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In an electromagnetic code, a wave can be injected in the simulation domain by prescribing an oscillating
field profile at the domain boundary. The process is straightforward when the field profile has a known analytical
expression (typically, paraxial Gaussian beams). However, if the field profile is known at some other plane, but
not at the boundary (typically, nonparaxial beams), some preprocessing is needed to calculate the field profile
after propagation back to the boundary. We present a parallel numerical technique for this propagation between
an arbitrary tilted plane and a given boundary of the simulation domain, implemented in the Maxwell-Vlasov
particle-in-cell code SMILEI.
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I. INTRODUCTION

Electromagnetic (EM) codes are popular tools in various
fields of physics, from nonlinear photonics to laser-matter and
laser-plasma physics. In such codes, an EM wave can be intro-
duced in the simulation domain by two means. The EM wave
can be imposed as an initial condition, i.e., prescribing the
fields throughout the domain at the initial time of simulation,
of course ensuring that these fields satisfy the Poisson and
zero-magnetic-divergence equations. This approach requires
a simulation domain large enough to contain the whole EM
wave. Furthermore, the knowledge of the full spatial profile
at a given time may be challenging to obtain. To remove
these constraints, a second technique, which we consider in
the present article, consists in imposing the EM wave as a
time-varying boundary condition. This second approach only
requires the boundary surface to be large enough, and the
knowledge of the EM field spatiotemporal profile is only
required at the boundary.

Although the present article is relevant to any EM code
or Maxwell solver, we illustrate the proposed method with
particle-in-cell (PIC) simulations [1] using the open-source
PIC code SMILEI [2]. The PIC method simulates the self-
consistent evolution of both the field and particle distribution
of a plasma. It is widely used, from astrophysical studies
[3,4] to ultra-intense laser-plasma interaction [5,6]. In SMILEI,
Maxwell’s equations are solved using the finite-difference-
time-domain approach [7,8], and EM waves can be injected
or absorbed using the Silver-Müller boundary conditions [9].
These conditions allow for EM wave injection by prescribing
the transverse magnetic field profiles at a boundary of the
simulation domain.

Planar waves and paraxial Gaussian beams have a direct
analytical formulation of the EM field in the whole space.
Specifying their field as a function of time at one given
boundary is thus trivial. However, other profiles do not have
an analytical representation, or at least not in the whole
space. Often they are known in a given plane which does not
correspond to a simulation box boundary. This is typical for
experimental profiles or theoretical nonparaxial beams. In that

case, specifying the field profiles at a given boundary is more
involved. The present article describes a method to facilitate
this process.

A recent work by Thiele et al. [10] detailed a technique
to preprocess an EM wave profile specified at a given plane
(parallel to, but not at the boundary) to propagate it backward
and obtain the field profiles at the boundary. This approach
is largely based on the angular spectrum method (ASM)
used in other domains, such as acoustics [11,12] and digital
holography [13]. It consists in applying a propagation factor to
the fields in the spatial frequency domain, thus relies heavily
on Fourier transforms. The theory by Thiele et al. extends this
principle to temporal frequencies, consequently allowing to
prescribe a temporal profile to the EM wave. This is obviously
a strong requirement, in PIC codes, for modeling ultra-short
(femtosecond) laser pulses.

In the present article, we combine the work by Thiele
et al. and that of Matsushima et al. [13] to preprocess ultra-
short-pulse EM waves prescribed at an arbitrary, oblique
plane inside the simulation domain. The paper is organized
as follows. Section II summarizes the theory by Thiele et al.,
which we complete by that of Matsushima et al. in Sec. III.
The numerical technique deployed in SMILEI is presented in
Sec. IV, and examples in two and three dimensions are given
in Sec. V. Finally, our conclusions are given in Sec. VI.

