and D2

(upper triangular entries) assumed to be even and have finite moments. Large N expansions for the trace of the
2kth power (k = 1, 2, 3) for these matrices can be computed and used as checks.
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I. INTRODUCTION

The class of Wigner random matrices refers to real sym-
metric, or complex Hermitian, N × N matrices with entries
on the diagonal chosen independently from a zero mean distri-
bution D1, and upper triangular entries chosen independently
from a finite mean, finite variance (the latter equal to w2 say)
distribution D2. Now scale the matrices by multiplying by
1/

√
N , and define the scaled eigenvalue density ρ̄(λ)—which

a priori is a function of N, D1, and D2—by the requirement
that N

∫ b
a ρ̄(λ) dλ is equal to the expected number of eigen-

values in the interval [a, b]. It is a celebrated result (see, e.g.,
([1], Theorem 18.3.2 and Remark 18.3.3)) that for a suitable
class of test functions φ(λ),

lim
N→∞

∫ ∞

−∞
φ(λ)ρ̄(λ)dλ =

∫ 2w

−2w

φ(λ)ρW,0(λ)dλ, (1)

where

ρW,0(λ) = 1

2πw2
(4w2 − λ2)1/2. (2)

Due to the shape of (2) when plotted as a graph, and the fact
that results of this sort were first obtained by Wigner [2,3],
the result implied by (1) and (2) is referred to as the Wigner
semicircle law. Note that no property of D1,D2 beyond those
stated affects the functional form (2), which thus exhibits a
type of universality.

Wigner’s original 1955 paper [2] considered (2N + 1) ×
(2N + 1) real symmetric matrices, J2N+1 say, with diagonal
entries all zero, upper triangular entries independently chosen
from the values ±w with equal probability. A result equivalent
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to (1) was derived by using the family of test functions
φ(λ) = λp (p = 2, 4, . . .) which corresponds to the moments
of the spectral density. Wigner’s second paper, published in
1958 [3], considered a wider class of random real symmet-
ric matrices: independence of entries, fixed variance, and
bounded moments were shown by the same technique to be
sufficient conditions, again based on the method of moments.
The removal of the necessity of finite moments, beyond the
variance, came later upon the refinement of the analysis of the
Stieltjes transform of the spectral density, as introduced by
Marčenko and Pastur [4].

In a recent work published in this journal by Dhesi and
Ausloos [5], the spectral density of Wigner’s original class
of random matrices JN —now without the restriction to N
odd—was reconsidered. In particular, for N large but finite
the leading correction term to the right-hand side of (1) was
sought. Earlier [6], the first author of [5] together with Jones
had found this leading correction in the case of the Gaussian
orthogonal ensemble (GOE)—real symmetric matrices with
diagonal entries independent normal distributions N[0,

√
2w]

and off-diagonal entries independent normal distributions
N[0,w] (see, e.g., ([7], Sec. 1.1])). Thus it was shown that
for large N∫ ∞

−∞
φ(λ)ρ̄(λ)dλ =

∫ 2w

−2w

φ(λ)ρW,0(λ)dλ

+ 1

N

∫ ∞

−∞
φ(λ)ρW,1(λ)dλ + · · · , (3)

where, with χA = 1 for A true, χA = 0 otherwise

ρW,1(λ) = 1

4
[δ(λ + 2w) + δ(λ − 2w)]− 1

2π

χ|λ|<2w

(4w2 − λ2)1/2

(4)
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(see also [8–10]). We remark that in [5] the symbol J is used
for our w.

The replica method from statistical physics was applied by
Dhesi and Ausloos to calculate that in the case of the random
matrices JN , the asymptotic formula (3) should be modified to
read ([5], Eqs. (52)–(54))∫ ∞

−∞
φ(λ)ρ̄(λ)dλ =

∫ 2w

−2w

φ(λ)ρW,0(λ)dλ

+ 1

N

∫ ∞

−∞
φ(λ)

(
ρ

(Q)
W,1(λ) + ρ

(R)
W,1(λ)

)
dλ

+ · · · . (5)

where ρ
(Q)
W,1(λ) is given by (4), while

ρ
(R)
W,1(λ) = 3

8π

(4w2 − λ2)1/2

w4

×
(

(3λ2 − 2w2) − 2λ2(λ2 − 2w2)

