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In this paper, we consider the Boltzmann equation with respect to orthonormal vielbein fields in conservative
form. This formalism allows the use of arbitrary coordinate systems to describe the space geometry, as well as
of an adapted coordinate system in the momentum space, which is linked to the physical space through the use
of vielbeins. Taking advantage of the conservative form, we derive the macroscopic equations in a covariant
tensor notation, and show that the hydrodynamic limit can be obtained via the Chapman-Enskog expansion
in the Bhatnaghar-Gross-Krook approximation for the collision term. We highlight that in this formalism, the
component of the momentum which is perpendicular to some curved boundary can be isolated as a separate
momentum coordinate, for which the half-range Gauss-Hermite quadrature can be applied. We illustrate the
capabilities of this formalism by considering two applications. The first one is the circular Couette flow between
rotating coaxial cylinders, for which benchmarking data are available for all degrees of rarefaction, from the
hydrodynamic to the ballistic regime. The second application concerns the flow in a gradually expanding
channel. We employ finite-difference lattice Boltzmann models based on half-range Gauss-Hermite quadratures
for the implementation of diffuse reflection, together with the fifth-order weighted essentially nonoscillatory
and third-order total variation diminishing Runge-Kutta numerical methods for the advection and time stepping,
respectively.
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I. INTRODUCTION

Rarefied gas flows, where nonequilibrium effects become
important and the Navier-Stokes equations are no longer
applicable, can be successfully described within the frame-
work of the Boltzmann equation [1–11]. Microfluidics spe-
cific effects (e.g., velocity slip, temperature jump) can be
recovered by modeling the boundary conditions at the level
of the Boltzmann distribution function f ≡ f (x, p, t ) (i.e.,
by imposing kinetic boundary conditions). According to the
diffuse reflection concept, the particles reflected from the
wall back into the fluid follow a Maxwellian distribution (all
quantities are nondimensionalized following the convention
of Refs. [12–16]):

fw(pn < 0) = nw

(2πmTw )3/2
exp

[
− (p − muw )2

2mTw

]
, (1.1)

where nw, Tw, and uw are the particle number density, tem-
perature, and velocity of the wall. In the above, pn ≡ p · n
represents the projection of the particle momentum vector on
the outwards-directed normal n to the wall, such that particles
for which pn < 0 travel from the wall back into the fluid
domain.

Since the incident particle flux is a priori essentially ar-
bitrary, prescribing the distribution of emerging particles via
Eq. (1.1) induces a discontinuity in the functional form of the
distribution function [17]. Furthermore, the impermeability of
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the wall is ensured by requiring that the mass flux through the
boundary vanishes:∫

pn<0
d3 p fw pn = −

∫
pn>0

d3 p f pn. (1.2)

The correct numerical implementation of Eq. (1.2) requires
the ability to recover half-range integrals of the distribution
function. This can be done by choosing the discrete set of
momentum vectors and their associated quadrature weights
following the prescription of half-range Gauss quadrature
methods [16,18–36]. Since the Gauss quadratures are one di-
mensional [37,38], the integration over the momentum space
must be split into a product of one-dimensional integrals. The
half-range integration can be performed using a half-range
Gauss-Hermite quadrature only if the integration range along
this direction is [0,∞) or (−∞, 0]. This implies that, for
the Cartesian split of the integration domain (i.e., when the
integrals over px, py, and pz are performed separately), the
domain walls have to be orthogonal to the Cartesian axes.
For example, for a wall perpendicular to the z axis, the
integration in Eq. (1.2) is performed over the ranges px, py ∈
(−∞,∞) and pz ∈ [0,±∞). This results in a limitation of
the applicability of the presently available models based on
half-range quadratures when curved or arbitrary boundaries
are considered.

It is a common practice in the literature to exploit the
symmetries of a non-Cartesian geometry by using curvilinear
geometry-fitted coordinates [18–21,39–47]. The coordinate
system can be chosen such that the boundary is always orthog-
onal to the unit vector along one of the curvilinear coordinates.
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SERGIU BUSUIOC AND VICTOR E. AMBRUŞ PHYSICAL REVIEW E 99, 033304 (2019)

In order to apply the half-range quadrature along the direction
perpendicular to the wall, one further step must be taken: the
momentum space has to be adapted to the new coordinate
system, such that the components of the momentum vector
always point along the unit vectors corresponding to the
curvilinear coordinates.

In Ref. [48], Cardall et al. expressed the relativistic
Boltzmann equation in conservative form with respect to a
vielbein (i.e., tetrad in 4D space-time) field and a general
choice for the parametrization of the momentum space. In
this paper, we present a formulation of the nonrelativistic
Boltzmann equation with respect to general coordinates. In
order to keep the momentum space tied to the new coordinate
frame, we employ an orthonormal vielbein field (i.e., a triad
consisting of the noncommuting unit vectors of the coordinate
frame) with respect to which the momentum space degrees
of freedom are defined. The resulting Boltzmann equation
contains inertial forces which ensure that freely streaming
particles travel along straight lines in the original Cartesian
geometry. Key to this development is the use of the tools of
differential geometry. It is worth mentioning that differential
geometry and the vielbein formalism have been used previ-
ously in fluid dynamics, in particular for the study of flows on
curved surfaces [49–52].

In order to demonstrate the robustness of our proposed
formulation, we introduce the conservative form of the Boltz-
mann equation, with the help of which the Navier-Stokes
equations with respect to general coordinates are derived via
the Chapman-Enskog expansion. This is the main result of this
paper.

The applicability of our proposed scheme to rarefied flows
enclosed inside curved boundaries is demonstrated by consid-
ering two applications, namely, the circular Couette flow be-
tween coaxial cylinders and the flow in a gradually expanding
channel, which are described in what follows.

In the first case, cylindrical coordinates are used to
parametrize the flow domain, such that the boundaries are
orthogonal to the radial (R) direction. After defining the
momentum space with respect to the unit vectors along the ra-
dial, azimuthal, and z directions, the mixed-quadrature lattice
Boltzmann (LB) models introduced in Ref. [34] are employed.
These models allow the quadrature (half-range or full-range
Gauss-Hermite) to be chosen on each axis separately. The
implementation of the inertial forces requires the theory of
distributions, as discussed in Ref. [36].

In Ref. [53], a D2Q9 collide-and-stream LB model was
adapted to recover the Navier-Stokes equations with respect
to the cylindrical coordinate system. In the resulting scheme,
the velocity space parametrization is performed along the
coordinate system unit vectors, however, its applicability is
restricted to the hydrodynamic regime. Due to the collide-and-
stream paradigm, the computational domain still required a
two-dimensional discretization.

In Refs. [42,43,45,46], the LB model was employed using
a discretization with respect to cylindrical coordinates, but the
momentum space degrees of freedom were the Cartesian ones.
This discrepancy between the momentum space and the flow
domain resulted in a broken symmetry which required a two-
dimensional discretization of the flow domain. Furthermore,
the aforementioned studies are limited to low Mach number

flow regimes, where the flow is essentially incompressible.
In our implementation of the circular Couette flow, the axial
symmetry is preserved also in the momentum space, such
that the discretization of the flow domain can be performed
in a one-dimensional fashion, along the radial coordinate
(with only one point along the azimuthal and z coordinates,
where periodic boundary conditions apply), greatly reducing
the total number of grid points required to obtain accurate
results. Also, the half-range quadratures employed in our
models allow us to model highly compressible flows for which
the profiles of the macroscopic velocity, number density,
temperature, and heat fluxes are correctly recovered.

The velocity sets employed in our models are prescribed
via Gauss quadrature rules and are in general off lattice (i.e.,
the velocity vectors cannot point simultaneously to neigh-
boring lattice sites). Therefore, the widely used collide-and-
stream paradigm is inapplicable with our models and we are
forced to resort to finite-difference schemes [12–14,54–74]. In
order to ensure good accuracy of the spatial scheme, the fifth-
order weighted essentially nonoscillatory (WENO-5) scheme
was employed [45,75–80]. For the time marching, the third-
order total variation diminishing (TVD) Runge-Kutta method
described in Refs. [79,81–84] was employed. Furthermore,
the resolution near the bounding cylinders is increased by
performing a stretching of the radial grid points through
a coordinate transformation which is compatible with our
proposed numerical scheme, as described in Refs. [40,62].

Our scheme is validated in the context of the circular Cou-
ette flow problem in three flow regimes: the hydrodynamic
(Navier-Stokes) regime, the transition regime, and the ballistic
(free-streaming) regime. In the hydrodynamic and ballistic
regimes, our simulation results are compared with the analytic
solution of the compressible Navier-Stokes and collisionless
Boltzmann equations, respectively. In the slip-flow and tran-
sition regimes, our results are compared with those reported
in Ref. [85] by Aoki et al. In all cases, an excellent match is
found and we conclude that our scheme can be successfully
applied for the simulation of the circular Couette flow.

Since the aim of this paper is to demonstrate the appli-
cability of the lattice Boltzmann models based on half-range
Gauss-Hermite quadratures introduced in Refs. [34,36] for the
study of rarefied flows confined in nonrectangular geometries,
our study of the circular Couette flow is limited to the case
of pure diffuse reflection (unit accommodation coefficient).
We therefore do not discuss other interesting aspects of the
circular Couette flow, such as the Taylor-Couette instability
appearing at large values of the Taylor number [86,87], or
the inverted velocity profile due to subunitary accommodation
coefficients [85,88–96].

The second application consists of the gradually expanding
channel introduced by Roache in Ref. [97]. This configuration
is interesting since the flow features exhibit scale invariance
at sufficiently large values of the Reynolds number Re. In
particular, the results for Re = 100 already give a reasonable
approximation of the flow features when Re → ∞. Subse-
quently, this problem was considered by 15 participant groups
and the results were reported in Ref. [98] for benchmarking
purposes.

Before ending the Introduction, we note that our study
is limited to the case when the quadrature method is based
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on a Cartesian split of the momentum space. More efficient
lattice Boltzmann algorithms may be developed by choosing
a parametrization of the momentum space (after aligning the
momentum space with respect to the triad) which shares
the symmetries of the flow. In particular, a cylindrical co-
ordinate system in the momentum space, such as the shell-
based models introduced in Ref. [54] and further employed
in Refs. [43,99–101] may be more suitable for the simu-
lation of flows with cylindrical symmetry. For flows with
spherical symmetry, it may be convenient to parametrize the
momentum space using spherical coordinates, as discussed
in Refs. [102,103]. However, to the best of our knowledge,
none of the above mentioned models have been endowed with
half-range capabilities. We thus postpone the study of flows in
curvilinear geometries using non-Cartesian decompositions of
the momentum space for future work.

The paper is structured as follows. In Sec. II, we lay
the theoretical foundation for our scheme by introducing
the nonrelativistic Boltzmann equation in conservative form
with respect to orthonormal vielbein fields [i.e., triads in
three-dimensional (3D) space]. In Sec. II C, the Navier-Stokes
equations are derived with respect to general coordinates via
the Chapman-Enskog expansion. The numerical scheme and
the implementation of the boundary conditions are discussed
in Sec. III. The lattice Boltzmann algorithm is reviewed in
Sec. IV. In Sec. V, the vielbein formalism is specialized
to the case of the circular Couette flow and the numerical
results are compared to analytic solutions in the Navier-Stokes
(Sec. V D) and collisionless (Sec. V E) regimes, as well as
with the DVM results in Ref. [85] in the transition regime.
The flow through the gradually expanding channel is dis-
cussed in Sec. VI. Our conclusions are presented in Sec. VII.
Appendices A–C contain supplementary mathematical details
required in Sec. II, while Appendix D discusses the implemen-
tation of the momentum space derivative of the distribution
function in the lattice Boltzmann method employed in this
paper.

II. BOLTZMANN EQUATION WITH RESPECT TO TRIADS

To better illustrate the use of triads, we refer the reader
to Fig. 1, where the space between two coaxial cylinders
constitutes the flow domain. The spatial grid can be con-
structed in two ways: using Cartesian coordinates [Fig. 1(a)]
or cylindrical coordinates [Figs. 1(b) and 1(c)]. Similarly, the
momentum space degrees of freedom can be chosen along the
Cartesian axes [Figs. 1(a) and 1(b)] or along the cylindrical
axes [Fig. 1(c)].

The grid in Fig. 1(a) requires a staircase (polygonal) ap-
proximation of the boundary and thus the results are depen-
dent on the resolution of the grid around the boundary. The
resulting grid is 2D.

In Fig. 1(b), a cylindrical coordinate system (R, ϕ) is used
to describe the flow domain. This ensures the exact repre-
sentation of the boundary. However, the momentum space
degrees of freedom point along the Cartesian axes (px, py).
The resulting setup is not invariant under rotations since a
rotation about the symmetry axis also rotates the momentum
space. Thus, a 2D grid is required.

FIG. 1. Circular Couette flow setup. (a) Cartesian grid and mo-
mentum space decomposition along the Cartesian axes; (b) cylin-
drical grid and momentum space decomposition along the Carte-
sian axes; (c) cylindrical grid and momentum space decomposition
adapted to the curvilinear coordinates.

The final step is to orient the momentum space along the
cylindrical coordinates (pR̂, pϕ̂), as shown in Fig. 1(c). This
results in a representation of the flow domain and particle
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momenta which is fully symmetric with respect to rotations
about the symmetry axis. In order to achieve the alignment
of the momentum space along the new coordinate system,
an orthonormal triad must be employed, as described in the
current section.

The Boltzmann equation when non-Cartesian coordinates
are used for the spatial domain and the momentum space
degrees of freedom are taken with respect to a triad is derived
in Sec. II A. Using the conservative form of this equation
derived in Sec. II B, the application of the Chapman-Enskog
procedure for the derivation of the conservation equations in
the hydrodynamic limit is illustrated in Sec. II C.

A. Advective form

The Boltzmann equation with respect to the Cartesian
coordinates {x, y, z} can be written as

∂ f

∂t
+ pi

m

∂ f

∂xi
+ F i ∂ f

∂ pi
= J[ f ], (2.1)

where f is the Boltzmann distribution function, m is the
mass of the fluid particles, while pi and F i represent the
Cartesian components of the fluid particle momentum and of
the external force, respectively.

In certain situations, it is convenient to introduce a set
of arbitrary coordinates {x1̃, x2̃, x3̃}, where x ı̃ ≡ x ı̃ (x, y, z)
(in this paper, we restrict our analysis to time-independent
coordinate transformations). This coordinate transformation
induces a metric g ı̃ j̃ , as follows:

ds2 = δi jdxidx j = dx2 + dy2 + dz2 = g ı̃ j̃ dx ı̃dx j̃ , (2.2)

such that

g ı̃ j̃ = δi j
∂xi

∂x ı̃

∂x j

∂x j̃
. (2.3)

The Boltzmann Eq. (2.1) can be written in advective form with
respect to these new coordinates as follows:

∂ f

∂t
+ p ı̃

m

∂ f

∂x ı̃
+
(

F ı̃ − 1

m
� ı̃

j̃ k̃
p j̃ p̃k

)
∂ f

∂ p ı̃
= J[ f ], (2.4)

where the components p ı̃ and F ı̃ with respect to the new
coordinates are related to the components pi and F i with
respect to the old coordinates through

p ı̃ = ∂x ı̃

∂xi
pi, F ı̃ = ∂x ı̃

∂xi
F i. (2.5)

The Christoffel symbols � ı̃

j̃ k̃
appearing in Eq. (2.4) are de-

fined as

� ı̃

j̃ k̃
=∂x ı̃

∂x�

∂2x�

∂x j̃∂xk̃
= 1

2
g ı̃̃�(∂̃kg̃� j̃ + ∂ j̃ g̃�̃k − ∂̃�g j̃ k̃ ). (2.6)

Further details regarding the connection between Eqs. (2.1)
and (2.4) can be found in Appendix A.

The above formalism is sufficient to adapt the coordinate
system to a curved boundary. However, the transition to an
LB model is not straightforward since the momentum space
has an intrinsic dependence on the coordinates. Indeed, the
Maxwellian distribution corresponding to a particle number
density n, macroscopic velocity u, and temperature T has the

expression

f (eq) = n

(2πmT )
3
2

exp

[
−g ı̃ j̃ (p ı̃ − mu ı̃ )(p j̃ − mu j̃ )

2mT

]
,

(2.7)
while its moments are calculated as

M ı̃1,..., ı̃n
eq = √

g
∫

d3 p̃ f (eq) p ı̃1 . . . p ı̃n , (2.8)

where g is the determinant of the metric tensor g ı̃ j̃ .
In order to eliminate the burden of this metric dependence

in the expression for the Maxwellian, it is convenient to
introduce a triad (vielbein) with respect to which the metric
is diagonal:

g ı̃ j̃ dx ı̃ ⊗ dx j̃ = δâb̂ω
â ⊗ ωb̂, (2.9)

where the triad one-forms ωâ are defined as

ωâ = ωâ
j̃ dx j̃ , (2.10)

such that

g ı̃ j̃ = δâb̂ω
â
ı̃ω

b̂
j̃ . (2.11)

The above equation allows three degrees of freedom for the
system {ωâ

j̃ }, corresponding to the invariance of the right-hand
side of Eq. (2.11) under rotations with respect to the hatted
indices. It is possible to define triad vectors dual to the above
one-forms by introducing the following inner product:

〈ωb̂, eâ〉 ≡ ωb̂
ı̃e

ı̃
â = δb̂

â, (2.12)

where

eâ = e ı̃
â

∂

∂x ı̃
. (2.13)

Using the above triad, the components of vectors can be
expressed as follows:

pâ = ωâ
ı̃ p ı̃, (2.14)

such that

g ı̃ j̃ p ı̃ p j̃ = δâb̂ pâ pb̂. (2.15)

Thus, the metric dependence in the Maxwellian (2.7) disap-
pears:

f (eq) = n

(2πmT )
3
2

exp

[
−δâb̂(pâ − muâ)(pb̂ − mub̂)

2mT

]
,

(2.16)
allowing its moments to be written as

Mâ1,...,âs
eq =

∫
d3 p̂ f (eq) pâ1 . . . pâs . (2.17)

The expressions for the lower order moments of f (eq) are
listed below:

Meq = n, Mâ
eq = ρuâ, Mâb̂

eq = m(Pδâb̂ + ρuâub̂),

Mâb̂ĉ
eq = m2P(uâδb̂ĉ + ub̂δâĉ + uĉδâb̂) + m2ρuâub̂uĉ,

Mâb̂ĉd̂
eq = m2PT (δâb̂δĉd̂ + δâĉδb̂d̂ + δâd̂δb̂ĉ)

+ m3P(uâub̂δĉd̂ + uâuĉδb̂d̂ + uâud̂δb̂ĉ

+ ub̂uĉδâd̂ + ub̂ud̂δâĉ + uĉud̂δâb̂) + m3ρuâub̂uĉud̂ .

(2.18)
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It will be useful to introduce at this point the notation for the
moments of the distribution function f :

Mâ1,...,âs =
∫

d3 p̂ f pâ1 . . . pâs . (2.19)

The Boltzmann equation can now be written in advective
form in terms of the triad components of the momentum
vectors, as follows:

∂ f

∂t
+ pâ

m
e ı̃

â

∂ f

∂x ı̃
+
(

F â − 1

m
�â

b̂ĉ
pb̂ pĉ

)
∂ f

∂ pâ
= J[ f ], (2.20)

where the connection coefficients �â
b̂ĉ

are defined by

�â
b̂ĉ

= ωâ
ı̃�

ı̃

j̃ k̃
e j̃

b̂
ẽk

ĉ − e ı̃

b̂
e j̃

ĉ

∂ωâ
ı̃

∂x j̃
= 1

2
δâd̂ (cd̂b̂ĉ + cd̂ĉb̂ − cb̂ĉd̂ ),

(2.21)

while the Cartan coefficients câ
b̂ĉ

= δâd̂ cb̂ĉd̂ can be obtained
using

câ
b̂ĉ

= 〈ωâ, [eb̂, eĉ]〉 , (2.22)

while cb̂ĉd̂ = δd̂ âcâ
b̂ĉ

. The vector [eb̂, eĉ] represents the com-
mutator of the triad vectors eb̂ and eĉ, having the components

[eb̂, eĉ] ı̃ = e j̃

b̂
∂ j̃ e ı̃

ĉ − e j̃

ĉ ∂ j̃ e ı̃

b̂
. (2.23)

More details on the connection between Eqs. (2.4) and (2.20)
can be found in Appendix B. Since the numerical implementa-
tions of hyperbolic equations in advective form are in general
nonconservative [104], we will not consider the advective
form (2.20) of the Boltzmann equation further in this paper.