II. PROPAGATION BETWEEN PARALLEL PLANES

The ASM theory can be summarized in a simple man-
ner (note that the following discussions relate to three-
dimensional simulations, but can be directly applied to two-
dimensional simulations by discarding the z axis.). It is valid
for any scalar field A satisfying a wave equation

c2�A(x, y, z, t ) = ∂2
t A(x, y, z, t ), (1)

where x, y, z, and t are the space and time coordinates, and c
is the wave velocity. In our situation, the field A may be any
component of the EM field (or of the EM vector potential),
and c is the speed of light in vacuum, as the propagation
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FIG. 1. Box model of a simulation where the EM wave is pre-
scribed in a parallel plane at a distance δ from a boundary.

is only considered without plasma. We study specifically a
propagation along the x axis, between two planes x = −δ and
x = 0, as illustrated in Fig. 1.

The three-dimensional Fourier transform of Eq. (1) for the
variables y, z, and t gives(

∂2
x + k2

x

)
Â(x, ky, kz, ω) = 0, (2)

where ky, kz, and ω are the respective conjugate variables,
in the frequency domain, of y, z, and t ; and kx(ky, kz, ω) ≡√

ω2/c2 − k2
y − k2

z . Equation (2) has general solutions propor-
tional to exp(−ikxx) for waves propagating towards positive x.
This means that, if the profile A is known at x = 0, the profile
at x = −δ is obtained after multiplying Â by exp(ikxδ):

Â(−δ, ky, kz, ω) = exp(ikxδ)Â(0, ky, kz, ω). (3)

Note that the function kx(ky, kz, ω) assumes pure imagi-
nary values where k2

y + k2
z > ω2/c2. As those correspond to

evanescent waves, they should not contribute to the propaga-
tion, and are simply removed from the calculation. In other
terms, Eq. (3) should be replaced by

Â(−δ, ky, kz, ω) = Pδ (ky, kz, ω) Â(0, ky, kz, ω), (4)

where we introduced the propagation factor

Pδ (ky, kz, ω) =
{

exp[ikx(ky, kz, ω)δ] if ω2

c2 > k2
y + k2

z

0 otherwise.
(5)

To recover the field profile A(−δ, y, z, t ) in real space, a
three-dimensional inverse Fourier transform would be suffi-
cient. However, storing all values of the (y, z, t ) profile might
consume too much time and disk space. Instead, as suggested
in Ref. [10], only a two-dimensional inverse Fourier transform
on ky and kz may be carried out. This results in a Ã(−δ, y, z, ω)
profile, where ω still corresponds to the temporal Fourier
modes. If necessary, only a few of these modes (the most
intense ones) can be kept to ensure a reasonable disk-space us-
age. This number of temporal modes kept in memory must be
specified by the user as there is no optimal choice appropriate

FIG. 2. Box model of a simulation where the EM wave is pre-
scribed in a oblique plane.

for all cases. Note that this filtering is generally beneficial for
an additional reason: it removes any spurious zero-frequency
mode that may cause unphysical results.

In the end, the full A(−δ, y, z, t ) profile is calculated during
the actual PIC simulation, summing over the different ω

according to

A(−δ, y, z, t ) = f (y, z, t ) × ∑
ω

Re(Ã(−δ, y, z, ω)eiωt ),

(6)
where φ is the complex argument of Ã and f (y, z, t ) is an
additional profile, defined by the user. This optional profile f
provides some extra control over the temporal reconstruction
of the wave: as a finite number of temporal modes may
be kept, the reconstructed wave is periodic, thus spurious
repetitions of the EM pulse may occur later during the sim-
ulation. This custom function f may be used to remove those
unwanted repetitions.

III. PROPAGATION BETWEEN TILTED PLANES

In the context of image reconstitution for digital hologra-
phy, Matsushima et al. [13] proposed an extension of the ASM
to handle the propagation between two nonparallel planes, as
illustrated in Fig. 2. In this section, we summarize a version
of that theory that follows the previous section’s formulation.

The rotation of the wave is handled in the Fourier space,
that is working directly on the field Â(x, ky, kz ). In this section,
the argument ω is not explicitly written as it does not change
the reasoning.