4w2 − λ2

)
χ|λ|<2w. (6)

With mp := ∫ ∞
−∞ λpρ̄(λ)dλ denoting the moments of the

scaled eigenvalue density, define the moment generating func-
tion (Green’s function) by

G(x) = 1

x

∞∑
p=0

mp

xp
=

∫ ∞

−∞

ρ̄(λ)

x − λ
dλ. (7)

As a corollary of (5) and (6) it is deduced that ([5], Eqs. (52)–
(54))

G(x) = GW,0(x) + 1

N

(
G(Q)

W,1(x) + G(R)
W,1(x)

) + · · · , (8)

where

GW,0(x) = 1

2w2
[x − x(1 − 4w2/x2)1/2], (9)

G(Q)
W,1(x) = [wGW,0(x)]3

w{1 − [wGW,0(x)]2}2
, (10)

G(R)
W,1(x) = −3

[wGW,0(x)]5

w{1 − [wGW,0(x)]2} . (11)

In our notation, we have factored the 1/N as seen in (8),
whereas in [5] the 1/N factor is included in (10) and (11).
It is commented ([5], below (57)) that the first of the terms
in (8) proportional to 1/N corresponds to the 1/N correction
to G(x) for the Gaussian orthogonal ensemble. It is similarly
true that ρ

(Q)
W,1(λ) in (5) is the 1/N correction in the expansion

of
∫ ∞
−∞ φ(λ)ρ̄(λ)dλ applied to the GOE ([5], below (53)).

In fact, neither of the corrections (6) nor (11) to the GOE
result are correct, and they are not consistent with each other.
With regard to (6), the use of computer algebra gives∫ 2w

−2w

ρ
(R)
W,1(λ)dλ = −3

4
. (12)

But we also have∫ ∞

−∞
ρ̄(λ)dλ =

∫ ∞

−∞
ρW,0(λ)dλ = 1,

∫ ∞

−∞
ρ

(Q)
W,1(λ)dλ = 0.

(13)

Substituting (12) and (13) in (5) with φ(λ) = 1 leads to a
contradiction: the results (13) imply that we must have∫ 2w

−2w

ρ
(R)
W,1(λ)dλ = 0. (14)

On the other hand, expanding (11) for large x, taking into
consideration (9) gives

G(R)
W,1(x) ∼ −3w4

x5
(15)

implying upon recalling (7) that (14) holds, in contradiction
to (12).

Similar inconsistencies between (6) and (11) are present
when considering the second moment. From (6), the use of
computer algebra gives∫ 2w

−2w

λ2ρ
(R)
W,1(λ)dλ = −3w2. (16)

However, (15) together with (7) imply∫ 2w

−2w

λ2ρ
(R)
W,1(λ)dλ = 0. (17)

We claim that the correct value is∫ 2w

−2w

λ2ρ
(R)
W,1(λ)dλ = −2w2. (18)

To see this, first note that according to (10) and (9), for large
x we have G(Q)

W,1(x) ∼ w2/x3 and thus∫ ∞

−∞
λ2ρ

(Q)
W,1(λ)dλ = w2. (19)

Alternatively, this can be derived directly from (4). Adding
(18) and (19) we see from (5) that (18) implies the 1/N cor-
rection to the second moment is −w2. To check this, from the
definition of the random matrices {JN }—symmetric matrices
with diagonal entries equal to 0 and upper triangular elements
chosen from the values ±w with equal probability—we have
that 〈

Tr J2
N

〉 = N (N − 1)w2, (20)

which indeed displays the claimed 1/N correction.
Results already in the literature [11,12] allow us to correct

both (6) and (11),

ρ
(R)∗
W,1 (λ)= 1

2πw
[−2T2(λ/2w) − 2T4(λ/2w)]

χ|λ|<2w√
1 − (λ/2w)2

,

(21)

G(R)∗
W,1 (x) = − 2[wGW,0(x)]3

w{1 − [wGW,0(x)]2} − 2[wGW,0(x)]5

w{1 − [wGW,0(x)]2} ,

(22)

where the ∗ on the superscript of the notation is to distinguish
these corrected formulas from the incorrect ones. In (21),
T2 and T4 denote the second- and fourth-order Chebyshev
polynomials,

T2(x) = 2x2 − 1, T4(x) = 8x4 − 8x2 + 1.
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We will subject (21) and (22) to a number of checks in the
next section.