B. Conservative form

The Boltzmann equation in advective form (2.20) hides the
conservation laws both analytically and numerically. Follow-
ing Ref. [48], Eq. (2.20) can be written in conservative form
as follows:

∂ f

∂t
+ 1√

g

∂

∂x ı̃

(
pâ

m
e ı̃

â f
√

g

)
+ ∂

∂ pâ

[(
F â − 1

m
�â

b̂ĉ
pb̂ pĉ

)
f

]
= J[ f ]. (2.24)

The derivation of Eq. (2.24) is presented in Appendix C.
Multiplying Eq. (2.24) by pâ1 pâ2 . . . pâs and integrating

over the momentum space, it can be shown that

∂t M
â1â2,...,âs + 1

m
∇b̂Mb̂â1,...,âs

= 1

m
(F â1 Mâ2,...,âs + · · · ) + S â1â2,...,âs , (2.25)

where the expression between the parentheses on the right-
hand side is symmetric with respect to the indices â1, . . . , âs,
containing s terms. The sth order moment of f is defined in
Eq. (2.19), while the covariant derivative ∇â acts on the tensor
Mâ1,...,âs as follows:

∇âMâ1,...,âs = e ı̃
â∂ ı̃M

â1,...,âs + �
â1

b̂â
Mb̂â2,...,âs

+�
â2

b̂â
Mâ1b̂â3,...,âs + · · · + �

âs

b̂â
Mâ1â2,...,âs−1b̂.

(2.26)

The source term S â1â2,...,âs is defined as

S â1â2,...,âs =
∫

d3 p̂ J[ f ] pâ1 pâ2 · · · pâs . (2.27)

It is now easy to derive the macroscopic fluid equations

Dn

Dt
+ n(∇ · u) = 0, (2.28a)

ρ
Duâ

Dt
= nF â − ∇b̂T âb̂, (2.28b)

n
De

Dt
+ ∇âqâ + T âb̂∇âub̂ = 0, (2.28c)

where D/Dt = ∂t + uâ∇â is the material derivative, while
e = 3

2 T is the internal energy per constituent. The relations
between the distribution function f and the particle number
density n, macroscopic velocity uâ, stress tensor T âb̂, and heat
flux qâ are listed below:

n =
∫

d3 p̂ f , (2.29a)

uâ = 1

ρ

∫
d3 p̂ f pâ, (2.29b)

T âb̂ =
∫

d3 p̂ f
ξ âξ b̂

m
, (2.29c)

qâ =
∫

d3 p̂ f
ξ2

2m

ξ â

m
, (2.29d)

where ρ = mn, ξ â = pâ − muâ, and ξ2 = δâb̂ξ
âξ b̂. The total

number of particles Ntot inside the simulation domain can be
computed using

Ntot =
∫

d3x
√

gn =
∫

d3x
∫

d3 p̂̃ f , (2.30)

where f̃ = f
√

g.

C. Chapman-Enskog expansion

In order to illustrate the application of the Chapman-
Enskog procedure, we consider the Bhatnaghar-Gross-Krook
(BGK) single-time approximation for the collision term:

J[ f ] = − 1

τ
( f − f (eq)). (2.31)

We note that this simplified implementation of the collision
term has several drawbacks, including the fact that the Prandtl
number Pr is fixed at 1, while its value for, e.g., hard sphere
molecules is 2

3 . This drawback (and others) can be corrected,
i.e. by employing the Shakhov extension of the BGK collision
term [105–109]. In the interest of simplicity, in this paper
we only consider the BGK implementation of the collision
term since the generalization of our proposed scheme to more
complex formulations of J[ f ] is straightforward.

The “simplified version” of the Chapman-Enskog expan-
sion entails treating τ and the difference δ f = f − f (eq)

as small quantities, such that δ f /τ is of the same order
as the left-hand side of Eq. (2.24) when f 
 f (eq). Ignor-
ing higher-order terms, the following expression is obtained
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for δ f :

δ f = −τ

{
∂ f (eq)

∂t
+ 1√

g

∂

∂x ı̃

(
pâ

m
e ı̃

â f (eq)√g

)
+ ∂

∂ pâ

[(
F â − 1

m
�â

b̂ĉ
pb̂ pĉ

)
f (eq)

]}
. (2.32)

The collision invariants ψ ∈ {1, pâ, p2/2m} are preserved
only if∫

d3 p̂ δ f =
∫

d3 p̂ δ f pâ =
∫

d3 p̂ δ f
p2

2m
= 0, (2.33)

where p2 ≡ δâb̂ pâ pb̂ represents the squared norm of p written
in terms of its vielbein components.

The deviation from equilibrium δ f induces a deviation
δT âb̂ from the equilibrium stress tensor, as well as a heat flux:

T âb̂ = δâb̂P + δT âb̂, qâ = δqâ, (2.34)

where P = nT is the ideal gas pressure. The nonequilibrium
quantities δT âb̂ and δqâ can be obtained as follows:

δT âb̂ =
∫

d3 p̂ δ f
ξ âξ b̂

m
=
∫

d3 p̂ δ f
pâ pb̂

m
, (2.35a)

δqâ =
∫

d3 p̂ δ f
ξ2

2m

ξ â

m
=
∫

d3 p̂ δ f
p2

2m

pâ

m
− ub̂δT âb̂.

(2.35b)

Substituting Eq. (2.32) into (2.35a) yields

δT âb̂ = −τ

[
1

m
∂t M

âb̂
eq + 1

m2
∇ĉMâb̂ĉ

eq − n(uâF b̂ + ub̂F â)

]
,

(2.36a)

while the heat flux can be obtained as

δqâ + ub̂δT âb̂

= −τ

{
δĉd̂

(
1

2m2
∂t M

âĉd̂
eq + 1

2m3
∇b̂Mâb̂ĉd̂

eq

)
− 5nT

2m
F â − n

2
[F âu2 + 2uâ(u · F )]

}
. (2.36b)

The time derivatives appearing in Eqs. (2.36a) and (2.36b) can
be eliminated since, at first order, n, uâ, and T satisfy the
Euler equations, obtained by setting T âb̂ = δâb̂P and qâ = 0
in Eq. (2.28):

Dn

Dt
+ n∇âuâ =0,

ρ
Duâ

Dt
+ ∇âP =nF â,

n
De

Dt
+ P∇âuâ =0. (2.37)

Using the explicit expressions (2.18) for the moments of
f (eq), a straightforward but tedious calculation shows that
δT âb̂ and δqâ can be expressed as

δT âb̂ = −μ
(∇âub̂ + ∇b̂uâ − 2

3δâb̂∇ĉuĉ
)
, (2.38a)

δqâ = −κ∇âT, (2.38b)

where the dynamic viscosity μ and the coefficient of thermal
conductivity κ are given by

μ = τP, κ = 5

2m
τP. (2.38c)

III. NUMERICAL SCHEME

The aim of this section is to derive numerical implementa-
tions of Eq. (2.24) which are manifestly conservative. To this
end, we also introduce the following form of the Boltzmann
equation, obtained by multiplying Eq. (2.24) with

√
g:

∂ f̃

∂t
+ ∂

∂x ı̃

(
pâ

m
e ı̃

â f̃

)
+ ∂

∂ pâ

[(
F â − 1

m
�â

b̂ĉ
pb̂ pĉ

)
f̃

]
= J[ f ]

√
g, (3.1)

where the following notation was introduced:

f̃ = f
√

g. (3.2)

The advantage of the formulation (3.1) is that the spatial
derivatives corresponding to the advection term do not have
any position-dependent prefactors, such that a conservative
numerical implementation is straightforward. The disadvan-
tage of this formulation is that performing the evolution and
advection at the level of f̃ can introduce fluctuations in the
numerical solution, which prevent, e.g., a solution of the form
f = const to be exactly achieved [104]. For definiteness, we
shall refer to the formulation starting from Eq. (3.1) as the f̃
formulation.

Our second (and preferred) implementation is inspired
from the methodology proposed in Refs. [110,111] and starts
again from the Boltzmann equation in the form presented in
Eq. (2.24). For simplicity, we restrict the construction of the
numerical scheme to the case when

√
g is separable, i.e.,

√
g = √

g̃1g̃2g̃3, (3.3)

where the factors g ı̃ ≡ g ı̃ (x ı̃ ) each depend only on one coor-
dinate (x ı̃). The above assumption is valid for both examples
considered in this paper (circular Couette flow and flow
through the gradually expanding channel). An extension of the
present methodology to a nonseparable metric determinant is
straightforward but, for simplicity, we do not discuss this case
here. The main idea is to define a new set of coordinates χ ı̃ ,
such that the 1/

√
g factor in front of the spatial derivatives in

Eq. (2.24) is absorbed into the derivative. This can be achieved
when χ ı̃ is introduced as follows:

χ ı̃ =
∫ x ı̃

dx ı̃√g ı̃, (3.4)

such that ∂χ ı̃/∂x ı̃ = √
g ı̃ . The lower integration end is not

relevant since only differences of the form δχ ı̃ appear in the
numerical implementation and is thus left arbitrary. The above
definition for χ ı̃ is inspired from Refs. [110,111], where a
similar definition was employed for the cylindrical and spher-
ical coordinate systems, respectively (more details will be
given in Sec. V). The advantage of performing the derivative
with respect to χ ı̃ is that the numerical procedure can be
constructed to exactly preserve (up to machine precision) the
conservation of the total number of particles, as will be shown
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TABLE I. Butcher tableau for the third-order Runge-Kutta time-
stepping procedure described in Eq. (3.7).

0
1 1
1/2 1/4 1/4

1/6 1/6 2/3

in Sec. III D. For definiteness, we shall refer to the formulation
based on the change of variables in the spatial derivative given
by Eq. (3.4) as the χ formulation.

For the flows considered in this paper, Eqs. (3.1) and (2.24)
can be put in the form

∂F

∂t
+
∑

ı̃

∂ (V ı̃F )

∂χ ı̃
= S, (3.5)

where the source term S contains the external and inertial
forces (involving the momentum derivatives of f ) and the
collision term. In the f̃ formulation (3.1), F = f̃ ≡ f

√
g and

χ ı̃ = x ı̃ is the coordinate on direction ı̃. In the χ formulation
(2.24), F = f and χ ı̃ is defined in Eq. (3.4). The advection
velocity V ı̃ is in general point dependent and is given in the f̃
formulation by V ı̃ = pâ

m e ı̃
â, while in the χ formulation, it has

the expression V ı̃ = √
g ı̃

pâ

m e ı̃
â.

A. Time stepping

Equation (3.5) can be put in the following form:

∂t F = L[F ], (3.6)

where L[F ] is an integrodifferential operator with respect to
the spatial and momentum space coordinates acting on F . Let
us consider an equidistant discretization of the time variable,
such that at step �, the value of the time coordinate is t� = �δt
(we assume that t0 = 0 is the initial time). If F� ≡ F (t�) at
time t = t� is known, its value at t�+1 = t� + δt can be ob-
tained using the third-order total variation diminishing (TVD)
Runge-Kutta method described in Refs. [78,79,81–84]:

F (1)
� = F� + δt L[F�],

F (2)
� = 3

4 F� + 1
4 F (1)

� + 1
4δt L

[
F (1)

�

]
,

F�+1 = 1
3 F� + 2

3 F (2)
� + 2

3δt L
[
F (2)

�

]
. (3.7)

The Butcher tableau [112] corresponding to this scheme is
given in Table I.

B. Coordinate stretching

As pointed out in Refs. [40,62], the correct recovery of the
Knudsen layer in wall-bounded flows requires a substantially
finer mesh near the walls than in the bulk of the channel. This
can be efficiently achieved by performing a coordinate stretch-
ing such that the resulting grid is finer near the boundaries and
coarser in the interior of the channel. Assuming that the walls
are orthogonal to the x1̃ direction, we consider the following
coordinate transformation:

x1̃(η) = x1̃
left + (x1̃

right − x1̃
left

)(
δ + A0

A
tanh η

)
, (3.8)

FIG. 2. Effect of grid stretching on 16 points between Rin = 1
and Rout = 2. (a) The parameter δ controls the positioning of the
stretching center (i.e., the point where the grid is the coarsest). (b)
The parameter A contains the amplitude of the stretching, with A = 0
and 1 corresponding to equidistant and infinitely stretched points,
respectively.

where x1̃
left and x1̃

right are the coordinates of the left and right
domain boundaries, respectively. The constants δ and A are
free parameters, while A0 is chosen as

A0 = max(δ, 1 − δ). (3.9)

The above definition of A0 allows the range of δ to be
δ ∈ [0, 1], while A ∈ (0, 1). As illustrated in Fig. 2(a), the
parameter δ controls the position of the stretching center (i.e.,
when η = 0), such that when δ = 0 and 1, the coarsest region
is near the left and right boundary, respectively.

The parameter A controls the grid stretching, such that as
A → 0, the grid becomes equidistant, while when A → 1, the
grid becomes infinitely stretched near the stretching center at
x1̃ = x1̃

left (1 − δ) + x1̃
rightδ. This is illustrated in Fig. 2(b).

The range of η is η ∈ [ηleft, ηright], where ηleft and ηright can
be found by setting x1̃ = x1̃

left and x1̃ = x1̃
right in Eq. (3.8):

ηleft = −arctanh
Aδ

A0
, ηright = arctanh

A(1 − δ)

A0
. (3.10)
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In the special case when δ = 0.5, the range of η is η ∈
[−arctanhA, arctanhA] since A0 = 0.5.

In the current formulation, the grid stretching is a coordi-
nate transformation which changes the line element (2.2). In
particular, the Boltzmann equation can be re-derived with re-
spect to the stretched coordinate η and its associated momen-
tum pη̂ and a different conservative formulation is obtained
compared to the case when the grid is not stretched. This will
be further discussed in the context of the circular Couette flow
in Sec. V.

C. Implementation of advection

The examples considered in this paper are either one
dimensional (the circular Couette flow discussed in Sec. V) or
two dimensional (the gradually expanding channel discussed
in Sec. VI), hence, the flow can always be assumed to be
homogeneous with respect to the z axis (we will take advan-
tage of this simplification in Sec. IV A, where the z degree
of freedom of the momentum space will be eliminated by
introducing reduced distribution functions). The simulation
domain is thus divided into Ñ1 × Ñ2 cells centered on xs,p =
(x1̃

s , x2̃
p) (1 � s � Ñ1, 1 � p � Ñ2). Each cell (s, p) has four

interfaces, located at xs+1/2,p, xs−1/2,p, xs,p+1/2, and xs,p−1/2.
The domain boundary consists of the outer interfaces of
the outer cells, having coordinates xleft;p = x1/2,p, xright;p =
xÑ1+1/2,p, xbottom;s = xs,1/2, and xtop;s = xs,Ñ2+1/2. With this
notation, the advection part of Eq. (3.5) can be written as
follows:

∑
ı̃

(
∂ (V ı̃F )

∂χ ı̃

)
s,p


 V 1̃
s+1/2,pF 1̃;s+1/2,p − V 1̃

s−1/2,pF 1̃;s−1/2,p

χ 1̃
s+1/2 − χ 1̃

s−1/2

+ V 2̃
s,p+1/2F 2̃;s+1/2,p − V 2̃

s,p−1/2F 2̃;s,p−1/2

χ 2̃
p+1/2 − χ 2̃

p−1/2

, (3.11)

where directional splitting was applied, i.e., the advection
along each direction x ı̃ is performed independently. The
quantities bearing the indices s + 1/2, p are evaluated at the
interfaces between cells (s + 1, p) and (s, p), etc. The fluxes
F 1̃;s±1/2,p correspond to the advection of F along V 1̃

s±1/2,p

with respect to the coordinate χ 1̃, while the fluxes F 2̃;s,p±1/2

correspond to the advection of F along V 2̃
s;p±1/2 with respect to

the coordinate χ 2̃. These fluxes are calculated using the fifth-
order weighted essentially nonoscillatory (WENO-5) scheme
[45,75–79]. We employ the WENO-5 scheme as described
in Refs. [16,79], where the addition of a small quantity ε in
order to avoid division by 0 operations is not required. For
definiteness, we give below the procedure for constructing the
flux F1̃;s+1/2,p for the case when V 1̃

s+1/2,p > 0:

F 1̃;s+1/2,p = ω1F1
1̃;s+1/2,p

+ ω2F2
1̃;s+1/2,p

+ ω3F3
1̃;s+1/2,p

,

(3.12)

where the interpolating functions Fq
1̃;s+1/2,p

(q = 1, 2, 3) are
given by

F1
1̃;s+1/2,p

= 1
3 Fs−2,p − 7

6 Fs−1,p + 11
6 Fs,p,

F2
1̃;s+1/2,p

= − 1
6 Fs−1,p + 5

6 Fs,p + 1
3 Fs+1,p, (3.13)

F3
1̃;s+1/2,p

= 1
3 Fs,p + 5

6 Fs+1,p − 1
6 Fs+2,p,

while the weighting factors ωq are defined as

ωq = ω̃q

ω̃1 + ω̃2 + ω̃3
, ω̃q = δq

σ 2
q

. (3.14)

The ideal weights δq are

δ1 = 1/10, δ2 = 6/10, δ3 = 3/10, (3.15)

while the smoothness indicators σq are given by

σ1 = 13
12 (Fs−2,p − 2Fs−1,p + Fs,p)2

+ 1
4 (Fs−2,p − 4Fs−1,p + 3Fs,p)2,

σ2 = 13
12 (Fs−1,p − 2Fs,p + Fs+1,p)2 + 1

4 (Fs−1,p − Fs+1,p)2,

σ3 = 13
12 (Fs,p − 2Fs+1,p + Fs+2,p)2

+ 1
4 (3Fs,p − 4Fs+1,p + Fs+2,p)2. (3.16)

It is customary to add in the denominators of ω̃q a small
quantity ε (usually taken as 10−6) to avoid division by 0
operations. However, as pointed out in Ref. [83], the effect
of this alteration on the smoothness indicators is strongly
dependent on the given problem since ε becomes a dimen-
sional quantity. Furthermore, the accuracy of the resulting
scheme depends on the value of ε. Since at higher orders,
the distribution functions corresponding to large velocities
can have values which are significantly smaller than those for
smaller velocities, we cannot predict the effect of employing
a unitary value for ε for the advection of all distribution
functions. Therefore, we prefer to follow Refs. [16,79] and
compute the limiting values of ωq when one, two, or all three
of the smoothness indicators vanish as indicated in Table II.

D. Particle number conservation

The Boltzmann equation implies the fluid equations (2.28),
which ensure that the total number of particles Ntot (2.30) per
unit length, the total momentum P , and the total energy E are
conserved within the fluid. However, the gas-wall interaction

TABLE II. Limiting values for the weighting factors ωq

[Eq. (3.14)] employed in the computation of the WENO-5 flux
[Eq. (3.12)].

ω1 ω2 ω3

σ1 = σ2 = σ3 0.1 0.6 0.3
σ2 = σ3 = 0 0 2/3 1/3
σ3 = σ1 = 0 1/4 0 3/4
σ1 = σ2 = 0 1/7 6/7 0
σ1 = 0 1 0 0
σ2 = 0 0 1 0
σ3 = 0 0 0 1
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can induce changes in these parameters. In this paper, we will
consider diffuse-reflection boundary conditions for imperme-
able walls, such that Ntot is preserved at all times, while P
and E are allowed to vary. Thus, in this section, we will only
consider the conservation of Ntot.

After the discretization of space and time, the only changes
that can be induced in Ntot (t ) are due to the operator L[F ].
In the following, the f̃ and χ formulations will be treated
separately.

In the f̃ formulation, F = f̃ = f
√

g and the time evolution
of Ntot (2.30) can be obtained by integrating Eq. (3.6) with
respect to the momentum space and over the entire fluid
domain:

∂t Ntot (t ) =
∫

d3x̃
∫

d3 p̂ L[̃ f ]. (3.17)

The momentum space integral of the source term in Eq. (3.5)
vanishes since 1 is a collision invariant, while the zeroth-
order moment of the force term is zero. For simplicity, an
equidistant grid is considered, such that Eq. (3.17) reduces to

∂t Ntot (t ) = −
∫

d3 p̂
∫

d3x̃
∑

ı̃

∂ (V ı̃ f
√

g)

∂x ı̃
, (3.18)

where we took into account that χ ı̃ = x ı̃ in the f̃ formu-
lation. The integration domain can be split into cells and
the advection term, replaced via Eq. (3.11), can be consid-
ered constant within each cell, such that Eq. (3.18) becomes
simply

∂t Ntot (t ) = −δz
∫

d3 p̂
Ñ1∑

s=1

Ñ2∑
p=1

[δx2̃ (F̃ 1̃;s+1/2,p − F̃ 1̃;s−1/2,p)

+ δx1̃ (F̃ 2̃;s,p+1/2 − F̃ 2̃;s,p−1/2)], (3.19)

where δz represents the height of the fluid domain and the
notations F̃1̃;s+1/2;p and F̃2̃;s;p+1/2 indicate that the fluxes

are computed by replacing Fs,p with f̃s,p = fs,p
√

gs,p in
Eq. (3.12). The bulk terms cancel out and ∂t Ntot (t ) reduces
to

∂t Ntot (t ) = −δz
∫

d3 p̂

⎡⎣ Ñ2∑
p=1

δx2̃ (F̃ 1̃;N 1̃+1/2,p − F̃ 1̃;1/2,p)

+
Ñ1∑

s=1

δx1̃(F̃ 2̃;s,N 2̃+1/2 − F̃ 2̃;s,1/2)

⎤⎦. (3.20)

Thus, the conservation of the total number of particles is
conditioned by the requirement that the momentum space
integrals of the fluxes at the outer interfaces of the outer
cells cancel. Ensuring that these momentum space inte-
grals vanish is the subject of Sec. III F, which is dedicated
to the discussion of the implementation of the boundary
conditions.