We consider, for simplicity, a rotation around the axis of
kz. Denoting rotated quantities with a “prime” symbol, the
rotation of the wave vector by an angle θ reads

k′
x = kx cos θ + ky sin θ,

k′
y = −kx sin θ + ky cos θ, (7)

k′
z = kz,

where k′
x ≡

√
ω2/c2 − k′2

y − k′2
z .
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To obtain an expression of the rotated profile Â′(x′, k′
y, k′

z ),
let us first apply a propagator term exp(ikxx) in the Fourier
transform

A(x, y, z) =
∫∫

Â(x, ky, kz ) exp(ikyy + ikzz)dkydkz

=
∫∫

Â(x = 0, ky, kz ) exp(�k · �r)dkydkz, (8)

where �k = (kx, ky, kz ) and�r = (x, y, z). Note that this equation
is also true in the rotated frame

A′(x′, y′, z′) =
∫∫

Â′(x′ = 0, k′
y, k′

z ) exp(�k′ · �r′)dk′
ydk′

z. (9)

Knowing that rotation preserves the scalar product �k · �r, we
may operate a change of variable (ky, kz ) → (k′

y, k′
z ) in Eq. (8)

A(x, y, z)=
∫∫

a(k′
y, k′

z ) exp(�k′ · �r′)
∣∣∣∣cos θ− k′

y

k′
x

sin θ

∣∣∣∣dk′
ydk′

z,

(10)
where we introduced a(k′

y, k′
z ) = Â(x = 0, ky, kz ). As the orig-

inal profile is equal to the rotated one in rotated coordinates,
i.e., A(x, y, z) = A′(x′, y′, z′), identifying the integrands in
Eqs. (9) and (10) results in

Â(x = 0, ky, kz ) = Â′(x′ = 0, k′
y, k′

z )

∣∣∣∣cos θ − k′
y

k′
x

sin θ

∣∣∣∣
−1

.

(11)
This last equation constitutes the calculation to be carried
out to obtain the rotated wave at x = 0. More precisely, the
user prescribes A′(x′ = 0, y′, z′) which is converted to Â′(x′ =
0, k′

y, k′
z ) using a double Fourier transform. Then Eq. (11)

consists in interpolating values on the rotated Fourier space,
and applying the factor to obtain Â(x = 0, ky, kz ). After this
rotation, one may apply the same propagation factor as in
Eq. (5) to combine both a rotation and a translation. Follows
an inverse Fourier transform, identical to the description of the
previous section, to recover the profile in real space.

This technique applies to any scalar field, and by extension,
to any component of the EM field. In SMILEI, the boundary
conditions only require the knowledge of the magnetic field
profiles transverse to the boundary. As an example, for the
x = 0 boundary, one needs to prescribe the components By

and Bz, the other components being naturally obtained by
solving Maxwell’s equations. Hence, in the rotated frame,
the user needs to define the profiles B′

y′ (x′ = 0, y′, z′) and
B′

z′ (x′ = 0, y′, z′), i.e., the magnetic field projected to y′ and z′
only. The rotation and propagation back to the boundary x = 0
leads to the fields By′ (x = 0, y, z) and Bz′ (x = 0, y, z), which
lie in the x = 0 plane, but remain the components projected
to y′ and z′. To recover the components along the simulation
directions y and z, a simple projection is applied:

By = By′ cos θ, Bz = Bz′ . (12)

IV. NUMERICAL IMPLEMENTATION

The theory described in the previous sections presents
a few numerical obstacles requiring careful treatment, es-
pecially to enable a parallel treatment on a large number
of processors. Let us first summarize the general numerical

process. In the particular case of SMILEI, this involves arrays
of complex numbers of initial size (Ny, Nz, Nt ) corresponding,
by default, to the number of cells Ny and Nz of the spatial mesh
and the number of timesteps Nt required for the PIC simu-
lation. The final array size is reduced to (Ny, Nz, Mt ), with
Mt < Nt , should one keep only some of the temporal Fourier
modes (as described in Sec. II). The process is outlined as
follows:

(1) The EM wave profile A′ defined by the user is evalu-
ated for all (y′, z′, t ′) coordinates.