The real symmetric matrices JN considered in [5] may be
extended to more general to real symmetric Wigner matrices
X = [x jk] by allowing for nonzero entries on the diagonal.
We suppose each entry is chosen independently from a dis-
tribution D1 with zero mean and standard deviation v2. The
distribution D2 of the off-diagonal entries—which for {JN }
has the 2kth moment equal to w2k for each k = 1, 2, . . .—may
also be generalized by allowing for a general value of the
fourth cumulant

κ4 = 〈
x4

j,k

〉 − 3
〈
x2

j,k

〉2 = 〈
x4

j,k

〉 − 3w4.

In the generalized setting (assuming too that both D1 and
D2 are even with all moments finite), the existing literature
[11–13] tells us that the expansion (3) depends on v2, w2, and
κ4, but not on higher moments of D1 and D2. The expansion
(5) again applies with ρ

(Q)
W,1(λ) given by (4), but ρW,1(λ)

replaced by the quantity

ρ
(R)#
W,1 (λ) = 1

2πw

[(
v2

w2
− 2

)
T2(λ/2w) + κ4

w4
T4(λ/2w)

]

× χ|λ|<2w√
1 − (λ/2w)2

. (23)

And for the expansion (8), G(Q)
W,1(x) is again given by (10)

while G(R)
W,1(x) is to be replaced by the quantity

G(R)#
W,1 (x)= (v2/w2 − 2)[wGW,0(x)]3

w{1 − [wGW,0(x)]2} + (κ4/w
4)[wGW,0(x)]5

w{1 − [wGW,0(x)]2} .

(24)

The fact that (23) and (24) depend on the variance v2 of the
diagonal elements tell us that a key claim in [5], asserting
that at order 1/N there is no such dependence, is incorrect.
Thus the first sentence of the paragraph including (1) in [5]
reads: “The present paper is still devoted to the calculation
of the averaged eigenvalue density..., with vanishing diagonal
elements—though it will be shown that this constraint is rather
irrelevant to order 1/N .” This claim is (essentially) repeated
as the final sentence of the Appendix, the latter in turn being
added in response to a comment of a referee (see the sentence
after ([5], Eq. (13)).

II. COMPARISON WITH EXACT MOMENTS

Cicuta [14] has used graphical methods to compute the
exact form of 〈Tr Sp

0 〉 (p = 1, 2, . . . , 8) in the case that the
N × N random real symmetric matrix S0 has entries equal
to zero on the diagonal, and identically distributed ele-
ments above the diagonal with moments 〈wp〉 (p = 1, 2, . . .).
The special case 〈w2k+1〉 = 0, 〈w2k〉 = w2k (k = 1, 2, . . .)
corresponds to the random matrix JN considered in [5]. In the
case that the odd moments of the entries above the diagonal
are zero and the even powers arbitrary, we read off from [14]
that〈

Tr J2
N

〉 = N (N − 1)〈w2〉,〈
Tr J4

N

〉 = N (N − 1)〈w4〉 + 2N (N − 1)(N − 2)〈w2〉2,

〈
Tr J6

N

〉 = N (N − 1)〈w6〉 + 6N (N − 1)(N − 2)〈w4〉〈w2〉
+ N (N − 1)(N − 2)(5N − 11)〈w2〉3,〈

Tr J8
N

〉 = N (N − 1)〈w8〉 + N (N − 1)(N − 2)(8〈w6〉〈w2〉
+ 6〈w4〉2) + 28N (N − 1)(N − 2)2〈w4〉〈w2〉2

+ N (N − 1)(N − 2)(N − 3)(14N − 19)〈w2〉4.

(25)

Restricting to the first two leading orders in N and recalling
that for JN , 〈w2k〉 = w2k , these reduce to〈

Tr J2
N

〉 = N2w2 − Nw2,〈
Tr J4

N

〉 = 2N3w4 − 5N2w4 + · · · ,〈
Tr J6

N

〉 = 5N4w6 − 20N3w6 + · · · ,〈
Tr J8

N

〉 = 14N5w8 − 75N4w8 + · · · .