In the case of the χ approach, F = f while
√

g appears
explicitly in (3.17):

∂t Ntot (t ) =
∫

d3x̃
√

g
∫

d3 p̂ L[ f ]. (3.21)

As before, the momentum space integral of the source term
vanishes and the only contributions to ∂t Ntot (t ) come from
the advection part of L[ f ]. Treating again the advection terms
as constants over the domain cells, the integral of

√
g can be

performed over each cell by keeping in mind the definition of
χ ı̃ [Eq. (3.4)], such that∫

(s,p)
d3x̃

√
g

V 1̃
s+1/2,pF 1̃;s+1/2,p − V 1̃

s−1/2,pF 1̃;s−1/2,p

δχ 1̃
s

= δzδχ 2̃
p

(
V 1̃

s+1/2,pF 1̃;s+1/2,p − V 1̃
s−1/2,pF 1̃;s−1/2,p

)
,∫

(s,p)
d3x̃

√
g

V 2̃
s,p+1/2F 2̃;s,p+1/2 − V 2̃

s,p−1/2F 2̃;s,p−1/2

δχ 2̃
p

= δzδχ 1̃
s

(
V 2̃

s,p+1/2F 2̃;s,p+1/2 − V 2̃
s,p−1/2F 2̃;s,p−1/2

)
, (3.22)

where δχ 1̃
s = χ 1̃

s+1/2 − χ 1̃
s−1/2 and δχ 2̃

p = χ 2̃
p+1/2 − χ 2̃

p−1/2.
The bulk terms again cancel and Eq. (3.21) becomes

∂t Ntot (t ) = −δz
∫

d3 p̂

×
⎡⎣ Ñ2∑

p=1

δχ 2̃
p

(
V 1̃

N 1̃+1/2,p
F 1̃;N 1̃+1/2,p − V 1̃

1/2,pF 1̃;1/2,p

)

+
Ñ1∑

s=1

δχ 1̃
s

(
V 2̃

s,N 2̃+1/2
F 2̃;s,N 2̃+1/2 − V 2̃

s,1/2F 2̃;s,1/2

)⎤⎦.
(3.23)

As in the f̃ formulation, the conservation of the total number
of particles relies on the exact cancellation of the numerical
fluxes through the outer interfaces of the outer cells of the
fluid domain.

E. Order of advection scheme

Let us now discuss the order of our proposed scheme. For
definiteness, the advection along the x1̃ direction is considered
and, for brevity, only the coordinate index along this direction
is displayed. In particular, we are interested in deriving the
accuracy of the approximation of the quantity:

∂ (V F )

∂x
= √

g
∂ (V F )

∂χ
. (3.24)

In our implementation,
√

g is replaced by its cell average

√
gs 
 χs+1/2 − χs−1/2

δs
, (3.25)

where δs is the equidistant spacing on the x direction (in
the case of the equidistant grid, δs = δx, while for the
stretched grid, δs = δη). The derivative with respect to χ

is approximated according to (3.11), such that Eq. (3.24)
becomes(

∂ (V F )

∂x

)
s


 Vs+1/2Fs+1/2 − Vs−1/2Fs−1/2

δs
. (3.26)
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The right-hand side of the above relation can be expanded
with respect to x = xs as follows:

Vs+1/2Fs+1/2 − Vs−1/2Fs−1/2

δs


 Fs+1/2 − Fs−1/2

δs

[
Vs + (δs)2

8

(
∂2V

∂x2

)
s

+ · · ·
]

+ Fs+1/2 + Fs−1/2

2

[(
∂V

∂x

)
s

+ (δs)2

24

(
∂3V

∂x3

)
s

+ · · ·
]
.

(3.27)

When V is a constant, the error term is that of the scheme
used to compute the fluxes, which ensures that 1

δs (Fs+1/2 −
Fs−1/2) = (∂xF )s + O[(δs)n], where n is the order of accuracy
of the scheme for Cartesian coordinates. In the case when
V depends on the coordinate, there are second-order errors
which are unavoidable in this construction. In the case when
the WENO-5 procedure is employed to compute the fluxes
Fs+1/2, Eq. (3.27) reduces to

Vs+1/2Fs+1/2 − Vs−1/2Fs−1/2

δs



(

∂ (V F )

∂x

)
s

+ (δs)2

24

{
∂

∂x

[
2
∂V

∂x

∂ f

∂x
+ f

∂2V

∂x2

]}
s

+ O[(δs)4]. (3.28)

Even though the resulting implementation presents errors
which are second order with respect to δs, we find the
implementation of the numerical fluxes using the WENO-5
algorithm to be more accurate than when using second-order
schemes, such as the flux limiters scheme [66,84,104].

F. Diffuse reflection boundary conditions

In the case of diffuse reflection, the flux of particles return-
ing into the fluid domain through the cell interfaces between
the fluid and the walls follow Maxwellian distributions. In the
flows considered in this paper, the walls are always perpendic-
ular to the direction corresponding to the first coordinate x1̃.
For definiteness, let us consider the case of the left boundary,
for which the above condition reads as

F 1̃;1/2,p = f (eq)(nleft, uleft, Tleft )
(
V 1̃

1/2,p > 0
)
. (3.29)

We note that Eq. (3.29) holds in both the f̃ and in the χ formu-
lations since the

√
g factor which multiplies the distribution

function in the f̃ approach (̃ f = f
√

g) can easily be absorbed
into the unknown wall particle number density nleft .

The flux in Eq. (3.29) can be easily achieved analytically
by populating the ghost nodes at s = −2, −1, and 0 according
to (V 1̃

1/2,p > 0):

F−2,p = F−1,p = F0,p = f (eq)(nleft, uleft, Tleft ). (3.30)

With the above definitions, Eq. (3.16) shows that σ1 = 0 for
s = 0. According to Table II, ω1 = 1 and ω2 = ω3 = 0 when
σ1 = 0. Thus, Eq. (3.12) implies that (V 1̃

1/2,p > 0)

F 1̃;1/2,p = F1
1̃;1/2,p

= F0,p. (3.31)

In order to calculate the fluxes at s = 1
2 and 3

2 for particles

traveling towards the wall (V 1̃
1/2,p < 0), the populations in the

ghost nodes at s = 0 and −1 are obtained using a quadratic
extrapolation

F0,p = 3F1,p − 3F2,p + F3,p,

F−1,p = 6F1,p − 8F2,p + 3F3,p. (3.32)

Finally, mass conservation is ensured by requiring that∫
d3 p̂F 1̃;1/2,pV

1̃
1/2,p = 0. (3.33)

This translates into the following equation for nw:

nw = −
∫

V 1̃
1/2,p<0 d3 p̂F 1̃;1/2,pV

1̃
1/2,p∫

V 1̃
1/2,p>0 d3 p̂ f (eq)(n = 1, uleft, Tleft )V 1̃

1/2,p

. (3.34)

IV. MIXED QUADRATURE LB MODELS

In this section, the construction of mixed quadrature LB
models for flows in curvilinear geometries will be discussed.
Since the flows considered in this paper are homogeneous
with respect to the z axis, the momentum degree of freedom
along this axis can be integrated out, giving rise to the reduced
Boltzmann equations which will be discussed in Sec. IV A.
The choice of quadrature for the two remaining directions
is discussed in Sec. IV B. The implementation of the inertial
forces arising due to the formulation of the Boltzmann equa-
tion with respect to triads is discussed in Sec. IV C.

A. Reduced Boltzmann equation

The flows considered in this paper are homogeneous with
respect to the z axis. Hence, it is convenient to define the
following reduced distribution functions:

f ′ =
∫ ∞

−∞
d pẑ f , f ′′ =

∫ ∞

−∞
d pẑ (pẑ )2

m
f . (4.1)

With the aid of these two reduced distributions, the macro-
scopic fields (2.29) can be written as

n =
∫

d2 p̂ f ′, (4.2a)

uâ = 1

ρ

∫
d2 p̂ pâ f ′, (4.2b)

T âb̂ =
∫

d2 p̂
ξ âξ b̂

m
f ′, (4.2c)

qâ =
∫

d2 p̂

(
ξ2

2m
f ′ + 1

2
f ′′
)

ξ â

m
, (4.2d)

where the indices â, b̂ ∈ {1̂, 2̂}. Moreover, the temperature is
defined as

3

2
nT =

∫
d2 p̂

(
ξ2

2m
f ′ + 1

2
f ′′
)

. (4.3)

Thus, the function f ′′ appears only in the definitions of the
temperature T and heat flux qâ.
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B. Choice of quadrature

We perform the numerical simulations presented in this pa-
per using the mixed quadrature lattice Boltzmann models in-
troduced in Refs. [34–36]. Depending on the flow regime un-
der consideration, a mixture of the full-range Gauss-Hermite
and half-range Gauss-Hermite quadratures can be employed.

For definiteness, let us consider the case when the half-
range Gauss-Hermite quadrature of order Q1 is employed
along the first coordinate direction, while the full-range
Gauss-Hermite quadrature of order Q2 is employed along
the second coordinate direction. Following the notation intro-
duced in Refs. [34,36], this model can be denoted using

HH(N1; Q1) × H(N2; Q2), (4.4)

where Na represents the order of the expansion of the equi-
librium distribution f (eq) with respect to axis a, as will be
discussed in Sec. IV D.

The choice of quadrature controls the discretization of the
momentum space, as well as the momentum space integration.
In particular, the moments (2.19) are evaluated as

Mâ1,...,âs =
Q1∑
i=1

Q2∑
j=1

f ′
i j

s∏
�=1

pâ�

i j . (4.5)

A similar prescription holds for the macroscopic quanti-
ties appearing in Eq. (4.2). The total number of quadra-
ture points on axis a is Qa = Qa for the full-range
Gauss-Hermite quadrature and Qa = 2Qa for the half-range
Gauss-Hermite quadrature. In particular, Q1 = 2Q1 and Q2 =
Q2 for the example considered in Eq. (4.4).

The components of pi j = {p1̂
i , p2̂

j} are indexed on each
direction separately, where 1 � i � Q1 and 1 � j � Q2. For
the half-range Gauss-Hermite quadrature, we use the con-
vention that the points with 1 � i � Q1 lie on the positive
semiaxis of the radial direction, being given as the roots of
the half-range Hermite polynomial hQ1 (x) of order Q1:

hQ1

(
p1̂

i

) = 0 (1 � i � Q1), (4.6)

while p1̂
Q1+i = −p1̂

i (1 � i � Q1). On the direction where the
full-range Gauss-Hermite quadrature is applied, the quadra-
ture points are chosen as the roots of the Hermite polynomial
HQ2 (x) of order Q2:

HQ2

(
p2̂

j

) = 0. (4.7)

The link between f ′
i j and f ′′

i j and the reduced Boltzmann

distribution functions f ′(p1̂, p2̂ ) and f ′′(p1̂, p2̂ ) is given
through (

f ′
i j

f ′′
i j

)
= w

h

i (Q1)wH
j (Q2)

ω
(
p1̂

i

)
ω
(
p2̂

j

) (
f ′(p1̂

i , p2̂
j

)
f ′′(p1̂

i , p2̂
j

)), (4.8)

where the weight function ω(x) for the half-range and full-
range Hermite polynomials is

ω(x) = 1√
2π

e−x2/2. (4.9)

The quadrature weights wH
j (Q2) for the full-range Gauss-

Hermite quadrature of order Q2 are [35]

wH
j (Q2) = Q2!

H2
Q2+1

(
p2̂

j

) . (4.10)

The quadrature weights w
h

i (Q1) for the half-range Gauss-
Hermite quadrature of order Q1 are [34,35]

w
h

i (Q1) = p1̂
i a2

Q1−1

h
2
Q1−1

(
p1̂

i

)[
p1̂

i + h
2
Q1

(0)
/√

2π
] , (4.11)

where

a� = h�+1,�+1

h�,�

(4.12)

is written in terms of the coefficients h�,s of xs in the polyno-
mial expansion of h�(x):

h�(x) =
�∑

s=0

h�,sx
s. (4.13)

C. Force terms

Since the functional dependence of the distribution func-
tion on the components of the momentum is removed through
the discretization of the momentum space, an appropriate
method for the computation of the momentum derivative of
the distribution function must be employed. Discrete velocity
models (DVMs) usually rely on finite difference techniques
to perform the momentum space derivatives [39,85]. In this
paper, we take the lattice Boltzmann approach introduced in
Ref. [113], according to which the momentum space deriva-
tive is projected on the space of orthogonal Hermite polyno-
mials. More precisely, we follow Ref. [36] and write the terms
involving the momentum derivatives of f ′ and f ′′ as follows:[

∂

∂ p1̂

(
f ′
f ′′

)]
i j

=
Q1∑

i′=1

K1̂
i,i′

(
f ′
i′, j

f ′′
i′, j

)
,

(4.14)[
∂

∂ p1̂

(
p1̂ f ′

p1̂ f ′′

)]
i j

=
Q1∑

i′=1

K̃1̂
i,i′

(
f ′
i′, j

f ′′
i′, j

)
,

and similarly for the derivatives with respect to p2̂.
In the case of the full-range Gauss-Hermite quadrature, the

matrix Kâ
k,k′ has the following form [36]:

Kâ,H
k,k′ = −wH

k (Qa)
Qa−1∑
�=0

1

�!
H�+1

(
pâ

k

)
H�

(
pâ

k′
)
, (4.15)

while in the case of the half-range Gauss-Hermite quadrature,
it is given by [36]

Kâ,h

k,k′ = w
h

k (Qa)σ â
k

{
1 + σ â

k σ â
k′

2

Qa−2∑
�=0

h�

(∣∣pâ
k′
∣∣)

×
[

h�,0√
2π

Qa−1∑
s=�+1

hs,0hs

(∣∣pâ
k

∣∣)− h�,�

h�+1,�+1
h�+1

(∣∣pâ
k

∣∣)]

− 1

2
√

2π
�

Qa
0

(∣∣pâ
k

∣∣)�Qa
0

(∣∣pâ
k′
∣∣)}. (4.16)
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In the above, σ â
k and σ â

k′ are the signs of pâ
k and pâ

k′ , respec-
tively, having values σ â

k = 1 for 1 � k � Qa and σ â
k = −1

when Qa < k � 2Qa. The function �n
s (x) is defined as follows

[36]:

�n
s (x) =

n∑
�=s

h�,sh�(x). (4.17)

The details regarding the expansions of ∂ (pâ f ′)/∂ pâ and
∂ (pâ f ′′)/∂ pâ with respect to the full-range and half-range
Hermite polynomials are presented in Appendix D. Here, we
only quote the results. In the case when the full-range Gauss-
Hermite quadrature is employed, the matrix K̃â

k,k′ reduces to

K̃â,H
k,k′ =−wH

k (Qa)
Qa−2∑
�=0

1

�!
H�+1

(
pâ

k

)[
H�+1

(
pâ

k′
)+ �H�−1

(
pâ

k′
)]

.

(4.18)
In the case of the half-range Gauss-Hermite quadrature, the
kernel K̃â,h

k,k′ is given by

K̃â,h

k,k′ = −w
h

k (Qa)
1 + σ â

k σ â
k′

2

Qa−1∑
�=0

h�

(∣∣pâ
k

∣∣)[� h�

(∣∣pâ
k′
∣∣)

+ h
2
�,0 + h

2
�−1,0

a�−1

√
2π

h�−1

(∣∣pâ
k′
∣∣)+ 1

a�−1a�−2
h�−2

(∣∣pâ
k′
∣∣)],

(4.19)

where we use the convention that h−1(z) = h−2(z) = 0.

D. Equilibrium distribution function

We now present the construction of the equilibrium dis-
tribution function (2.16) appearing on the right-hand side of
Eq. (2.31), as well as in the boundary conditions and in the
initial state. After eliminating the pẑ degree of freedom, f (eq)

is replaced by

f ′
(eq) =

∫ ∞

−∞
d pẑ f (eq),

f ′′
(eq) =

∫ ∞

−∞
d pẑ (pẑ )2

m
f (eq) = T f ′

(eq). (4.20)

In discrete velocity models (DVMs), it is customary to evalu-
ate the equilibrium distributions f ′

(eq) and f ′′
(eq) directly, i.e.,

by computing the value of the Maxwellian for each given
discrete momentum vector pi j [39,85]. On the other hand, the
lattice Boltzmann (LB) approach is to replace the Maxwell-
Boltzmann distribution with a polynomial approximation
which ensures the exact recovery of its first few moments with
a relatively small quadrature order. Thus, in this paper, we take
the LB approach and replace f ′

eq and f ′′
eq with their polynomial

approximations.
As discussed in Refs. [34,35], f ′

(eq) can be factorized with

respect to p1̂ and p2̂ as follows:

f ′
(eq) = n g1(p1̂ )g2(p2̂ ),

ga(pâ) = 1√
2πmT

exp

[
− (pâ − muâ)2

2mT

]
. (4.21)

Rin

Rout

TwTw

Ωw

FIG. 3. Circular Couette flow setup.

Following the discretization of the momentum space, f ′
(eq)

is replaced by f ′
(eq);i j = n g1,ig2, j , while f ′′

(eq);i j = T f ′
(eq);i j .

For the case of the full-range Gauss-Hermite quadrature, the
polynomial approximation of ga,k is [34,35]

gH
a,k = wH

k (Qa)
Na∑
�=0

H�

(
pâ

k

) ��/2∑
s=0

(mT − 1)s(muâ)�−2s

2ss!(� − 2s)!
,

(4.22)
where the expansion order Na is a free parameter satisfying

0 � Na < Qa. (4.23)

An expansion of ga,k up to order Na ensures the exact recovery
of the moments (2.17) for polynomials in pâ of order less than
or equal to Na. In the case of the half-range Gauss-Hermite
quadrature, the polynomial approximation of ga,k can be put
in the following form [34,35]:

gha,k = w
h

k (Qa)

2

Na∑
s=0

(
mT

2

)s/2

�Na
s

(∣∣pâ
k

∣∣)
×
[

(1 + erfζ â)P+
s (ζ â) + 2√

π
e−ζ 2

â P∗
s (ζ â)

]
, (4.24)

where �Na
s is given in Eq. (4.17), while ζ â = uâ√m/2T when

pâ
k > 0 and ζ â = −uâ√m/2T when pâ

k < 0. The polynomials
P+

s (x) and P∗
s (x) are defined as

P±
s (x) = e∓x2 ds

dxs
e±x2

,

P∗
s (x) =

s−1∑
j=0

(
s

j

)
P+

j (x)P−
s− j−1(x). (4.25)

V. CIRCULAR COUETTE FLOW

In this section, the vielbein approach introduced in Sec. II
is validated in the case of the circular Couette flow. The
flow domain is bounded by two coaxial cylinders of radii
Rin < Rout which are kept at equal temperatures Tw, as shown
in Fig. 3. The cylinders are free to rotate around their vertical
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TABLE III. Mixed quadrature LB models, corresponding total
number of velocities Nvel and time step δt employed for the simula-
tions of the circular Couette flow presented in Figs. 7 and 17 (low
Mach number), as well as in Figs. 8, 13, 14, and 15 (non-negligible
Mach number). In the hydrodynamic regime (Figs. 7 and 8), the
relaxation time τ is given by Eq. (5.28) with Kn = 0.001. Outside the
hydrodynamic regime (Figs. 15 and 17), τ is related to Kn through
Eq. (5.65).