(2) Its Fourier transform Â′ is computed along the three
axes.

(3) For each ω, the total spectral energy is computed, and
only those ω with the highest magnitude (according to some
user-defined criterion) are kept.

(4) An interpolation method transforms Â′ into Â corre-
sponding to a rotation in frequency space, see Eq. (11).

(5) The array Â is multiplied by the propagation factor of
Eq. (5).

(6) The inverse Fourier transform is computed along ky

and kz only.
(7) The resulting array is stored in a file. The file is read

later by each process to reconstruct the wave at each timestep,
according to Eq. (6).

Steps 2 and 6 make use of an implementation of the
fast Fourier transform (FFT) algorithm. However, to enable
multiparallel computation, the arrays must be split among
Nproc processors. There are several approaches to perform
a parallel FFT (see Ref. [14] for a review). In SMILEI, we
chose to split the initial array A′ in equal parts along its first
dimension, y (note that, before step 1, the array size is ex-
tended, if necessary, to a multiple of Nproc). As a consequence,
each processor owns an array of size (ny, Nz, Nt ), where ny =
Ny/Nproc. Step 2 begins by applying the FFT algorithm to the
last two dimensions z and t . To transform the first dimension
y, some data reorganization is necessary. We employ the
message passing interface (MPI) protocol to communicate
parts of the arrays between processors, so that each processor
finally owns a portion of the global array corresponding to a
slab along the second dimension z, of size (Ny, nz, Nt ), where
nz = Nz/Nproc. This allows the computation of the FFT along
y, thus providing the total Fourier transform Â′. Note that, in
this whole process, the decomposition of the array between
processors has changed.

In step 6, the calculation is almost the same, but in reverse
order. First, the inverse FFT is computed along y. Then, the
array decomposition between processors is reversed again,
using MPI, so that they each own a portion of size (ny, Nz, Mt ).
Finally, the inverse FFT is computed over the axis z.

Step 4 requires some interpolation algorithm that maps
Â′(k′

y, kz, ω) to Â(ky, kz, ω). In computing terms, for each
point at location (ky, kz, ω) of the resulting array Â, we deter-
mine the location (k′

y, kz, ω) in the initial array Â′ from where
the value is copied, using Eq. (7). As this location may not
fall exactly on an array point, we must interpolate between
two consecutive k′

y. Importantly, the complex numbers given
by a typical FFT of a laser profile present a rapidly varying
argument, often close to, or faster than the grid resolution.
Consequently, one must not interpolate linearly between two
complex numbers to avoid cancellation of two numbers with
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FIG. 3. Two-dimensional simulation of a tightly focused beam prescribed in a tilted plane. Top panels: Magnetic field Bz at three different
times. Bottom panels: Comparison of the obtained (red lines) and requested (dashed black lines) magnetic field profiles, as a function of time
(left) at x = y = 0, and as a function of y′ (right) at t = 0.

opposite phases. Instead, in SMILEI, we considered that the
magnitude and argument are both physically significant: the
former represents the weight assigned to each mode, while
the latter corresponds to a delay in space and/or time. This
consideration supports a separate interpolation for the mag-
nitude and the argument of these complex numbers, which is
done in SMILEI. One additional precaution is necessary for the
interpolation of the argument: as the global phase is supposed
to vary smoothly across the array, we ensure that two consec-
utive arguments are always in the same order (e.g., the second
larger than the first, adding 2π to the second when necessary).

V. EXAMPLES

The overall method described in the previous sections
has been implemented in SMILEI in both two- and three-
dimensional Cartesian geometries.