The coefficients of the subleading term are in keeping with the
moments

∫ ∞

−∞
λ2k

(
ρ

(Q)
W,1(λ) + ρ

(R)∗
W,1 (λ)

)
dλ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−w2, k = 1

−5w4, k = 2

−20w6, k = 3

−75w8, k = 4

as implied by the functional forms (4) and (21). They are sim-
ilarly consistent with the coefficients in the large x expansion

G(Q)
W,1(x) + G(R)∗

W,1 (x) = −w2

x3
− 5w4

x5
− 20w6

x7
− 75w8

x9
− · · ·

as implied by (10), (9), and (22).
Generalization of (25) to the case that the diagonal entries

are chosen from the same distribution as the off-diagonal
entries was given in [14]. These results, at least up to the trace
of the sixth power, can themselves be generalized so that the
diagonal entries are sampled from a distinct distribution with
moments 〈vp〉 (p = 1, 2, . . .). Choosing, too, all odd moments
to vanish we find

〈Tr S2〉 = N2〈w2〉 + N (〈v2〉 − 〈w2〉),

〈Tr S4〉 = 2N3〈w2〉2 + N2(4〈w2〉〈v2〉 + 〈w4〉 − 6〈w2〉2)

+ N (〈v4〉 − 〈w4〉 − 4〈w2〉〈v2〉 + 4〈w2〉2),

〈Tr S6〉 = 5N4〈w2〉3 + N3(15〈w2〉2〈v2〉 + 6〈w2〉〈w4〉
− 26〈w2〉3) + N2(6〈w2〉〈v4〉 + 3〈w2〉〈v2〉2

+ 9〈w4〉〈v2〉 − 45〈w2〉2〈v2〉 + 〈w6〉 − 18〈w2〉〈w4〉
+ 43〈w2〉3) + N (〈v6〉 − 6〈w2〉〈v4〉 − 3〈w2〉〈v2〉2

− 9〈w4〉〈v2〉 + 30〈w2〉2〈v2〉 − 〈w6〉 + 12〈w2〉〈w4〉
− 22〈w2〉3).

With 〈w2〉 = w2, 〈v2〉 = v2, and κ4 = 〈w4〉 − 3w4, restrict-
ing to the first two leading orders these read

〈Tr S2〉 = N2w2 + N (v2 − w2),

〈Tr S4〉 = 2N3w4 + N2(4w2v2 + κ4 − 3w4) + · · · ,

〈Tr S6〉 = 5N4w6 + N3(15w4v2 + 6w2κ4 − 8w6) + · · · .

(26)
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The coefficients of the subleading terms in (26) are consistent with the moments

∫ ∞

−∞
λ2k

(
ρ

(Q)
W,1(λ) − T2(λ/2w)χ|λ|<2w

πw
√

1 − (λ/2w)2

)
dλ =

⎧⎪⎨
⎪⎩

−w2, k = 1

−3w4, k = 2

−8w6, k = 3,

v2

2πw3

∫ 2w

−2w

λ2k T2(λ/2w)√
1 − (λ/2w)2

dλ =

⎧⎪⎨
⎪⎩

v2, k = 1

4w2v2, k = 2

15w4v2, k = 3,

κ4

2πw5

∫ 2w

−2w

λ2k T4(λ/2w)√
1 − (λ/2w)2

dλ =

⎧⎪⎨
⎪⎩

0, k = 1

κ4, k = 2

6w2κ4, k = 3.

It is also the case that for large x

[wGW,0(x)]3

w{1 − [wGW,0(x)]2}2
− 2[wGW,0(x)]3

w{1 − [wGW,0(x)]2}

= −w2

x3
− 3w4

x5
− 8w6

x7
− · · · ,

v2[wGW,0(x)]3

w3{1 − [wGW,0(x)]2} = v2

x3
+ 4w2x2

x5
+ 15w4v2

x7
+ · · · ,

κ4[wGW,0(x)]5

w5{1 − [wGW,0(x)]2} = κ4

x5
+ 6w2κ4

x7
+ · · · ,

which are similarly consistent with (8), upon replacing G(R)
W,1

by G(R)#
W,1 , and (26).
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