Regime Kn Model Nvel δt

Low Hydro H(2; 3) × H(2; 3) 9 5×10−4

Mach 0.01 H(3; 4) × H(2; 3) 12 3×10−3

0.1 HH(3; 4) × H(2; 3) 12 3×10−3

0.5 HH(4; 12) × H(4; 5) 120 3×10−3

1 HH(4; 16) × H(4; 5) 160 2×10−3

100 HH(4; 40) × HH(2; 3) 480 10−3

Non- Hydro H(4; 5) × H(4; 5) 25 5×10−4

negligible 0.02 HH(3; 4) × H(4; 5) 40 10−3

Mach 0.1 HH(3; 4) × H(4; 5) 40 10−3

1 HH(4; 24) × H(4; 11) 528 10−3

10 HH(4; 60) × HH(3; 4) 480 5×10−4

∞ HH(4; 200) × HH(4; 10) 8000 2×10−5

axis (the z axis). We are interested only in the stationary state
and consider that the flow is homogeneous with respect to
the z and ϕ directions. In order to take advantage of the ϕ

homogeneity, we employ the vielbein approach.
This section is structured as follows. In Sec. V A, the

Boltzmann equation is written with respect to the cylindrical
coordinate system, in both the f̃ and χ formulations, with
or without grid stretching, while the ensuing macroscopic
equations are discussed in Sec. V B. These formulations are
discussed in Sec. V C, where we demonstrate the failure of
the f̃ formulations to capture the constant solution when the
two cylinders are at rest, as well as the solution corresponding
to rigid rotation. Sections V D and V E validate the χ imple-
mentation against analytic solutions in the hydrodynamic and
ballistic regimes and highlight that in the f̃ formulation, the
radial heat flux presents a strong jump in the vicinity of the
boundaries. The f̃ approach is not considered further outside
Secs. V C and V D. In the transition regime, our scheme
is validated against the DVM results presented in Ref. [85]
in Sec. V F. A performance analysis of our vielbein-based
implementation is presented in Sec. V G. Finally, conclusions
are presented in Sec. V H. The details regarding the mixed
quadrature LB models employed for the simulations discussed
in Secs. V D, V E, and V F are summarized in Table III.

The initial state for all the numerical simulations presented
in this section consists of a gas in thermal equilibrium having
constant density n0 = 1, vanishing velocity uR̂ = uϕ̂ = uẑ =
0, and T0 = Tw = 1.

A. Boltzmann equation

Let us specialize the formalism of Sec. II to the case of the
Couette flow between coaxial cylinders, described in Fig. 3.
To describe the geometry of this flow, it is convenient to
employ cylindrical coordinates {x ı̃} = {R, ϕ, z} through x =
R cos ϕ and y = R sin ϕ. The line element (2.2) with respect
to cylindrical coordinates is

ds2 = dR2 + R2dϕ2 + dz2, (5.1)

while the triad vectors and the one-forms can be chosen as

eR̂ = ∂R, eϕ̂ = R−1∂ϕ, eẑ = ∂z,

ωR̂ = dR, ωϕ̂ = R dϕ, ωẑ = dz. (5.2)

The square root of the determinant of the metric in Eq. (5.1)
is equal to

√
g = √

gR = R, (5.3)

while
√

gϕ = √
gz = 1 since the metric components do not

depend on the ϕ and z coordinates.
The nonvanishing connection coefficients for the triad (5.2)

are

�R̂
ϕ̂ϕ̂ = − 1

R
, �

ϕ̂

R̂ϕ̂
= 1

R
, (5.4)

such that the Boltzmann equation in the f̃ formulation (3.1)
reads as

∂

∂t

(
f̃ ′

f̃ ′′

)
+ pR̂

m

∂

∂R

(
f̃ ′

f̃ ′′

)
+ 1

mR

[
(pϕ̂ )2 ∂

∂ pR̂

(
f̃ ′

f̃ ′′

)

−pR̂ ∂

∂ pϕ̂

(
pϕ̂ f̃ ′

pϕ̂ f̃ ′′

)]
= − 1

τ

(
f̃ ′ − f̃ ′

(eq)

f̃ ′′ − f̃ ′′
(eq)

)
, (5.5)

where the flow was assumed to be homogeneous with respect
to the ϕ and z coordinates and the pẑ degree of freedom
was reduced as described in Sec. IV A, while f̃ ′ = f ′R and
f̃ ′′ = f ′′R. The reduced distributions f ′ and f ′′ were defined
in Eq. (4.1). The above equation can be shown to be equivalent
to the equations used in Refs. [114,115].

As pointed out in Ref. [104], the numerical implementa-
tion of hyperbolic equations in the f̃ formulation (i.e., by
computing the numerical fluxes at the level of f̃ = f

√
g) is

problematic since the preservation of a constant (analytic)
solution is not guaranteed numerically.

In the χ formulation, the variable χR can be introduced via
Eq. (3.4), following Ref. [110]:

χR = R2

2
. (5.6)

The Boltzmann equation in the χ formulation (2.24) can thus
be written as follows:

∂

∂t

(
f ′

f ′′

)
+ pR̂

m

∂

∂χR

(
f ′R
f ′′R

)
+ 1

mR

[
(pϕ̂ )2 ∂

∂ pR̂

(
f ′

f ′′

)

− pR̂ ∂

∂ pϕ̂

(
pϕ̂ f ′

pϕ̂ f ′′

)]
= − 1

τ

(
f ′ − f ′

(eq)

f ′′ − f ′′
(eq)

)
. (5.7)

More details regarding our numerical implementation of
the above equation and its order of accuracy are provided in
Secs. III D and III E, respectively.

Let us now consider the grid stretching procedure de-
scribed in Sec. III B for the case of the radial coordinate.
Defining η in terms of R via Eq. (3.8) changes the line element
(5.1) to

ds2 =
[

A0(Rout − Rin )

A cosh2 η

]2

dη2 + R2(η)dϕ2 + dz2. (5.8)
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The triad corresponding to the above metric is

eη̂ = A cosh2 η

A0(Rout − Rin )
∂η, eϕ̂ = 1

R(η)
∂ϕ, eẑ = ∂z, (5.9)

while the nonvanishing connection coefficients are

�
ϕ̂
η̂ϕ̂ = −�

η̂

ϕ̂ϕ̂ = 1

R(η)
. (5.10)

The Boltzmann equation in the f̃ formulation (5.5) becomes

∂

∂t

(
f̃ ′

f̃ ′′

)
+ pη̂

m

∂

∂η

[
A cosh2 η

A0(Rout − Rin )

(
f̃ ′

f̃ ′′

)]

+ 1

mR(η)

[
(pϕ̂ )2 ∂

∂ pη̂

(
f̃ ′

f̃ ′′

)
− pη̂ ∂

∂ pϕ̂

(
pϕ̂ f̃ ′

pϕ̂ f̃ ′′

)]

= − 1

τ

(
f̃ ′ − f̃ ′

(eq)

f̃ ′′ − f̃ ′′
(eq)

)
, (5.11)

while

√
g = √

gη = A0(Rout − Rin )R(η)

A cosh2 η
. (5.12)

In the χ formulation, the equivalent of Eq. (5.11) is identical
to Eq. (5.7), where pR̂ is replaced by pη̂, R is replaced by R(η),
and χR is replaced by χη = R2(η)/2:

∂

∂t

(
f ′

f ′′

)
+ pη̂

m

∂

∂χη

(
f ′R(η)
f ′′R(η)

)

+ 1

mR(η)

[
(pϕ̂ )2 ∂

∂ pη̂

(
f ′

f ′′

)
− pη̂ ∂

∂ pϕ̂

(
pϕ̂ f ′

pϕ̂ f ′′

)]
= − 1

τ

(
f ′ − f ′

(eq)

f ′′ − f ′′
(eq)

)
. (5.13)

B. Macroscopic equations

In this section, the macroscopic equations (2.28) are pre-
sented for the case when the stationary regime is achieved.
The continuity equation [Eq. (2.28a)] reduces to

∇â(nuâ) = 1

R
∂R(nRuR̂) = 0. (5.14)

Imposing a vanishing mass flux at the boundaries (R = Rin

and R = Rout) implies uR̂ = 0 throughout the channel. This
also implies that ∇âuâ = 0 and uâ∇âφ = 0, for any scalar
function φ which does not depend on t , ϕ or z.

Substituting â ∈ {R̂, ϕ̂, ẑ} into the Cauchy equation [Eq.
(2.28b)] gives

ρ(uϕ̂ )2 = ∂R(RT R̂R̂) − T ϕ̂ϕ̂ , (5.15a)

∂R(R2T R̂ϕ̂ ) = 0, (5.15b)

∂R(RT R̂ẑ ) = 0. (5.15c)

Considering that the flow is homogeneous along the z
direction, T R̂ẑ = 0 is an acceptable solution of Eq. (5.15c).
Next, the nondiagonal component T R̂ϕ̂ of the stress tensor can

be expressed analytically as

T R̂ϕ̂ = T R̂ϕ̂
in

R2
in

R2
, (5.16)

where T R̂ϕ̂
in is the value of T R̂ϕ̂ in the vicinity of the inner

cylinder. It is remarkable that Eq. (5.16) is valid for all degrees

of rarefaction, while T R̂ϕ̂
in depends on the flow parameters,

such as Kn or �in.
Finally, the energy equation [Eq. (2.28c)] reduces to

∂R(RqR̂) + R2T R̂ϕ̂∂R(R−1uϕ̂ ) = 0. (5.17)

Using Eq. (5.16) for T R̂ϕ̂ yields

qR̂ + uϕ̂T R̂ϕ̂ = Q

R
, (5.18)

where Q is a constant which depends on the flow parameters.
In Secs. V D and V E, analytic solutions for n, uϕ̂ , T , and

qR̂ will be derived in the Navier-Stokes and ballistic regimes,

respectively. The Kn dependence of T R̂ϕ̂
in and Q is discussed in

Sec. V F and the results are summarized in Fig. 16.

C. Comparison of ˜f and χ formulations

This section is dedicated to the comparative analysis of
the f̃ and χ implementations of the Boltzmann equation.
These implementations are considered with and without
the grid stretching procedure described in Sec. III B. The
implementation of the advection part, described in the general
case in Sec. III C, is given in Sec. V C 1 for the particular
cases considered herein. Two test cases are further considered.
The first, consisting of the trivial setup when both cylinders
are at rest and f ′ = f ′′ = const, is presented in Sec. V C 2.
The second test case, corresponding to rigid rotation (i.e.,
when the two cylinders rotate at the same angular speed), is
considered in Sec. V C 3. Our conclusions are presented in
Sec. V C 4.

1. Numerical scheme

As described in Sec. III, the flow domain is discretized
using NR cells along the R direction, while Nϕ = 1 cells are
used along the homogeneous ϕ direction. For the case of an
equidistant grid, the radial coordinates of the centers of the
NR cells are given as

Rs = Rin + s − 0.5

NR
(Rout − Rin ), (5.19)

where 1 � s � NR, while Rin and Rout are the radii of the inner
and outer cylinders, respectively. When employing the grid
stretching procedure described in Sec. III B, the stretching
parameter η is discretized equidistantly:

ηs = ηin + s − 0.5

NR
(ηout − ηin ), (5.20)

where ηin and ηout are defined in Eq. (3.10) in terms of Rin and
Rout, respectively.

In the f̃ formulation (5.5), χ 1̃ ≡ χR = R and V R = pR̂/m,
such that Eq. (3.11) becomes(

∂ (V R f̃ )

∂R

)
s,1


 pR̂

m

F̃R;s+1/2,1 − F̃R;s−1/2,1

δR
, (5.21)
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where δR is the constant grid spacing along the radial di-
rection. Similarly, χ 1̃ ≡ χη = η and V η = pη̂ẽη

η̂ in Eq. (5.11)
such that Eq. (3.11) reduces to(

∂ (V η f̃ )

∂η

)
s,1


 pη̂

m

ẽη

η̂;s+1/2F̃η;s+1/2,1 − ẽη

η̂;s−1/2F̃η;s−1/2,1

δη
,

(5.22)

where δη is the constant grid spacing with respect to η, while
eη̂ is given in Eq. (5.9).

In the χ formulation (5.7), χR = R2/2 and Eq. (3.11)
becomes(

∂ (RpR̂ f /m)

∂χR

)
s,1


 pR̂

m

Rs+1/2Fη;s+1/2,1 − Rs−1/2Fη;s−1/2,1

RsδR
.

(5.23)

Similarly, in Eq. (5.13), χη = R2(η)/2, such that Eq. (3.11)
reduces to(

∂[R(η)pη̂ f /m]

∂χη

)
s,1


 2
pη̂

m

R(ηs+1/2)Fη;s+1/2,1 − R(ηs−1/2)Fη;s−1/2,1

R2(ηs+1/2) − R2(ηs−1/2)
. (5.24)

2. Cylinders at rest

The case when the inner and outer cylinders are at rest
(�in = �out = 0) and at equal temperature (Tin = Tout = Tw)
admits the solution

f ′ = f ′
(eq)(n0, u = 0, Tw ) = n0

2πmTw

exp

(
− p2

R̂
+ p2

ϕ̂

2mTw

)
,

(5.25)

while f ′′ = Tw f ′. It can be easily seen that Eq. (5.25) satisfies
the Boltzmann Eq. (5.5), as well as the boundary conditions.

Even though trivial, this simple test case serves as an
example which highlights an important drawback of the f̃ ap-
proaches based on Eqs. (5.5) and (5.11). As seen in Fig. 4, the
density profile when the f̃ formulation is employed exhibits
fluctuations, while the scheme based on the χ formulations
(5.7) and (5.13) recovers Eq. (5.25). Our conclusion is in
agreement with that presented in Ref. [104]: the numerical
fluxes associated to f ′√g and f ′′√g do not vanish, even when
f ′ and f ′′ are constant. This leads to a spurious redistribution
of f ′ and f ′′ due to which the stationary state does not
coincide with the analytic solution.

3. Rigid rotation

We now turn our attention to another trivial case in which
the two cylinders rotate at the same angular speed �in =
�out = �w. Assuming that the walls have equal temperature
Tin = Tout = Tw, the analytic solution of the Boltzmann equa-
tion (5.5) reads as

f ′(R) = f ′
(eq)[n(R), uϕ̂ = �R, Tw]

= n(R)

2πmTw

exp

[
− p2

R̂
+ (pϕ̂ − m�R)2

2mTw

]
, (5.26)

FIG. 4. Density profile n(R) for static cylinders having radii
Rin = 1 and Rout = 2. The numerical results were obtained using the
H(4; 5) × H(4; 5) model with τ = Kn/n, where Kn = 10−3. In all
cases, NR = 16 nodes were used and the stretching was performed
according to δ = 0.5 and A = 0.95.

and f ′′(R) = Tw f ′(R), while n(R) is given by [116]

n(R) = Ntot
m�2

4πTw

exp
[

m�2

4Tw

(
2R2 − R2

in − R2
out

)]
sinh

[
m�2

4Tw

(
R2

out − R2
in

)] , (5.27)

where Ntot represents the total number of particles per unit
height between the two cylinders. The density normalization
is chosen such that Ntot = π (R2

out − R2
in ).

It is worth emphasizing that Eq. (5.26) satisfies the Boltz-
mann equation for all values of the relaxation time. Figure 5
shows that, in the χ implementation, our models can suc-
cessfully reproduce both the velocity (top) and the density
profile (bottom) for all tested values of the angular velocity.
The models used are H(4; 5) × H(4; 5), the Knudsen number
is Kn = 0.001, the time step is set to δt = 5 × 10−4, and
NR = 32 grid points are employed, stretched according to
δ = 0.5 and A = 0.95. In Fig. 6, we highlight the tendency of
the density profile to bend upwards in the vicinity of the wall
when the f̃ formulation is employed, while the χ approach
matches the analytic solution with very high accuracy.

4. Summary

The simple tests considered in this section highlight two
important drawbacks of the f̃ formulation. First, the trivial
solution f ′ = f ′′ = const cannot be fully recovered in this
formulation, as shown in Fig. 4. This is in agreement with the
discussion in Ref. [104]. Second, spurious terms are induced
in the density profile in the vicinity of the boundaries. Even
though the magnitude of these terms is small, they are not
present in the χ formulation.

We thus conclude that the χ formulation is superior to
the f̃ one for the applications considered in this paper. It is
worth emphasizing that the conservation of the total number
of particles is retained in the χ formulation, as highlighted in
Ref. [110] (see also Sec. III D for more details).
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FIG. 5. Numerical results obtained using the H(4; 5) × H(4; 5)
models and the χ implementation for various values of the angular
velocity � in the case of the rigid rotation considered in Sec. V C 3.
(a) Density profile compared to Eq. (5.27). (b) Azimuthal velocity
compared to the analytic solution uϕ̂ = �R.

D. Navier-Stokes regime

The hydrodynamic regime is achieved in kinetic theory by
taking the limit when the Knudsen number satisfies Kn � 1.
In the BGK formulation of the collision operator, we set the
relaxation time in the form

τ = Kn

nT
, (5.28)

where Kn is set to 10−3 in order to achieve the hydrodynamic
regime. The form (5.28) for the relaxation time ensures that
the viscosity μ and heat conductivity κ remain constant
throughout the simulation, as implied by Eq. (2.38c).

The analytic solution of the Navier-Stokes equations is
obtained in Sec. V D 1. This solution is used in Secs. V D 2
and V D 3 to validate our implementation in the low and mod-
erate Mach number regimes. The numerical simulations were
performed by fixing the inner cylinder radius at Rin = 1, while

FIG. 6. Comparison of the f̃ and χ formulations for � = 0.5,
using the H(4; 5) × H(4; 5) model.

the radius of the outer cylinder is allowed to vary in order
to check the sensitivity of our implementation to curvature
effects [53,117,118]. We thus set Rout ∈ {2, 4, 8, 16}, resulting
in the radii ratios β = Rin/Rout ∈ {0.5, 0.25, 0.125, 0.0625}.
The number of nodes employed is 64 and 96 for the low
and non-negligible values of the Mach number, respectively,
while the time step was set to δt = 5 × 10−4. Since in the
hydrodynamic regime the flow is close to equilibrium, the
full-range Gauss-Hermite quadrature is employed on all mo-
mentum space directions.

1. Analytic analysis

In order to obtain the analytic solution in the Navier-
Stokes regime, the constitutive equations (2.38a) and (2.38b)
are employed for the nonequilibrium parts δT âb̂ and δqâ

in Eq. (2.34), where the transport coefficients μ and κ are
assumed to be constant. The cylinders are assumed to have
equal temperatures Tin = Tout = Tw, the outer cylinder is kept
at rest (i.e., �out = 0), while the angular velocity �in of the
inner cylinder is left arbitrary. Noting that ∇âuâ = 0, the
nonvanishing components of the stress tensor are

T R̂R̂ = T ϕ̂ϕ̂ = T ẑẑ = P, (5.29a)

T R̂ϕ̂ = −μR
∂

∂R
(R−1uϕ̂ ). (5.29b)

Substituting Eq. (5.29b) into (5.16) gives the Navier-Stokes
solution for the velocity [119,120]

uϕ̂ = R−1 �in

R−2
in − R−2

out

− R
�inR2

in

R2
out − R2

in

, (5.30)

where the conditions uϕ̂ (R = Rin ) = �inRin and uϕ̂ (R =
Rout ) = 0 were imposed on the inner and outer cylinders,
respectively. The tangential stress T R̂ϕ̂ (5.16) reads as

T R̂ϕ̂ = T R̂ϕ̂
in

R2
in

R2
, T R̂ϕ̂

in = 2μ�inR2
out

R2
out − R2

in

. (5.31)
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Next, the temperature can be obtained by substituting
Eq. (2.38b) into (5.18):

T = Tw + μ

κ

�2
in

R−2
in − R−2

out

[
R−2

in − R−2

R−2
in − R−2

out

− ln(R/Rin )

ln(Rout/Rin )

]
,

(5.32)

where the boundary conditions T (R = Rin ) = T (R = Rout ) =
Tw were imposed. The heat flux qR̂ = −κ∂RT can be obtained
as follows:

qR̂ = −μ

R

�2
in

R−2
in − R−2

out

[
2R−2

R−2
in − R−2

out

− 1

ln(Rout/Rin )

]
, (5.33)

while the constant Q in Eq. (5.18) is given by

Q = μ�2
in

R−2
in − R−2

out

[
1

ln(Rout/Rin )
− 2R2

in

R2
out − R2

in

]
. (5.34)

Finally, the equation for the pressure can be obtained by
substituting Eq. (5.29a) into (5.15a):

∂R ln P = m(uϕ̂ )2

RT
. (5.35)

To the best of our knowledge, the analytic solution of this
equation is not known. Thus, the density profile n = P/T must
be computed using numerical methods, with the constraint
that

2π

∫ Rout

Rin

nR dR = π
(
R2

out − R2
in

)
. (5.36)

2. Low Mach flows

The low Mach regime of the circular Couette flow has
become a preferred benchmark test in the literature for models
which deal with curved boundaries [43,45,53]. Since in this
regime the flow is essentially incompressible and isothermal,
we only examine the azimuthal velocity uϕ̂ , which is repre-
sented in Fig. 7 for various values of β = Rin/Rout. In this
regime, the analytic profiles can be recovered using the χ

implementation with the H(2; 3) × H(2; 3) model (employ-
ing 3 × 3 = 9 velocities), which is just the equivalent of
the widely used D2Q9 model employed in Refs. [45,53].
However, the vielbein formalism allows only one node to
be used in the ϕ direction, thus bringing an improvement in
the computational efficiency of several orders of magnitude
compared to the implementations presented in Refs. [45,53].