Let us first present a two-dimensional simulation of a
tightly focused laser pulse with an angle of incidence of 25◦, a
wavelength λ and a linear polarization in the simulation plane
(x, y). The full simulation domain extends from x = −16λ to
16λ and y = −96λ to 96λ. To inject this laser we prescribed
a Bz magnetic field profile along a line y′ tilted by 25◦ with
respect to the x = −16λ boundary of the simulation domain.
The intensity profile is Gaussian in space and has a cos2 shape
in time, the focus being located in the middle of the simulation
box (x = 0, y = 0, y′ = 0) and the time t = 0 denoting the
time at which the laser field is maximal

Bz(t, y′) = a0 exp

(
− y′2

w2

)
cos

(
π

2

t

τ

)
�

(
t

τ

)
cos(ω0t ),

(13)

with ω0 = 2π c/λ the laser angular frequency, �(t ) = 1 for
−1 < t < 1 and 0 otherwise, a0 = 1 the field amplitude in
arbitrary units, w = λ the waist, and τ = 6λ/c the duration.
The spatial and temporal resolutions were set to �x = �y =
λ/32 and c�t = 0.95�x/

√
2, respectively.

Figure 3 presents the results obtained keeping only the 128
most intense temporal modes, and illustrate that a sufficient

FIG. 4. Same simulations as in Fig. 3, keeping only 16 (top
panel) and 4 modes (bottom panel).
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Bz(t = 0, x, y, z)

x/λ

z/λ

y
/
λ

y /λ

ct/λ

Bz(t = 0, x = 0, y , z = 0)

2.12

Bz(t, x = 0, y = 2.12λ, z = 0)

FIG. 5. Three-dimensional simulation of an oblique-incidence Laguerre-Gauss beam. Left: Three-dimensional rendering of magnetic field
isocontours at Bz = ±a0/10. Top right: spatial profile in the tilted plane at t = 0. Bottom right: temporal profile at x′ = z′ = 0, y′ = 2.12λ.
Red and dashed black lines represent obtained and requested profiles, respectively.

precision for a short-pulse laser simulation is preserved. The
top panels show both the spatial and temporal aspects of the
laser pulse propagation. The bottom panels prove the excellent
quantitative agreement between the simulated field evolution
and the prescribed profiles. When less temporal modes are
kept, the agreement decreases, as shown in Fig. 4 with 16 and
4 modes. We would like to stress, however, that the adequate
number of modes to ensure a good description of the injected
fields is strongly problem-dependent.

To illustrate our method in a three-dimensional simulation,
we prescribe, in a (y′, z) plane titled by 25◦, a Laguerre-Gauss
beam (mode 1,0) with a cos2 temporal shape as

Bz(t, y′, z) = a0

√
2

r′

w
exp

(
− r′2

w2

)
cos

(
π

2

t

τ

)

×�

(
t

τ

)
cos(ω0t − φ′), (14)

where r′ =
√

y′2 + z2, φ′ = arctan(z/y′), w = 3λ, and τ =
5λ/c. The simulation box extends from x = −8λ to 8λ, from
y = −24λ to 24λ, and from z = −16λ to 16λ. The spatial
and temporal resolutions are �x = �y = λ/16 and c�t =
0.95�x/

√
3, respectively. In this case, all the temporal modes

were kept. Figure 5 illustrates the propagated laser pulse in
a three-dimensional rendering of Bz isocontours. The right-

hand-side panels show the excellent quantitative agreement
between the obtained and requested field profiles.

VI. CONCLUSION

In summary, the present article reviews and combines two
related theories for the propagation of waves between two
planes. They both extend the ASM, the first for temporal pro-
filing, and the second for propagation between tilted planes.
We combine both approaches and describe the numerical
implementation in a parallel processing environment using the
open-source PIC code SMILEI. This permits to define an arbi-
trary wave profile (amplitude and phase) at any oblique plane
in the simulation box, instead of defining it at a boundary.

It will be applied to several situations relevant to high-
intensity laser-plasma interaction: tightly focused, or spatially
chirped laser pulses, and waves featuring orbital angular
momentum.
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