3. Non-negligible Mach flows

We now consider the case when the angular velocity of the
inner wall is �in = 0.5, such that uϕ

in = �inRin = 0.5. Figure 8
shows a comparison between the results obtained with the
χ implementation using the H(4; 5) × H(4; 5) model against
the analytical solution of the density n [computed numerically
using Eq. (5.35)], tangential velocity uϕ̂ (5.30), temperature T
(5.32), and radial heat flux qR̂ (5.33). A very good agreement
is observed with the analytic solution for all tested parameters.
The temperature profile exhibits a maximum when

R =
√

2 ln(Rout/Rin )

R−2
in − R−2

out

. (5.37)

FIG. 7. Azimuthal velocity profile uϕ̂ (R) for the angular velocity
of the inner cylinder of �in = 0.01. The curves correspond to various
values of β = Rin/Rout. Our numerical results, obtained using the
H(2; 3) × H(2; 3) model in the χ implementation, are overlapped
with the analytic solution (5.30).

The above curve is also represented in Fig. 8(c) and it can be
seen that the maximum is captured very well.

We note that the radial heat flow profiles are not well
recovered near the boundaries, where a deviation with respect
to the analytic profile can be seen. Figure 9 shows the radial
heat flux profile corresponding to equidistant grids having
NR ∈ {32, 64, 128, 256} nodes and β = 0.5. It can be seen that
this deviation occurs in the two points which are nearest to
the boundary. By increasing the resolution in the vicinity of
the boundary, the amplitude of the deviation of the numerical
result compared to the analytic prediction (5.33) is seen to
decrease roughly as (δR)0.58. Figure 10 shows the comparison
of the f̃ and χ formulations with stretched and equidistant
grids using NR = 32 grid nodes. This plot clearly shows the
advantage of using a stretched grid and the χ formulation,
which appears to minimize the amplitude of the deviations
most efficiently out of the previously enumerated approaches.

E. Free molecular flow regime

In the free molecular flow regime, the collision term in the
Boltzmann equation vanishes. The analytic solution in this
case was derived in Ref. [85] only for the distribution func-
tion, density, azimuthal velocity, and temperature. For com-
pleteness, we present a similar derivation for the distribution
function and the macroscopic moments (including the stress
tensor and heat fluxes which are not derived in Ref. [85]),
which are presented in Secs. V E 1 and V E 2, respectively.
Our numerical scheme is validated by comparison with these
results in Sec. V E 3.

1. Boltzmann distribution function

Since there are no body forces present, the particles in the
free molecular flow regime travel along straight lines between
the two bounding cylinders. Due to the symmetry of the flow
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FIG. 8. Comparison between the numerical and analytic results for the profiles of (a) n [the analytical curve is obtained numerically by
solving Eq. (5.35)]; (b) uϕ̂ [Eq. (5.30)]; (c) T [Eq. (5.32)], together with Eq. (5.37) giving the position of the maximum in the temperature
profile; (d) qR̂ [Eq. (5.33)]. The curves correspond to various values of β = Rin/Rout. The inner cylinder rotates with �in = 0.5, while the outer
cylinder is kept at rest. The numerical results, obtained with the χ implementation using the H(4; 5) × H(4; 5) model, are overlapped with the
analytic solutions.

configuration, the solution is independent of the azimuth ϕ.
Let us consider a point P at a distance R − Rin from the first
cylinder, as shown in Fig. 11. The momentum of a particle
passing through this point has the components

pR̂ = p cos θ, pϕ̂ = p sin θ, (5.38)

where p =
√

(pR̂)2 + (pϕ̂ )2 and θ = arctan(pϕ̂/pR̂). It is con-
venient to set the range of θ ∈ (−π, π ) with θ = 0 cor-
responding to the radial direction towards the outer cylin-
der. With this convention, the particles with |θ | < θmax =
arcsin(Rin/R) originate from the inner cylinder, while those
with θmax < |θ | < π are emitted by the outer cylinder. The
coordinate axis x is aligned along the radial direction passing
through P , such that the radial and azimuthal unit vectors at
P are just i and j.

When |θ | < θmax, the distribution of particles at P having
momentum p along the direction given by θ is equal to the
distribution of particles emitted from the point located at Rin

and angle −π
2 < φ < π

2 with respect to the horizontal axis,

as shown in Fig. 11. We use the convention that the angle φ is
positive when measured trigonometrically from the horizontal
axis and negative otherwise. From Fig. 11 it can be seen that

(p − muin )2 = p2 + p2
z + m2�2

inR2
in

− 2mp�inRin cos

(
π

2
+ φ − θ

)
, (5.39)

where uin = �inRin(−i sin φ + j cos φ). In the above, it is
understood that θ and φ have opposite signs, i.e., a particle
traveling downwards (θ < 0) originates from the upper half
of the inner cylinder (φ > 0), as shown in Fig. 11. The cosine
function in Eq. (5.39) can be evaluated as follows:

cos

(
π

2
+ φ − θ

)
= sin θ (cos φ − sin φ cot θ ) = R

Rin
sin θ,

(5.40)

where cos φ = (Rin − δ)/Rin, sin φ = ±h/Rin, and cot θ =
∓(R − Rin + δ)/h, where the upper sign refers to the case
when the particle is emitted from above the horizontal axis.

033304-18



LATTICE BOLTZMANN MODELS BASED ON THE … PHYSICAL REVIEW E 99, 033304 (2019)

-0.0004

-0.0003

-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0  0.2  0.4  0.6  0.8  1

R
ad

ia
l h

ea
t f

lu
x

(R-Rin)/(Rout-Rin)

NR=32
NR=64

Analytical

-0.0004

-0.0003

-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0  0.2  0.4  0.6  0.8  1

R
ad

ia
l h

ea
t f

lu
x

(R-Rin)/(Rout-Rin)

NR=128
NR=256

10-5

10-4

10-3 10-2 10-1

qR
-q

R
an

al
yt

ic

δR

FIG. 9. Effect of lattice spacing on the behavior of qR̂ near the
wall when the χ implementation on an equidistant grid is employed.
The inset shows that the amplitude of the deviation of qR̂ with respect
to the expected analytic value (5.33) is proportional to (δR)0.58.

Thus, at radial distance R from the axis of the inner cylin-
der, the distribution function of particles traveling at angle θ

with respect to the radial direction is

f (R; θ, p) = nin

(2πmTw )3/2
exp

{
− 1

2mTw

(
p2 + p2

z

+ m2�2
inR2

in − 2mp�inR sin θ
)}

, (5.41)

where the number density of emitted particles nin will be
determined in Sec. V E 2, Tw is the wall temperature, and
|θ | < θmax = arcsin(Rin/R). Since the outer cylinder is at rest,
the distribution function of the emitted particles is isotropic,
such that, when θmax < |θ | < π , the distribution function is

FIG. 10. Comparison of the f̃ (stretched and equidistant) and χ

(stretched and equidistant) radial heat flux using NR = 32 grid points.

FIG. 11. Trajectory of a free-streaming particle originating from
the inner cylinder, which passes through point P at distance R from
the symmetry axis with momentum p. Since the particle travels
downwards, θ < 0 and φ > 0.

given by

f (R; θ, p) = nout

(2πmTw )3/2
exp

[
− p2 + p2

z

2mTw

]
, (5.42)

where the number density nout of the particles emitted by the
outer cylinder will be determined in the next subsection.

2. Macroscopic moments

Let us introduce the following moments:

MsR,sϕ,sz ≡
∫ ∞

−∞
d pẑ

∫ ∞

−∞
d pR̂

∫ ∞

−∞
d pϕ̂ f psR

R̂
psϕ

ϕ̂ psz

ẑ

=
∫ ∞

−∞
d pẑ psz

ẑ

∫ ∞

0
d p psR+sϕ+1

×
∫ π

−π

dθ f (cos θ )sR (sin θ )sϕ . (5.43)

Using the results (5.41) and (5.42), the above expression can
be written as

MsR,sϕ,sz = 1 + (−1)sz

2π3/2
(2mTw )

1
2 (sR+sϕ+sz )�

(
sz + 1

2

)

×
{

nine−R̃2
in

R̃sϕ+1

∫ R̃in

−R̃in

dζ ζ sϕ eζ 2
(1 − ζ 2/R̃2)

1
2 (sR−1)

×
∫ ∞

0
dξ ξ sR+sϕ+1e−(ξ−ζ )2

+ nout �

[
1 + 1

2
(sR + sϕ )

]
1 + (−1)sϕ

2

×
∫ π

θmax

dθ (cos θ )sR (sin θ )sϕ

}
, (5.44)

where the changes of variables ξ = p/
√

2mTw and ζ =
R̃ sin θ were performed. The notation

R̃ = �inR
√

m/2Tw (5.45)

represents the square root of the ratio between the kinetic
energy m

2 �2
inR2 induced by the rigid rotation at R and the

thermal energy Tw, while R̃in = R̃Rin/R.
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Noting that ρuR̂ = M1,0,0, the macroscopic velocity along
the radial direction can be computed as

uR̂ = Rin

ρR

√
mTw

2π
(nin − nout ), (5.46)

where the integration with respect to ζ in Eq. (5.44) was
performed first. In order to ensure vanishing mass transfer
through the bounding cylinders, uR̂ must vanish at R = Rin

and at R = Rout, requiring that

nin = nout = nw. (5.47)

In order to fix nw, the particle number density n = M0,0,0 must
be computed:

n(R) = nw

R̃π
e−R̃2

in

∫ R̃in

−R̃in

eζ 2
dζ√

1 − ζ 2/R̃2

∫ ∞

0
dξ ξ e−(ξ−ζ )2

+ nw(1 − θmax/π ), (5.48)

where θmax = arcsin(Rin/R). Using the following identity∫ ∞

0
dξ ξ e−(ξ−ζ )2 = 1

2
e−ζ 2 +

√
π

2
ζ (1 + erf ζ ), (5.49)

the particle number density can be expressed as

n(R) = nw

{
1 − θmax

π
+ e−R̃2

in

[
θmax

π
+ I0 (̃R)

R̃
√

π

]}
, (5.50)

where

In (̃R) =
∫ R̃in

0

ζ 2n+1dζ√
1 − ζ 2/R̃2

eζ 2
erfζ . (5.51)

Since the radial integral in Eq. (5.36) cannot be performed
analytically, we resort to numerical methods to find the value
of nw.

The macroscopic velocity along the ϕ direction can be
computed by noting that ρuϕ̂ = M0,1,0:

ρuϕ̂ = nwe−R̃2
in

π R̃2

√
2mTw

∫ R̃in

−R̃in

ζ dζ eζ 2√
1 − ζ 2/R̃2

∫ ∞

0
dξ ξ 2e−(ξ−ζ )2

.

(5.52)

Using the property∫ ∞

0
dξ ξ 2[e−(ξ−ζ )2 − e−(ξ+ζ )2

]

= ζe−ζ 2 +
√

π

2
(1 + 2ζ 2)erf (ζ ), (5.53)

the azimuthal velocity can be written as

uϕ̂ = nw�inR

2πn(R)
e−R̃2

in

{
arcsin

Rin

R
− Rin

R

√
1 − R2

in

R2

+
√

π

R̃3
[I0 (̃R) + 2I1(̃R)]

}
. (5.54)

Noting that

I0 = R̃3

√
π

⎛⎝θmax − Rin

R

√
1 − R2

in

R2

⎞⎠+ O
(
�5

in

)
,

I1 = R̃5

4
√

π

⎡⎣3θmax − Rin

R

√
1 − R2

in

R2

(
3 + 2

R2
in

R2

)⎤⎦
+ O

(
�7

in

)
, (5.55)

it can be seen that, in the small �in limit, Eq. (5.54) reduces
to the expression in Refs. [43,121]:

uϕ̂ = 1

π
�inR

⎛⎝arcsin
Rin

R
− Rin

R

√
1 − R2

in

R2

⎞⎠+ O
(
�3

in

)
.

(5.56)
Finally, uẑ = 0 since MsR,sϕ,1 = 0 due to the [1 + (−1)sz ]/2
prefactor in Eq. (5.44).

For the computation of the stress tensor, it can be seen that
T ẑẑ = 1

m M0,0,2 is given by

T ẑẑ = n(R)Tw. (5.57)

Since T R̂ẑ = 1
m M1,0,1 = 0 and 1

m T ϕ̂ẑ = M0,1,1 = 0, the only
nonvanishing nondiagonal component of the stress tensor is
T R̂ϕ̂ = 1

m M1,1,0:

T R̂ϕ̂ = 2nwTw

π R̃2
e−R̃2

in

∫ ∞

0
dξ ξ 3e−ξ 2

∫ R̃in

−R̃in

dζ ζe2ξζ . (5.58)

The above integrals can be performed analytically, yielding

T R̂ϕ̂ = T R̂ϕ̂
in

R2
in

R2
, T R̂ϕ̂

in = nwTw√
π

R̃in, (5.59)

where, as before, R̃in = �inRin
√

m/2Tw. The above expres-
sion is in agreement with the general result (5.16). The last
nonvanishing components of the stress tensor are T R̂R̂ =
1
m M2,0,0 and T ϕ̂ϕ̂ = 1

m M0,2,0 − ρ(uϕ̂ )2, which have the follow-
ing expressions:

T R̂R̂ = nwTw

π
e−R̃2

in

{
Rin

4R

(
4 + 2R̃2

in − R̃2
)

cos θmax + 1

4
(4 + R̃2)θmax +

√
π

R̃3
[3R̃2I0 + (2R̃2 − 3)I1 − 2I2]

}
+ nwTw

(
1 − θmax

π
− sin 2θmax

2π

)
, (5.60a)

T ϕ̂ϕ̂ = nwTw

π
e−R̃2

in

[
−Rin

4R

(
4 + 2R̃2

in + 3R̃2
)

cos θmax + 1

4
(4 + 3R̃2)θmax +

√
π

R̃3
(3I1 + 2I2)

]
+ nwTw

(
1 − θmax

π
+ sin 2θmax

2π

)
− ρ(uϕ̂ )2. (5.60b)
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The temperature can be obtained as follows:

T = Tw − m

3
(uϕ̂ )2 + nwTwR̃2

3πn(R)
e−R̃2

in

×
[
θmax − Rin

R
cos θmax +

√
π

R̃
(I0 + 2I1)

]
. (5.61)

Finally, the components of the heat flux can be written as

qR̂ = M3,0,0 + M1,2,0 + M1,0,2

2m2
− uϕ̂T R̂ϕ̂ ,

qϕ̂ = M2,1,0 + M0,3,0 + M0,1,2

2m2
− uϕ̂T ϕ̂ϕ̂

− 1

2
ρ(uϕ̂ )3 − 3

2
nuϕ̂T . (5.62)

Noting that M1,0,2 = 0, qR̂ can be expressed as in Eq. (5.18),
with

Q = nwRinT 3/2
in√

2πm
R̃2

in, (5.63)

where the notation R̃in is defined in Eq. (5.45). The component
qϕ̂ can be obtained from Eq. (5.62) using

M2,1,0 + M0,3,0

2m2
= nwT 3/2

w R̃ e−R̃2
in

4π
√

2m

[
θmax(10 + 3R̃2)

− Rin

R

(
10 + 2R̃2

in + 3R̃2
)

cos θmax

+ 2
√

π

R̃3
(3I0 + 12I1 + 4I2)

]
(5.64)

as well as 1
2m2 M0,1,2 = 1

2 nTwuϕ̂ .

3. Numerical results

As also noted in Refs. [36,43,79], a sufficiently high
quadrature order must be employed at high values of the
relaxation time in order to avoid oscillations in the stationary
state. Figure 12 illustrates how increasing the radial quadra-
ture order quenches the oscillation amplitude. We note that
the quadrature order required to reduce the oscillations below
a detectable level increases with the number of spatial grid
points. Since we employ the fifth-order WENO-5 scheme
together with an appropriate grid stretching, we are able
to obtain accurate results with only 16 grid points and a
quadrature order of QR = 200 [36].

We tested our models in the high Mach regime by consid-
ering three values of the angular velocity of the inner cylinder,
namely, �in ∈ {1, 2, 3}. In this case, we kept Rin = 1 and
Rout = 2 fixed, such that β = Rin/Rout = 0.5. The time step
was set to δt = 2 × 10−5. For these values of the parame-
ters, we used the models HH(4; 200) × HH(4; 10) to ensure
smooth profiles in the stationary state. Excellent agreement is
found between our simulation results for the profiles of P, uϕ̂ ,

FIG. 12. Effect of the quadrature order on the oscillations in
the stationary profile of the pressure and azimuthal velocity in
the ballistic regime. The results were obtained with the models
HH(4; QR ) × HH(4; 10) and the curves correspond to various values
of QR. The parameters employed in these simulations are Rin = 1,
Rout = 2, �in = 1.0, �out = 0, and δt = 2 × 10−5. Our simulations
reached the stationary state after 500 000 iterations. We used NR =
16 grid points together with the stretching given by A = 0.95 and
δ = 0.75. The thick continuous curves correspond to the analytic
solutions derived in Sec. V E 2.

qR̂, qϕ̂ , T R̂R̂, T ϕ̂ϕ̂ , T R̂ϕ̂ and temperature T and the correspond-
ing analytic results derived in Sec. V E 2, as can be seen in
Figs. 13 and 14.

Before ending this section, it is worth emphasizing that the
formula (5.56) derived by Willis [121] is valid only in the
limit of low Mach number flows, as shown in Sec. V E 2.
At higher values of the Mach number, the ratio uϕ̂/uw

no longer coincides with the profile predicted by Willis
since the nonlinear terms in uϕ̂ which appear in the ex-
act result (5.54) and are absent in the result from Willis
(5.56) become important. This discrepancy is highlighted
in Fig. 13(b).
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FIG. 13. Comparison between our numerical results and the analytic predictions in the ballistic regime. (a) P = nT [Eqs. (5.50) and
(5.61)]; (b) uϕ̂/uϕ̂

in [Eq. (5.54)]; (c) qR̂ [Eq. (5.62)]; (d) qϕ̂ [Eq. (5.62)]. The radii of the inner and outer cylinders were Rin = 1 and Rout = 2,
such that β = 0.5. The quadrature used was HH(4; 200) × HH(4; 10). The curves correspond to various values of �in. The analytic solution
for uϕ̂ reported by Willis [121] and reproduced in Eq. (5.56) is shown in (b) alongside the exact expression (5.54). The time step was set to
δt = 2 × 10−5 and the number of nodes was NR = 16.

F. Transition flow regime

To the best of our knowledge, there is no analytic solution
of the Boltzmann-BGK equation which is valid for the circular
Couette flow in the transition regime. In order to validate our
models in this regime, we compared our simulation results
with those obtained by Aoki et al. [85] using a high-order dis-
crete velocity model (DVM) for Kn ∈ {0.02, 0.1, 1.0, 10.0},
where the Knudsen number is related to the relaxation time τ

via [85]

τ = Kn

n

√
π

8
. (5.65)

The angular velocity of the inner cylinder was set to �in =
0.5

√
2, while �out = 0. The radii of the inner and outer

cylinders were kept fixed at Rin = 1 and Rout = 2. In order
to maintain good agreement between our simulation results
and those reported in Ref. [85], the radial and azimuthal
quadrature orders were increased as Kn was increased, as
summarized in Table III (the time step employed is also shown

therein). The simulation domain comprised NR = 16 nodes
stretched according to Eq. (3.8) with A = 0.95 and δ = 0.5.

Figures 15(a)–15(c) show comparisons between the pro-
files of n, T , and uϕ̂ obtained using the models summarized in
Table III and those reported by Aoki et al. [85]. A very good
agreement can be seen.

In Figs. 16(a) and 16(b), the variation over Kn of the

constants Q [Eq. (5.18)] and T R̂ϕ̂
in [Eq. (5.16)] is repre-

sented. The simulation results match the analytic results

in the hydrodynamic and ballistic flow regimes. For T R̂ϕ̂
in ,

our numerical results are compared with the analytic result
obtained by Willis [121] and a good match is observed at
high Knudsen numbers, close to the free molecular flow
regime.

Finally, we considered the low Mach number case studied
in Ref. [43]. Our simulation results obtained using the models
summarized in Table III are shown in Fig. 17. An excellent
match with the LB results reported by Watari in Ref. [43] can
be observed.
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FIG. 14. Same as Fig. 13 in the case of (a) T R̂R̂ [Eq. (5.60a)]; (b) T ϕ̂ϕ̂ [Eq. (5.60b)]; (c) T R̂ϕ̂ [Eq. (5.59)]; (d) T [Eq. (5.61)]. The simulation
parameters are the same as in Fig. 13.

G. Performance analysis

Let us now consider a comparison between the efficiency
of our method and that of previously published methods. The
lattice Boltzmann implementations employed in Refs. [45,53]
are validated only in the hydrodynamic regime at small
Mach numbers and employ the D2Q9 model (employing 9
velocities). Our scheme is capable of recovering this regime
also with 9 velocities. However, the implementations of
Refs. [45,53] do not align the momentum space along the
cylindrical coordinate system unit vectors, such that the spa-
tial grid employed therein is two dimensional. Thus, our
proposed scheme is much more efficient since our spatial grid
is always one dimensional.

Next, we consider a comparison with the LB implemen-
tation proposed by Watari in Ref. [43]. This scheme is also
restricted to low Mach number flows, however, the whole
range of the Knudsen number is explored. For Kn � 0.5,
Watari employed models with 40 velocities in order to obtain
accurate results. As Table III shows, our implementation
allows us to recover the same results with 12 and 24 ve-
locities at Kn = 0.01 and 0.1, respectively, while at Kn =
0.5, we employed a model with 120 velocities. At Kn = 1,
Watari employed 4 × 24 = 96 velocities, while we required a

number of 160 velocities to match the velocity profile. Finally,
at Kn = 100, Watari obtained good agreement with the free-
streaming solution with 4 × 60 = 240 velocities, while we
employed 480 velocities in this regime. We note that our
implementation requires higher quadrature orders at Kn � 0.5
due to the inertial forces which act along the radial direction,
where the distribution function is discontinuous. This was also
seen in the case of a rarefied gas between parallel plates under
the effect of gravity [36]. Such forces are not present in the
implementation of Ref. [43] since there the momentum space
is not aligned to the cylindrical coordinate system. The gain
in efficiency at the level of the momentum space compared to
our scheme is lost since the spatial grid is two dimensional.
The number of distribution functions required at Kn = 100 in
Ref. [43] is 240 velocities multiplied by 200 × 100 = 20 000
spatial grid points, resulting in 4 800 000 population updates
per time step. In our implementation, we only use 16 radial
points, such that the number of population updates per time
step is just 16 × 480 = 7 680, which is significantly more
efficient than the implementation presented in Ref. [43].

In the transition regime, Aoki et al. [85] employed a
polar decomposition of the momentum space using 48 shells
of equal momentum magnitude containing 272 directions,
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FIG. 15. Comparison between our simulation results and those
reported in Ref. [85]. (a) n(R); (b) T (R); (c) uϕ̂ (R)/uϕ̂

in. The angular
velocity of the inner cylinder was set to �in = 0.5

√
2, while the

Knudsen number is related to the relaxation time through Eq. (5.65).
The models employed in these simulations are summarized in the
non-negligible Mach section of Table III.

FIG. 16. Comparison of our simulation results for the constants
Q (a) and T R̂ϕ̂

in (b) against the analytic solutions given in Eqs. (5.34)
and (5.31) in the hydrodynamic limit, as well as in Eqs. (5.63) and
(5.59) in the free molecular flow limit. The Knudsen number is
related to the relaxation time through Eq. (5.65). In (b), the analytic
result reported by Willis [121] is represented using a solid black line.

resulting in a velocity set comprising 48 × 272 = 13 056 ele-
ments. As can be seen from Table III, the number of velocities
employed by our models is significantly lower at Kn � 10,
with 40 velocities for Kn ∈ {0.02, 0.1}, 528 velocities at Kn =
1, and 960 velocities at Kn = 10. As Kn → ∞, the number of
velocities required to obtain accurate results increases to 8000,
which is still lower than the number of velocities employed in
Ref. [85]. Furthermore, the use of the WENO-5 scheme for the
computation of the numerical fluxes allows us to recover the
analytic solutions in the ballistic regime using only 16 nodes,
compared with the 240 nodes employed in Ref. [85] using
the second-order numerical scheme introduced in Refs. [122–
124]. It can thus be seen that, as the ballistic regime is
approached, the efficiency of our scheme decreases to that
of standard DVM codes. However, in the regime of moderate
Knudsen numbers, our implementation is significantly more
efficient, especially due to the use of the half-range Gauss-
Hermite quadrature on the radial direction. This can be seen
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FIG. 17. Velocity profile in the low Mach number regime �in =
0.01. Our simulation results are compared with the LB results
reported by Watari in Ref. [43]. The models employed in these
simulations are summarized in the low Mach section of Table III
alongside the corresponding time step. The number of grid points
was NR = 16, stretched according to Eq. (3.8) with A = 0.95 and
δ = 0.5.

by looking at Fig. 18, where the time required to achieve the
steady state using the models benchmarked in Figs. 7, 8, 15,
and 17 and summarized in Table III is represented with respect
to Kn, for both the low and the high Mach regimes. It can be
seen that the lowest runtime is registered around Kn 
 0.1.
For completeness, the methodology to determine this runtime
is presented below.

In each of the simulations presented in Fig. 18, the time to
achieve the steady state is determined by comparing the output
of two successive cycles of duration �t = 6 (the number of
iterations per cycle is computed based on the time step). At

FIG. 18. Time (in seconds) required to achieve steady state using
the models summarized in Table III.

the end of cycle � > 1, the following L2 norms are computed:

L�
2;u =

⎡⎣∫ Rout

Rin

dR R

(
uϕ̂

� − uϕ̂

�−1

uw

)2
⎤⎦1/2

,

L�
2;n =

[∫ Rout

Rin

dR R

(
n�

n�−1
− 1

)2
]1/2

,

L�
2;T =

[∫ Rout

Rin

dR R

(
T�

T�−1
− 1

)2
]1/2

, (5.66)

where uw is the angular velocity of the inner cylinder (the
outer cylinder is at rest), while Rin = 1 and Rout = 2 are
the radii of the inner and outer cylinders. The integration is
performed using the rectangle method by switching to the
equidistant coordinate η, as described below for an arbitrary
function f:∫ Rout

Rin

dR R f(R) = A0

A
(Rout − Rin )

∫ ηout

ηin

R(η)dη

cosh2 η
f(η)


 A0

A
(Rout − Rin )

NR∑
s=1

Rsδη

cosh2 ηs
fs, (5.67)

where the quantities bearing the subscript s are evaluated
at η = ηs = ηin + (s − 0.5)δη. We consider that the steady
state is achieved when all the L2 norms defined in Eq. (5.66)
decrease below the threshold 10−5.

Let us now discuss the order of algorithmic complexity of
the main steps of our proposed algorithm, namely,

(1) computation of the macroscopic variables;
(2) relaxation;
(3) enforcing boundary conditions;
(4) applying the advection rule;
(5) applying the forcing terms.
The order of the above steps is arbitrary since we use a

fully explicit algorithm and the new populations are stored in
a separate memory zone. The complexity of steps 1, 2, and 4
is O(Nvel × NR), where Nvel = 2QRQϕ is the total number of
velocities when the half-range and full-range quadratures of
orders QR and Qϕ are employed on the radial and azimuthal
directions, while NR is the number of nodes in the radial
direction. Step 3 does not depend on the number of nodes
(there are only two sites where diffuse reflection is applied
for the circular Couette problem), so the complexity of this
step is O(Nvel ). Finally, step 5 involves the computation of the
momentum space derivatives, which are performed using the
kernels introduced in Sec. IV C and in Appendix D. It can
be seen that the complexity for this step is O[(QR + Qϕ ) ×
Nvel × NR]. Thus, the time required to perform one iteration
can be estimated via

�T = (a1 + a2 + a4)NvelNR + a3Nvel

+ a5(2QR + Qϕ )NvelNR + c, (5.68)

where ai (1 � i � 5) are constants corresponding to the steps
of the algorithm and the constant c denotes an overhead which
is due to one-off operations, such as memory allocations,
input/output operations, etc.
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We now consider a series of simulations in order to vali-
date Eq. (5.68). For simplicity, the number of nodes is kept
constant at NR = 128, such that Eq. (5.68) becomes

�T = aNvel + b(2QR + Qϕ )Nvel + c, (5.69)

where a, b, and c are constants. We now consider three batches
of simulations. In the first batch, the radial and azimuthal
quadrature orders are varied simultaneously, such that QR =
Qϕ = Q, where 4 � Q � 30. In this case, Q = √

Nvel/2 and
Eq. (5.69) reduces to

�T = aNvel + 3b√
2

N3/2
vel + c. (5.70)

The second batch corresponds to keeping QR = 4 and varying
Qϕ between 4 and 200, such that Qϕ = Nvel/8 and Eq. (5.69)
becomes

�T = aNvel + bNvel

(
8 + Nvel

8

)
+ c. (5.71)

Finally, in the third simulation batch, Qϕ = 4 is kept fixed
and QR = Nvel/8 is varied between 4 and 200, while �T
[Eq. (5.69)] is given by

�T = aNvel + bNvel

(
4 + Nvel

4

)
+ c. (5.72)

The time per iteration �T can be used to compute the
number of million of sites updated per second (Msites/s),
which we denote by MS, being given by

MS = NR

106�T
, (5.73)

where �T is expressed in seconds. In order to validate
Eq. (5.69), MS is computed by measuring the total simulation
time T required to complete 32 000/Nvel iterations for a
system with NR = 128 nodes stretched according to δ = 0.5
and A = 0.95, with τ = Kn/n, Kn = 0.001, and time step
taken as δt = 10−5 in order to satisfy the CFL condition for
all quadrature orders considered in these simulations, by using
the formula

MS = 0.32NR

NvelT
, (5.74)

where T is given in seconds. Figure 19 shows the dependence
of MS with respect to Nvel for the three batches considered
above. For each simulation batch, the corresponding formulas
(5.70)–(5.72) are fitted to the numerical values of MS in
order to determine the coefficients a, b, and c. Taking the
average between the three sets of values gives a 
 42.4 μs,
b 
 0.944 μs, and c 
 198 μs. The curves corresponding
to Eqs. (5.70)–(5.72) with the above values for a, b, and c
are represented alongside the numerical data and an excellent
agreement can be seen. This validates the algorithmic com-
plexity proposed in Eq. (5.68).

For consistency, all runtime results are calculated for sim-
ulations performed on a single core of an Intel©CoreTM i7-
4790 Processor.

H. Summary

In this section, the circular Couette problem was consid-
ered at various values of the Knudsen number, in the low

FIG. 19. Number of millions of site updates per second in the
context of the circular Couette flow for a system with NR = 128
nodes in the radial direction when the half-range and full-range
Gauss-Hermite quadratures of orders QR and Qϕ are employed on
the radial and azimuthal directions, respectively. The total number
of velocities is Nvel = 2QRQϕ . The curves correspond to the cases
when QR = Qϕ ; when QR = 4 is kept fixed and Qϕ is varied; and
when Qϕ = 4 is kept fixed and QR is varied. The simulation data are
represented using lines with points, while the solid lines correspond
to Eqs. (5.70), (5.71), and (5.72), where the parameters a, b, and c
are obtained using a fitting routine.

and moderate Mach number regimes. Our numerical results
reproduced with high accuracy the analytic solutions in the
hydrodynamic and ballistic regimes, while at intermediate
relaxation times, we obtained excellent agreement with the
discrete velocity model (DVM) results reported in Ref. [85].

VI. FLOW THROUGH A GRADUALLY
EXPANDING CHANNEL

In this section, the versatility of the vielbein formalism
is demonstrated in the case of a more complex geometry.
The implementation is validated for the case of the gradually
expanding channel problem initially proposed in Ref. [97].
This type of channel has the advantage that the transition from
a narrow to a wide channel opening is made gradually, without
resorting to sharp corners.

Benchmark results were published in Ref. [98] for the
incompressible Navier-Stokes flow through this channel at
Reynolds number Re = 100 in the no-slip regime. In this sec-
tion, we validate our implementation against these benchmark
results and further exploit the vielbein formalism in order to
study the properties of the flow at non-negligible values of the
Knudsen number Kn. In particular, we consider flow regimes
with Mach numbers of order unity, as well as with Kn 
 0.5.

In Sec. VI A, we introduce the vielbein for the general
case of channels with symmetric walls and show how the
momentum space can be aligned along them. The case of
the gradually expanding channel is presented in Sec. VI B,
where the grid construction is discussed. The inlet and outlet
boundary conditions, as well as specular and diffuse reflection
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boundary conditions on the channel centerline and channel
walls, respectively, are discussed in Sec. VI C. Our implemen-
tation is validated in the incompressible hydrodynamic regime
in Sec. VI D and simulations in the compressible hydrody-
namic regime are presented in Sec. VI E. To demonstrate the
capabilities of the vielbein approach coupled with half-range
quadratures, the flow through the gradually expanding chan-
nel is considered for non-negligible values of the Knudsen
number in Sec. VI F. A comparison with an implementation
that does not use the vielbein approach and a performance
analysis are given in Sec. VI G. A brief summary is presented
in Sec. VI H.

A. General formalism

Let us consider the general case of a channel exhibiting a
gradual symmetric modification of its exterior boundary. Let
the top boundary be given by the function xtop(y) = H

2 [1 +
φ(y)], while the bottom boundary is located at xbottom(y) =
−xtop(y). The normalized tangent vector to the top boundary is

t =
H
2 φ′i + j√

1 + (H
2 φ′)2 , (6.1)

while the exterior normal can be obtained as

n = t × k = i − H
2 φ′ j√

1 + (H
2 φ′)2 . (6.2)

The incoming flux from the fluid towards the boundary is
comprised of the particles for which

p · n = px − H
2 φ′ py√

1 + (H
2 φ′)2 > 0. (6.3)

The above restriction cuts the momentum space in half along
a plane given by the equation px = H

2 φ′ py, which is point
dependent due to the presence of φ′. This has the undesirable
effect that it does not allow the construction of a quadrature
rule for the momentum space which is the same throughout
the fluid domain. In particular, the lattice Boltzmann models
based on half-range quadratures are developed for the case
when the boundary is orthogonal to one of the momentum
space directions (e.g., px), such that the incoming and outgo-
ing fluxes are obtained as momentum space integrals of the
distribution function restricted to positive or negative values
of the momentum component along this direction [16,18–36].

In order to make the condition (6.3) point independent, the
following coordinates can be employed:

λ = x

1 + φ(y)
, ξ = y, (6.4)

while z remains unchanged. The boundaries are now located
at λ = ±H/2. The line element ds2 = dx2 + dy2 + dz2 be-
comes

ds2 = {[1 + φ(ξ )]dλ + λφ′(ξ )dξ}2 + dξ 2 + dz2. (6.5)

By writing ds2 = g ı̃ j̃ dx ı̃dx j̃ , it can be seen that the nonvan-
ishing components g ı̃ j̃ of the metric tensor are given by

gλ̃̃λ = [1 + φ(ξ )]2, gξ̃ ξ̃ = 1 + λ2[φ′(ξ )]2,

gξ̃ λ̃ = gλ̃̃ξ = λ[1 + φ(ξ )]φ′(ξ ), g̃z̃z = 1, (6.6)

while
√

g = √
gξ = 1 + φ(ξ ). Thus, the metric tensor ex-

hibits nonvanishing nondiagonal components.
The components of the momentum vector p with respect to

the coordinates λ and ξ are

p̃λ =∂λ

∂x
px + ∂λ

∂y
py = px − λφ′ py

1 + φ
,

(6.7)

p̃ξ =∂ξ

∂x
px + ∂ξ

∂y
py = py,

while the inverse transformation gives

px = (1 + φ) p̃λ + λφ′ p̃ξ , py = p̃ξ . (6.8)

It can be seen that at λ = H/2, p̃λ is proportional to p · n, such
that Eq. (6.3) reduces to

p̃λ > 0. (6.9)

The coordinate directions ∂λ and ∂ξ are not orthogonal since
gλ̃̃ξ �= 0. This implies that the momentum vectors pλ and pξ ,

corresponding to ( p̃λ, p̃ξ ) = (1, 0) and (0,1), respectively, are
not orthogonal:

pλ · pξ = gλ̃̃ξ = λ(1 + φ)φ′. (6.10)

In order to construct an orthogonal momentum space
which retains the beauty of Eq. (6.9), it is convenient to work
with the triad one-forms

ωξ̂ = λφ′(1 + φ)√
1 + λ2φ′2 dλ +

√
1 + λ2φ′2 dξ,

(6.11)

ωλ̂ = 1 + φ√
1 + λ2φ′2 dλ, ωẑ = dz,

and the associated triad vectors

eλ̂ =
√

1 + λ2φ′2

1 + φ
∂λ − λφ′√

1 + λ2φ′2 ∂ξ ,

eξ̂ = 1√
1 + λ2φ′2 ∂ξ , eẑ = ∂z. (6.12)

The connection between the hatted components pλ̂ and pξ̂ and
the Cartesian components px and py of p = pλ̂eλ̂ + pξ̂ eξ̂ =
px∂x + py∂y is given through

pλ̂ = ωλ̂

λ̃
p̃λ + ωλ̂

ξ̃
p̃ξ = px − λφ′ py√

1 + λ2(φ′)2
, (6.13a)

pξ̂ = ω
ξ̂

λ̃
p̃λ + ω

ξ̂

ξ̃
p̃ξ = py + λφ′ px√

1 + λ2(φ′)2
. (6.13b)

The inverse relations are

px =
(

∂x

∂λ
ẽλ

λ̂
+ ∂x

∂ξ
ẽξ

λ̂

)
pλ̂ +

(
∂x

∂λ
ẽλ

ξ̂
+ ∂x

∂ξ
ẽξ

ξ̂

)
pξ̂

= pλ̂ + λφ′ pξ̂√
1 + λ2(φ′)2

, (6.14a)

py =
(

∂y

∂λ
ẽλ

λ̂
+ ∂y

∂ξ
ẽξ

λ̂

)
pλ̂ +

(
∂y

∂λ
ẽλ

ξ̂
+ ∂y

∂ξ
ẽξ

ξ̂

)
pξ̂

= pξ̂ − λφ′ pλ̂√
1 + λ2(φ′)2

. (6.14b)
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It can be seen that at λ = H/2, pλ̂ = p · n [Eq. (6.13a)].
Moreover, the triad vectors eλ̂ and eξ̂ are orthogonal, thus en-

suring that the vectors pλ̂ and pξ̂ corresponding to (pλ̂, pξ̂ ) =
(1, 0) and (0,1) are orthogonal:

pλ̂ · pξ̂ = g ı̃ j̃ e ı̃

λ̂
e j̃

ξ̂
= δλ̂ξ̂ = 0. (6.15)

The only nonvanishing commutator [eλ̂, eξ̂ ] gives rise to
the following connection and Cartan coefficients

�λ̂ξ̂ ξ̂ = cλ̂ξ̂ ξ̂ = λφ′′

(1 + λ2φ′2)3/2
,

(6.16)

�λ̂ξ̂ λ̂ = cλ̂ξ̂ λ̂ = φ′[1 + λ2φ′2 − λ2φ′′(1 + φ)]

(1 + φ)(1 + λ2φ′2)3/2
,

the Boltzmann Eq. (2.24) can be written as

∂ f

∂t
+ ∂ (V λ f )

∂λ
+ ∂ (V ξ f )

∂χξ

− 1

m
�λ̂ξ̂ ξ̂

[
(pξ̂ )2 ∂ f

∂ pλ̂
− pλ̂ ∂ ( f pξ̂ )

∂ pξ̂

]

− 1

m
�ξ̂λ̂λ̂

[
(pλ̂)2 ∂ f

∂ pξ̂
− pξ̂ ∂ ( f pλ̂)

∂ pλ̂

]

= − 1

τ
( f − f (eq)), (6.17)

where homogeneity with respect to the z coordinate was
assumed and the following notation was introduced:

V λ =
√

1 + λ2φ′2

1 + φ

pλ̂

m
,

(6.18)

V ξ = (1 + φ)
pξ̂ − λφ′ pλ̂

m
√

1 + λ2φ′2 = (1 + φ)
py

m
,

while χξ is defined through

dχξ = (1 + φ)dξ . (6.19)

Since the channel is symmetric with respect to the cen-
tral line located at λ = 0, the fluid flow is simulated only
in the upper half (0 < λ < H/2). The fluid domain is thus
represented by the rectangle in the (ξ, λ) space defined by
ξin < ξ < ξout and 0 < λ < H/2. The nondimensionalization
convention is such that H/2 = 1. The λ direction is further
stretched towards the solid boundary according to the coor-
dinate transformation (3.8) with λleft = 0, λright = H/2, and
δ = 0, as follows:

λ(η) = H

2A
tanh η, (6.20)

where A = 0.95 for all simulations presented in this section.
The resulting grid is shown in Figs. 20(a) and 20(b) with re-
spect to the (x, y) and (λ, ξ ) coordinates, respectively, for the
wall function φ(ξ ) corresponding to the gradually expanding
channel, given in Eq. (6.24).

The fluid domain in the (η, ξ ) variables is divided
into Nη × Nξ equally sized cells (where Nη = Nλ) centered

FIG. 20. (a) Geometry of the gradually expanding channel for
Rec = 100. The vertical lines correspond to constant values of ξ

chosen equidistantly between −10 and 40. The horizontal lines
are drawn at constant values of λ which are stretched towards the
boundaries via Eq. (6.20). (b) Fluid domain in (λ, ξ ) coordinates,
corresponding to the upper half of the channel.

on coordinates (λs, ξp), where λs ≡ λ(ηs) and 1 � s � Nλ,
1 � p � Nξ , while

ηs = s − 0.5

Nλ

arctanhA,

ξp = ξin + p − 0.5

Nξ

(ξout − ξin ). (6.21)

Inlet and outlet boundary conditions are imposed at ξ = ξin

and ξout, respectively, while specular and diffuse reflection
boundary conditions are imposed at λ = 0 and H/2, respec-
tively, as shown in Fig. 20(b).

In order to ensure that f = const is accepted as a numerical
solution, the connection coefficients in Eq. (6.16) are imple-
mented as follows:

(�λ̂ξ̂ λ̂)s,p = 1

δχ
ξ
s,p

⎛⎝ 1 + φp+1/2√
1 + λ2

s φ
′ 2
p+1/2

− 1 + φp−1/2√
1 + λ2

s φ
′ 2
p−1/2

⎞⎠,
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(�λ̂ξ̂ ξ̂ )s,p = −
√

1 + λ2
s+1/2φ

′ 2
p −

√
1 + λ2

s−1/2φ
′ 2
p

δλs(1 + φp)

+ λs

δχ
ξ
s,p

⎛⎝φ′
p+1/2(1+φp+1/2)√

1+λ2
s φ

′ 2
p+1/2

− φ′
p−1/2(1+φp−1/2)√

1+λ2
s φ

′ 2
p−1/2

⎞⎠,

(6.22)

where δχξ
s,p = χ

ξ
s,p+1/2 − χ

ξ
s,p−1/2 and δλs = λs+1/2 − λs−1/2.

For the remainder of this section, we consider the reduced
form of Eq. (6.17), obtained by multiplying Eq. (6.17) by 1
and (pẑ )2/m followed by an integration over the pẑ momentum
space axis, as described in Sec. IV A. The resulting equations
for f ′ ( f ′′) are identical with Eq. (6.17), with f and f (eq)

replaced by f ′ ( f ′′) and f ′
(eq) ( f ′′

(eq)), respectively. In order to
ensure constant transport coefficients, the relaxation time is
implemented as follows:

τ = Kn

nT
. (6.23)

B. Gradually expanding channel

We now turn to the particular case of the gradually expand-
ing channel proposed in Refs. [97,98], for which the function
φ(ξ ) defining the position of the wall is given as

φ(ξ ) = 1

2

[
tanh(2) − tanh

(
2 − 30

Rec

2ξ

H

)]
. (6.24)

The parameter Rec controls the steepness of the expanding
portion (i.e., its horizontal span). When Rec is equal to the
Reynolds number Re of the flow, the flow features become
independent of Re = Rec in the region 0 < 2ξ/H < Re/3 as
Re → ∞. In particular, the flow configuration at Re = Rec =
100 is a good approximation for the Re → ∞ case [97].
In this section, Rec = 100 is employed for all simulations,
even when the Reynolds number of the flow Re differs from
this value. The resulting geometry is shown in Fig. 20(a).
Integrating Eq. (6.19) gives the following expression for χξ :

χξ =
(

1 + tanh 2

2

)
ξ + HRec

120
ln

cosh(2 − 60ξ/HRec)

cosh 2
,

(6.25)
where the integration constant was fixed such that χξ = 0
when ξ = 0.

For all simulations performed in the gradually expanding
channel, we used a grid comprised of Nλ × Nξ = 30 × 200
nodes. The relevant flow domain is bounded by ξ = 0 and ξ =
Rec/100 
 33.33. The inlet and outlet boundary conditions
are imposed at ξ = ξin = −10 and ξ = ξout = 40, thus allow-
ing some space for the flow to adjust itself before entering the
investigated region.

In order to better understand the effect of employing the
orthogonal triad, Fig. 21 shows the pair of vectors (pλ̂, pξ̂ ) =
(eλ̂, eξ̂ ) at fixed ξ and for various values of λ, represented with
respect to the (x, y) coordinate frame. In order to maintain the
same scale on the horizontal and vertical axes, the figure is
drawn for a channel with Rec = 6, for which the horizontal
span of the expanding portion of the channel is comparable
to its vertical span. It can be seen that the two vectors start

FIG. 21. The orientation of the principal axes of the momentum
space expressed with respect to the vielbein. The vectors pλ̂ = eλ̂ and
pξ̂ = eξ̂ can be regarded as unit vectors along these axes. The vertical
lines correspond to constant values of ξ , while the horizontal lines
represent lines of constant values of λ. The geometry corresponds to
setting Rec = 6 in Eq. (6.24).

from being parallel to the x and y axes on the horizontal
axis (λ = 0) to being aligned perpendicular to, and along, the
upper boundary for λ = H/2.

The momentum space defined with respect to the vielbein
is discretized on the ξ and λ directions separately using
Qξ × Qλ velocities. On the ξ direction, which is parallel to
the walls, the full-range Gauss-Hermite quadrature is used,

such that pξ̂ → pξ̂
j (1 � j � Qξ ), where pξ̂

j are the roots of

the Hermite polynomial HQξ
(pξ̂ ) of order Qξ . On the λ axis,

the choice of quadrature depends on the value of Kn. The
momentum components are indexed as pλ̂

i , where 1 � i � Qλ

and Qλ = Qλ when the full-range Gauss-Hermite quadrature
of order Qλ is employed, while Qλ = 2Qλ for the case of
the half-range Gauss-Hermite quadrature of order Qλ, as
discussed in Sec. IV B. The expansion orders Nξ and Nλ are
generally constrained by Eq. (4.23). We find that increasing
the expansion orders beyond 4 does not have a visible effect
on the simulation results. Thus, the expansion orders are

033304-29
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computed using

Nλ = min(Qλ − 1, 4), Nξ = min(Qξ − 1, 4). (6.26)

The system at initial time is considered to be in thermal
equilibrium ( f ′ = f ′(eq) and f ′′ = f ′′(eq)) corresponding to the
temperature T0, density n0, and velocity u = 0 (the fluid is
at rest). The nondimensionalization convention used for the
numerical simulations is such that H/2 = 1, T0 = 1, and n0 =
1, while

√
KBT0/m = 1 is the reference speed.

C. Boundary conditions

This section presents our strategy for the implementation
of the inlet and outlet boundary conditions compatible with
the approach used in Refs. [97,98], as well as of the boundary
conditions at the wall and channel center.

1. Inlet boundary conditions

The problem initially proposed in Ref. [98] was the sim-
ulation of the incompressible Navier-Stokes flow through the
gradually expanding channel introduced in Sec. VI B, subject
to an inlet parabolic velocity profile at ξ = 0 of the following
form:

uy = 3u0

2

(
1 − 4x2

H2

)
, ux = 0, (6.27)

such that the particle flow rate through half of the channel
cross section is Q0 = H

2 n0u0, where n0 is the initial fluid
particle number density throughout the channel. Equation
(6.27) uses the property that φ(ξ = 0) = 0. The Reynolds
number is then obtained as follows:

Re = mQ0

μ
= u0

Kn
, (6.28)

where H = 2, n0 = 1, and u0 = Q0 under the nondimension-
alization employed in this section, while the viscosity μ =
τnT = Kn by virtue of Eq. (6.23). As mentioned in Ref. [98],
this inlet boundary condition immediately raised the concern
that at ξ = 0, the channel already began its expansion, such
that the inlet condition ux = 0 is not realistic.

Even though the results presented in Ref. [98] used
Eq. (6.27) as the inlet boundary condition, we instead impose
the parabolic profile upstream from ξ = 0, at a value ξin where
φ′(ξin ) 
 0. Thus, Eq. (6.27) can be replaced by

Qin
flow(λ) = 3Q0

H[1 + φ(ξin )]

{
1 − 4x2

H2[1 + φ(ξin )]2

}
= 3Q0

H[1 + φ(ξin )]

(
1 − 4λ2

H2

)
, (6.29)

where the inlet particle flow rate Qin
flow(λ) at a given value of λ

is computed as follows:

Qin
flow(λ) =

∫
d pξ̂ d pλ̂ f ′ py

m
. (6.30)

After the discretization of the spatial domain and of the mo-
mentum space, the above expression can be computed using

the numerical flux F ξ̃ ;s,1/2;i, j corresponding to pi, j = (pλ̂
i , pξ̂

j ),

as follows:

Qin
flow;s ≡ Qin

flow(λs) =
∑
i, j

py
s,1/2;i, j

m
Fξ̃ ;s,1/2;i, j, (6.31)

where the labels of py [Eq. (6.14b)] indicate its explicit
coordinate and momentum space dependence:

py
s,1/2;i, j = pξ̂

j − λsφ
′(ξ1/2)pλ̂

i√
1 + λ2

s φ
′2(ξ1/2)

. (6.32)

As also remarked in Ref. [125], the inlet and outlet
boundary conditions can be imposed only at the level of
the distribution functions corresponding to velocities which
travel downstream from the inlet towards the fluid domain
(i.e., py > 0). Thus, our strategy for imposing Eq. (6.29) is
the following. The distributions corresponding to particles
traveling upstream (py < 0) are extrapolated at zeroth order
from the first fluid node:

f ′
s,−1;i, j = f ′

s,0;i, j = f ′
s,1;i, j, py

s,1/2;i, j < 0. (6.33)

A similar boundary condition is imposed for f ′′
s,p;i, j .

The flux for py
s,1/2;i, j < 0 can be computed by noting that

σ3 = 0 by virtue of Eq. (3.16), such that

Fξ̃ ;s,1/2;i, j = f ′
s,1;i, j,

(
py

s,1/2;i, j < 0
)
. (6.34)

The distribution functions for the particles traveling down-
stream (py

s,1/2;i, j > 0) are set using

f ′
s,−2;i, j = f ′

s,−1;i, j = f ′
s,0;i, j = f ′

(eq);in;i, j,

(6.35)
f ′′
s,−2;i, j = f ′′

s,−1;i, j = f ′′
s,0;i, j = T0 f ′

(eq);in;i, j,

where f ′
(eq);in;i, j ≡ f ′

(eq);i, j (n
in
s , uin

s , T0) is the reduced
Maxwell-Boltzmann distribution (4.21), T0 is the initial
temperature, and (ux

s , uy
s ) = (0, Qin

flow;s). Since in this case
σ1 = 0 by virtue of Eq. (3.16), the flux is given by

F ξ̃ ;s,1/2;i, j = f ′
(eq);in;i, j,

(
py

s,1/2;i, j > 0
)
. (6.36)

The density nin
s is then obtained by imposing Eq. (6.31):

nin
s =

Qin
flow;s − 1

m

∑
py

s,1/2;i, j<0 f ′
1,p;i, j py

s, 1
2 ;i, j

1
m

∑
py

s,1/2;i, j>0 f ′
(eq);i, j

(
1, uin

s , T0
)
py

s, 1
2 ;i, j

. (6.37)

Setting the inlet boundary conditions as explained above
achieves the desired parabolic velocity profile shortly after the
simulation is started.

2. Outlet boundary conditions

In order to prevent the buildup of particles inside the flow
domain, a similar parabolic profile is imposed at the domain
outlet (where ξ = ξout). The value of ξout is again chosen
sufficiently far downstream such that φ′(ξout ) 
 0. In this
case, the equivalent of Eq. (6.29) becomes

Qout
flow(λ) = 3Q0

H[1 + φ(ξout )]

(
1 − 4λ2

H2

)
. (6.38)

The construction of the outlet boundary conditions is analo-
gous to the procedure described for the inlet.
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3. Specular reflection boundary conditions

Taking advantage of the symmetry of the channel, the
simulation domain can be restricted to its upper half when
specular boundary conditions are imposed at the centerline.
This amounts to populating the nodes with s ∈ {0,−1,−2} as
follows:

f ′
0,p;i, j = f ′

1,p;ı, j, f ′
−1,p;i, j = f ′

2,p;ı, j, f ′
−2,p;i, j = f ′

3,p;ı, j,

(6.39)

and similarly for f ′′
s,p;i, j , where the notation ı refers to the

index corresponding to the momentum component pλ̂
ı which

satisfies

pλ̂
ı = −pλ̂

i . (6.40)

4. Diffuse reflection boundary conditions

Diffuse reflection boundary conditions are implemented on
the top boundary. Since the vielbein is constructed such that
the pλ̂

i component of the momentum is always perpendicular
to the top wall, the procedure described in Sec. III F applies
unchanged to this case. In particular, the values of the dis-
tributions in the ghost nodes are populated for the particles
traveling back towards the fluid domain (pλ̂

i < 0) following
Eq. (3.30):

f ′
Nλ+1,p;i, j = f ′

Nλ+2,p;i, j = f ′
Nλ+3,p;i, j

= f ′
(eq);i,j(nw;p, uw = 0, Tw = T0), (6.41)

while for the particles traveling towards the boundary, the
second-order extrapolation given in Eq. (3.32) is employed.
Since the wall is at rest, we have uw = 0, while the tempera-
ture T0 = 1 is that of the initial state. The wall density nw;p is
obtained using Eq. (3.34), as follows:

nw;p = −
∑

pλ̂
i >0

∑
j V λ

Nλ+1/2,p;i, jFλ̃;Nλ+1/2,p;i, j∑
pλ̂

i <0

∑
j f ′

(eq)(n = 1, 0, T0)V λ
Nλ+1/2,p;i, j

, (6.42)

where Fλ̃;Nλ+1/2,p;i, j is the flux along the λ direction corre-
sponding to the velocity V λ

Nλ+1/2,p;i, j [Eq. (6.18)].

D. Hydrodynamic regime: Validation

In this section, our implementation is validated against re-
sults obtained in the incompressible limit of the Navier-Stokes
equations, in the case when Re = Rec = 100. In order to
achieve the incompressible Navier-Stokes regime, we set u0 =
Q0 = 0.1 and Kn = 10−3, which corresponds to Re = 100
according to Eq. (6.28). The results reported in this section
are obtained using the H(2; 3) × H(2; 3) model, employing
3 × 3 = 9 velocities.

In the incompressible (low Ma) regime, the continuity
equation reduces to ∇ · u = 0, which allows the fluid velocity
in planar flows to be determined from the vector potential
�inc = kψinc through u = ∇ × �inc, such that ux = ∂yψinc

and uy = −∂xψinc [119]. However, ∇ · u = 0 holds only ap-
proximately in gas flows. In the kinetic theory approach, the
fluid always presents some degree of compressibility. Thus,
the correct stream function is computed by noting that in the

FIG. 22. Streamlines for the flow through the gradually expand-
ing channel corresponding to Rec = 100, obtained for Q0 = 0.1
and Kn = 0.001 (Re = 100), corresponding to the incompressible
hydrodynamic limit.

stationary limit, the continuity equation entails

∇ · (ρu) = 0. (6.43)

The above equation allows the product ρu to be written as the
curl of the vector potential � = kψ :

ρu = ∇ × �, (6.44)

such that [119]

ρux = ∂yψ, ρuy = −∂xψ. (6.45)

The stream function ψ can be constructed starting from ρuy =
−∂xψ . Setting ψ = 0 on the channel centerline (s = 1

2 ), ψ can
be integrated along each line of constant ξ as follows:

ψs+1/2,p = ψs−1/2,p − ρs,puy
s,p(λs+1/2,p − λs−1/2,p), (6.46)

where the Cartesian components ux and uy are obtained from
the vielbein components uλ̂ and uξ̂ using

ux = uλ̂ + λφ′(ξ )uξ̂√
1 + λ2φ′2(ξ )

, uy = uξ̂ − λφ′(ξ )uλ̂√
1 + λ2φ′2(ξ )

. (6.47)

The streamlines corresponding to the gradually expanding
channel with Rec = 100 obtained from a simulation per-
formed with the H(2; 3) × H(2; 3) model (employing 9 ve-
locities) are shown in Fig. 22 and a good agreement can be
seen with the results obtained using the D2Q9 LB model
in Ref. [46]. The inlet and outlet boundary conditions were
imposed at ξin = −10 and ξout = 40, respectively, and Nλ ×
Nξ = 30 × 200 nodes were employed.

We first consider the validation of our numerical results by
considering the pressure on the channel wall Pw;p ≡ PNλ+1/2;p,
which is obtained via linear extrapolation along the λ direction
from the inner nodes:

Pw;p = (xw − xNλ−1)PNλ,p − (xw − xNλ
)PNλ−1,p

xNλ
− xNλ−1

, (6.48)
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FIG. 23. Simulation results for the flow through the gradually
expanding channel with Rec = 100, Q0 = 0.1, and Kn = 0.001. (a)
Normalized wall pressure �Pw [Eq. (6.49)] with respect to the
normalized coordinate y/Lc = 3y/Rec along the channel, validated
against the results reported by Cliffe [126]. (b) Normalized stream-
wise velocity uy/Q0 at ξ = 100/12 
 8.33, validated against the
results reported by Roache [97].

where xw ≡ xNλ+1/2 is the wall coordinate. The value Pw;c of
the wall pressure at the center of the channel (where ξ =
Rec/6 
 16.67) is further subtracted from Pw;p and the result
is divided by ρ0u2

0 in order to conform with the nondimension-
alization conventions employed in Ref. [126]:

�Pw;p = Pw;p − Pw;c

ρ0u2
0

. (6.49)

It can be seen in Fig. 23(a) that our numerical results for �Pw;p

are in very good agreement with the benchmark data reported
by Cliffe [126].

Figure 23(b) validates our results for the normalized down-
stream velocity uy/Q0 [Eq. (6.47)] at ξ = Rec/12 
 8.33,
by comparing with the results reported by Roache [97]. An
excellent agreement can be seen.

FIG. 24. Streamlines for the flow through the gradually expand-
ing channel corresponding to Rec = 100, obtained for (Q0, Kn) ∈
{(0.1, 0.001); (0.5, 0.005); (1.2, 0.012)}, such that Re = 100, high-
lighting the outermost contour of the vortex. Only the region around
the vortex in the upper half of the channel is represented.

E. Compressibility effects

In order to probe the compressible, variable temperature
regime of the Navier-Stokes equations, we consider four val-
ues for the inlet particle flow rate, namely, Q0 = 0.1, 0.5, 1,
and 1.2. The value of the Reynolds number is kept at Re =
100, such that the Knudsen number Kn is increased, tak-
ing the values 0.001, 0.005, 0.01, and 0.012 by virtue of
Eq. (6.28). The simulation corresponding to Kn = 0.001 was
performed using the H(2; 3) × H(2; 3) model, while for Kn =
0.005, 0.01, and 0.012, the HH(3; 4) × H(4; 5) model was
employed.

Using Eq. (6.46) to compute the stream function ψ , its
isocontours corresponding to the outermost closed loops of
the vortices corresponding to Q0 = 0.1, 0.5, and 1.2 are rep-
resented in Fig. 24 with purple, green, and cyan, respectively.
It can be seen that as Q0 is increased, the vortex is enlarged.

The profile of the normalized local particle flow rate
Q(x)/Q0 at ξ = Rec/12 is shown in Fig. 25(a). It can be
seen that, for the values of Kn considered in this section,
Q(x)/Q0 is independent of Kn and Q0, as long as Re = 100
is kept constant. Thus, the flow remains in the hydrodynamic
regime even for Kn = 0.012. The temperature profile shown
in Fig. 25(b) has a nonmonotonic behavior with respect to
x, exhibiting a point of maximum around x 
 xtop/2, where
xtop 
 1.718. Finally, the normalized pressure difference �Pw

is shown in Fig. 25(c). It can be seen that �Pw increases at the
onset of the expansion (around ξ = 0), as well as towards the
outlet.

F. Rarefaction effects

In this section, the capabilities of our models to capture
nonequilibrium flows are highlighted by performing simula-
tions at fixed mass flow rate Q0 = 0.1 for various values of
the Knudsen number, taken between 0.001 � Kn � 0.5. The
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FIG. 25. Numerical results for the gradually expanding channel
flow for (a) normalized local particle flow rate Q(x)/Q0 and (b)
temperature T across the channel at ξ = Rec/12, as well as (c) the
normalized wall pressure difference �Pw [Eq. (6.49)] against the
normalized streamwise coordinate y/Lc = 3y/Rec, at various values
of Kn. The particle flow rate is varied according to Q0 = 100 Kn in
order to maintain Re = 100 for all simulations.

TABLE IV. Mixed quadrature LB models, total number of ve-
locities Nvel, and time step δt employed for the study of rarefaction
effects in the expanding channel in Sec. VI F. The inlet half-channel
mass flow rate is kept at Q0 = 0.1.

Kn Model Nvel δt

0.001 H(2; 3) × H(2; 3) 9 10−3

0.002 H(4; 5) × H(4; 5) 25 10−3

0.005 HH(3; 4) × H(4; 5) 40 2 × 10−3

0.01 HH(3; 4) × H(4; 5) 40 2 × 10−3

0.05 HH(4; 8) × H(4; 5) 80 10−3

0.1 HH(4; 12) × H(4; 5) 120 10−3

0.2 HH(4; 20) × H(4; 5) 200 5 × 10−4

0.5 HH(4; 40) × H(4; 5) 400 5 × 10−4

models employed in order to conduct these simulations are
summarized in Table IV. The aim of this section is to highlight
the transition from the hydrodynamic to the rarefied regime as
the Knudsen layer develops at the diffuse reflective boundary.
Even though Re decreases as Kn is increased according to
Eq. (6.28), the simulations are performed in the channel
corresponding to Rec = 100.

We begin this Section with a discussion of the pressure. In
the limit when the inlet and outlet are positioned sufficiently
far away, the flow configuration is comprised of two pressure-
driven Poiseuille flow regions separated by the expanding
portion between them.

Around the expanding portion and for Kn � 0.01, the
pressure profile exhibits a nonmonotonic behavior, as shown
in Fig. 26(a). This kind of behavior was also observed in sim-
ulations of the micro-orifice flow performed using the direct
simulation Monte Carlo (DSMC) and the gas-kinetic unified
algorithm (GKUA) in Refs. [127] and [128], respectively. As
Kn is increased, the effect of the expanding portion becomes
negligible and the pressure profiles decrease monotonically
with ξ , as shown in Fig. 26(b).

Far from the expanding region, the pressure decreases
linearly with respect to the streamwise coordinate y. In the
hydrodynamic regime, the pressure gradient is given by [120]

dP

dy
= −12μQtot

n�3
= − 3Q0

(1 + φ)3
Kn, (6.50)

where Qtot = 2Q0 is the particle flow rate through the
full channel width � = H (1 + φ), while φ(y � 0) 
 −0.018
and φ(y � 0) 
 0.982 in the upstream and downstream re-
gions from the expanding portion. Outside the hydrody-
namic regime, the relation between the pressure gradient and
the Knudsen number is more complicated. Introducing the
notation

dP

dy
= −mQtotv0

�2G∗
P

= − Q0√
2(1 + φ)2G∗

P

, (6.51)

where v0 = √
2KBT0/m = √

2 is the most probable speed and
� = H (1 + φ) = 2(1 + φ) is the channel width, the depen-
dence of the pressure gradient on the Knudsen number is con-
tained in the Poiseuille coefficient G∗

P [11]. In the linearized
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FIG. 26. Gradually expanding channel flow results for �Pw

[Eq. (6.49)] in the hydrodynamic (a) and slip-flow (b) regimes with
respect to the normalized downstream coordinate y/Lc = 3y/Rec, as
well as (c) for −dP/dy in the upstream (y/Lc < 0) and downstream
(y/Lc > 0.5) regions. The hydrodynamic limit curves −dP/dy 

0.317 Kn (upstream, φ 
 −0.018) and −dP/dy 
 0.0385 Kn
(downstream, φ 
 0.982) are obtained from Eq. (6.50). The lin-
earized Boltzmann-BGK results for the pressure-driven Poiseuille
flow are represented with red dotted lines and are computed using
Eq. (6.51) using the values for G∗

P reported in Refs. [130,132]. The
half-channel particle flow rate is taken as Q0 = 0.1.

limit of the slip regime, G∗
P can be written as

G∗
P = δ

6
+ σP, (6.52)

where the rarefaction parameter δ depends on the local chan-
nel width and Knudsen number Kn through

δ = �

Kn
√

2
=

√
2

Kn
[1 + φ(y)]. (6.53)

The value of σP in Eq. (6.52) depends on the particle-wall
interaction, having the value σP 
 1.0162 for diffuse reflec-
tion [11,129–131]. In the transition and free molecular flow
regimes, the values of G∗

P can be computed numerically or
semianalytically and are tabulated in a variety of papers, of
which we recall [11,130–132], where the linearized limit of
the Boltzmann-BGK equation is considered. The values of
−dP/dy obtained from our numerical results far upstream
and far downstream from the expanding portion are compared
with the hydrodynamic limit (6.50) and the general formula
(6.51) in Fig. 26(c), where the values of G∗

P correspond to the
linearized limit of the pressure-driven Poiseuille flow and are
taken from Refs. [130,132]. It can be seen that the increase of
the absolute value of the pressure gradient −dP/dy is linear
in Kn for Kn � 0.05, while for Kn � 0.05, −dP/dy increases
at a much slower rate, in good agreement with the behavior
predicted in Refs. [11,130–132]. This is the first indication
that at Kn � 0.05, the rarefaction effects become important.

The normalized local particle flow rate profile at y =
Rec/12 is shown in Fig. 27 for various values of Kn. The pres-
ence of the vortex in the Kn = 0.001 simulation (correspond-
ing to Re = 100 for the flow) is highlighted by the negative
values attained by uy close to the boundary. For Kn � 0.002,
Re is significantly decreased, the vortex no longer forms, and
uy decreases monotonically from the channel centerline to-
wards the boundary. In the hydrodynamic flow regime shown
in Fig. 27(a) (Kn � 0.01), the particle flow rate regains a
parabolic profile as Kn is increased, while the slip velocity
at the wall remains negligible. Figure 27(b) shows that the
slip velocity becomes non-negligible as Kn � 0.05, when
the rarefaction effects become important, as also noted in
the previous paragraph regarding the pressure profile.

The previous discussion of the particle flow rate profile
clearly highlights the development of the Knudsen layer as
Kn is increased above ∼0.05. In order to better assess the
capability of our models to capture the physics of the Knudsen
layer, we note that the velocity receives contributions of the
form d ln d inside the Knudsen layer, where d measures
the distance from the wall [17,133–136]. While this term is
difficult to highlight when discussing the velocity profile, it
becomes dominant in the profile of the vorticity ω = ∂xuy −
∂yux, which can be written as

ω = −∂ux

∂ξ
+ 1

1 + φ(ξ )

[
∂uy

∂λ
+ λφ′(ξ )

∂ux

∂λ

]
. (6.54)

The derivatives with respect to ξ are computed using centered
differences and the second-order forward or backward Euler
scheme at the inlet and outlet nodes, respectively. For the
derivatives with respect to the nonequidistantly distributed
λ coordinate, we used the following scheme for bulk nodes
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FIG. 27. Numerical results for the normalized local particle flow
rate Q(x)/Q0 across the channel at ξ 
 8.33 in the hydrodynamic (a)
and slip-flow (b) regimes for the gradually expanding channel flow
corresponding to Rec = 100 in Eq. (6.24). The half-channel particle
flow rate is taken as Q0 = 0.1 for various values of Kn, such that the
resulting Reynolds number decreases as Kn is increased.

(1 < s < Nλ):(
∂ f

∂λ

)
s,p

= (λs − λs−1) fs+1,p

(λs+1 − λs)(λs+1 − λs−1)

+ (λs+1 − 2λs + λs−1) fs,p

(λs+1 − λs)(λs − λs−1)

− (λs+1 − λs) fs−1,p

(λs+1 − λs−1)(λs − λs−1)
. (6.55)

In the first node (s = 1), the following formula is used:(
∂ f

∂λ

)
1,p

= − (λ2 + λ3 − 2λ1) f1,p

(λ2 − λ1)(λ3 − λ1)
+ (λ3 − λ1) f2,p

(λ2 − λ1)(λ3 − λ2)

− (λ2 − λ1) f3,p

(λ3 − λ1)(λ3 − λ2)
. (6.56)

FIG. 28. Numerical results for the normalized vorticity −ω/Q0

as a function of (a) x; and (b) d [Eq. (6.58)], taken at y =
Rec/16 
 8.33, where Rec = 100 defines the channel geometry
through Eq. (6.24). The half-channel particle flow rate is taken as
Q0 = 0.1 for various values of Kn, such that the resulting Reynolds
number of the flow decreases as Kn is increased.

The derivative in the last node (s = Nλ) is computed using

(
∂ f

∂λ

)
Nλ,p

= −
(
2λNλ

− λNλ−1 − λNλ−2
)

fNλ,p(
λNλ

− λNλ−1
)(

λNλ
− λNλ−2

)
−

(
λNλ

− λNλ−2
)

fNλ−1,p(
λNλ

− λNλ−1
)(

λNλ−1 − λNλ−2
)

+
(
λNλ

− λNλ−1
)

fNλ−2,p(
λNλ

− λNλ−2
)(

λNλ−1 − λNλ−2
) . (6.57)

Due to the logarithmic singularity of the gradient of the
velocity, the vorticity cannot be defined on the diffuse reflec-
tive boundary. The logarithmic divergence of the vorticity is
highlighted in Fig. 28 with respect to (a) the distance x from
the channel center and (b) the non-dimensionalized distance d
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to the top wall, defined through

d = 1 + φ(y) − 2x

H
. (6.58)

At Kn = 0.002, no evidence of the Knudsen layer can be
seen. This is due to the fact that the point which is closest to
the boundary is at a nondimensionalized distance d 
 0.0055
from the boundary, while at Kn = 0.002, the Knudsen layer
is localized closer to the boundary. When Kn � 0.01, the
Knudsen layer becomes visible especially in Fig. 28(a), where
the rapid increase of −ω in the vicinity of the wall can be
clearly seen. At Kn = 0.5, −ω increases roughly linearly with
respect to − ln d , except for the last few nodes, which may be
affected by numerical effects caused by our formulation of the
diffuse reflection boundary conditions.

We finally consider the analysis of the flow far downstream
from the expanding region. At y = Re/3, the flow enters the
regime of the Poiseuille flow. At non-negligible values of Kn,
the temperature profile for the Poiseuille flow between parallel
plates can be written as [35,137,138]

T (x) = T0 + αx2 + βx4, (6.59)

where T0 is the temperature on the centerline. The bimodal
profile for the temperature occurs as a rarefaction effect and
was shown in Ref. [139] to be accounted for only at super-
Burnett level. After fitting T0, α, and β to the numerical data,
it can be seen in Fig. 29(a) that the fluid temperature falls
below the temperature of the channel wall. This effect was
also observed in Refs. [6,139–141] and is due to the fact that
the viscous heating is superseded by the gas expansion [140].
In the hydrodynamic regime, the streamwise velocity uy is
approximately given by an expression similar to Eq. (6.27),
such that the vorticity becomes

ωPois = −3u0x

x2
top

. (6.60)

It can be seen in Fig. 29(b) that the results corresponding to
Kn = 0.002 and 0.01 agree very well with the hydrodynamic
prediction (6.60), except for the last few nodes which may re-
ceive errors from our formulation of the boundary conditions.
At Kn � 0.1, the effects of the Knudsen layer become visible
as the magnitude of the vorticity −ω increases almost linearly
with − ln d .

G. Cartesian decomposition of the momentum space

Let us now analyze the case when the momentum space
is discretized with respect to its Cartesian degrees of freedom
(px, py ). Making the coordinate change from (x, y) to (λ, ξ ),
the Boltzmann equation becomes

∂ f

∂t
+ p̃λ

m

∂ f

∂λ
+ p̃ξ

m

∂ f

∂ξ
= − 1

τ
[ f − f (eq)], (6.61)

where p̃λ and p̃ξ are given in Eq. (6.7). Equation (6.61) can be
put in conservative form as follows:

∂ f

∂t
+ ∂ (V λ f )

∂λ
+ ∂ (V ξ f )

∂χξ
= − 1

τ
[ f − f (eq)], (6.62)

FIG. 29. Numerical results for the temperature T (a) and nor-
malized vorticity −ω/Q0(b) across the channel at ξ 
 33 for the
gradually expanding channel flow corresponding to Rec = 100 in
Eq. (6.24). The half-channel particle flow rate is taken as Q0 = 0.1
for various values of Kn, such that the resulting Reynolds number
decreases as Kn is increased.

where χξ is defined in Eq. (6.19) and

V λ = px − λφ′ py

m(1 + φ)
, V ξ = (1 + φ)

py

m
. (6.63)

The advantage of the Boltzmann equation written in Eq. (6.62)
with respect to the original Cartesian components (px, py ) of
the momentum space is that the force terms appearing in the
vielbein equivalent (6.17) are absent. Thus, the coefficient a5

corresponding to the computation of the force term can be set
to 0 in the runtime estimate given by Eq. (5.68). However,
we anticipate that this apparent improvement of the runtime
is compensated by increased quadrature orders, as will be
discussed below.

The drawback when the vielbein formalism is not em-
ployed is that the diffuse reflection boundary conditions must
be implemented judging by the sign of a linear combina-
tion of px and py. Considering that the momentum space is
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FIG. 30. Comparison of the simulation results for the normalized
wall pressure �Pw [Eq. (6.49)] obtained using the VLB model
HH(4; 6) × H(4; 5) (solid line) and the CLB model HH(4; 6) ×
HH(4; 6) (line and points). The results are overlapped.

discretized using Gauss quadratures of orders Qx and Qy with
respect to px and py, respectively, the density nw required to
construct the wall populations is computed using

nw = −
∑

V λ
Nλ+1/2,p;i, j>0 Fλ;Nλ+1/2,p;i, jV λ

Nλ+1/2,p;i, j∑
V λ

Nλ+1/2,p;i, j<0 f ′
(eq)(n = 1, 0, T0)V λ

Nλ+1/2,p;i, j

, (6.64)

where the discretization of the spatial grid is performed as
discussed in Sec. VI A. In the regions where φ′ is non-
negligible, nw must be computed by integrating over regions
of the momentum space which are position dependent.

We now consider the flow through the gradually expanding
channel corresponding to Rec = 100 in Eq. (6.24). As before,
the flow region of interest is between ξ = 0 and Rec/3 

33.33. The inlet and outlet are positioned at ξin = −10 and
ξout = 40, thus giving enough space for the flow to adjust
itself before entering the region of interest. For definiteness,
we consider Q0 = 0.1 and Kn = 0.2 for the remainder of this
section. The channel is discretized using Nξ = 200 equidistant
points along the ξ axis and Nλ = 30 points along the λ

direction, which are stretched according to Eq. (6.20) with
A = 0.95.

It can be expected that the differences between the
vielbein-based lattice Boltzmann (VLB) and Cartesian split-
based lattice Boltzmann (CLB) implementations will be most
significant in the expanding region of the channel. Moreover,
we expect that the VLB implementation will be more accurate
within the Knudsen layer. In Fig. 30, the normalized wall
pressure �Pw [Eq. (6.49)] obtained using the VLB and CLB
implementations at similar quadrature orders is shown. It can
be seen that there are no visible discrepancies at the level of
the wall pressure. Next, Fig. 31 shows a comparison of the
VLB and CLB results for the normalized flow rate Q/Q0 and
vorticity −ω/Q0 around the expansion region, along lines of
constant λ. In Fig. 31(a), it can be seen that the flow rate
results are in general in good agreement, apart from along

FIG. 31. Comparison of (a) the normalized mass flow rate Q/Q0

and (b) the normalized vorticity −ω/Q0 at λ = {0.997, 0.982,

0.963, 0.939, 0.910} obtained using the VLB model HH(4; 6) ×
H(4; 5) (solid lines) and the CLB model HH(4; 6) × HH(4; 6) (lines
and points).

the line which is closest to the wall (λ = 0.997), where a
small discrepancy can be seen in the expanding region (around
y/Lc 
 0.1). Also in the expanding region, Fig. 31(b) shows
that the CLB results for the vorticity profile present oscilla-
tions with respect to y/Lc, which become more pronounced
as the wall is approached. On the other hand, the VLB results
vary smoothly with respect to y/Lc.

The amplitude of the oscillations observed in the vorticity
profile obtained using the CLB approach decreases as the
quadrature order increases. Similarly, the results obtained
using the VLB approach exhibit a convergence trend as the
quadrature order is increased. For the study of the quadrature
order dependence of ω, we consider the transverse vorticity
profile at fixed values of y/Lc inside the expansion region.

In Fig. 32, the typical convergence trend of the vorticity
profile obtained using the VLB implementation is shown
at y/Lc = 0.25 by varying Qλ at fixed Qξ = 5 (a) and by
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FIG. 32. Convergence study of the normalized vorticity with
respect to quadrature orders Qλ (a) and Qξ (b) for the VLB imple-
mentation at y/Lc 
 0.25.

varying Qξ at fixed Qλ = 16 (b). The half-range and full-range
Gauss-Hermite quadratures are used on the λ and ξ directions,
respectively. From Fig. 32(a), it can be seen that convergence
with respect to Qλ is achieved faster for the nodes closer to
the channel center than for the nodes in the vicinity of the
wall. Figure 32(b) demonstrates the remarkable property that
the VLB results for the vorticity corresponding to a fixed
value of Qλ are overlapped for all values of Qξ � 3. A similar
property is also observed in the context of the Couette [34]
and Poiseuille [35] flows between parallel plates. It is shared
by the VLB implementation because the pξ̂ momentum space
direction is always parallel to the wall. We note that Qξ = 3
is insufficient to capture the temperature profile shown in
Fig. 29(a). For small Mach number flows, Qξ = 4 is in general
sufficient to obtain accurate results, even for the temperature
profile. When the Mach number is non-negligible (i.e., as
considered in Fig. 25), Qξ = 5 must be used. Our simulations
indicate that further increasing the value of Qξ does not

FIG. 33. Comparison of the VLB and CLB implementations.
Convergence study of the normalized vorticity for the CLB imple-
mentation with respect to quadrature order by (a) steadily increasing
the quadrature order on both axes at y/Lc 
 0.041 and (b) keeping
Qx fixed and varying Qy at y/Lc 
 0.154.

affect the accuracy of the numerical results for all the flow
parameters considered in this section.

In order to study the convergence trend of the CLB results,
the transverse ω profile is represented in Fig. 33 at selected
values of y/Lc. According to Eq. (6.64), the computation of
the density nw of the populations emerging from the wall back
into the fluid requires the recovery of integrals over the half
of the (px, py) plane for which px − λφ′(y)py, such that the
integration range does not cover the full (−∞,∞) interval
on either px or py. Thus, the momentum space is discretized
using the half-range Gauss-Hermite quadrature for both the
px and the py degrees of freedom. Figure 33(a) shows that
increasing Qx = Qy simultaneously brings the CLB results
toward the VLB results obtained using Qλ = 20 and Qξ = 5,
confirming that at high quadrature orders, the VLB and CLB
implementations yield similar results. However, Fig. 33(b)
shows that, contrary to the VLB implementation, the accuracy
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of the CLB results depends strongly on Qy. The results in
Figs. 33(a) and 33(b) are represented at y/Lc 
 0.041 and
0.154, respectively.

It is worth remarking that the profiles of the pressure P and
flow rate Q can be recovered with much smaller quadrature
orders compared to the profile of the vorticity ω, even at
non-negligible values of Kn. Moreover, Figs. 31(b) and 30
show that the fluctuations in the profiles of Q and P are
almost negligible, even when the model HH(4; 6) × HH(4; 6)
is employed.

We end this section with a comparative analysis of the
performance of the CLB and VLB implementations. Since
the primary difference of these implementations is in the
way the momentum space is discretized, it is reasonable to
compare their performance on the same spatial grid, com-
prised of Nλ × Nξ = 30 × 200 = 6000 nodes. In the VLB
implementation, the full-range Gauss-Hermite quadrature of
order Qξ = 5 can be employed along the flow direction, while
the half-range Gauss-Hermite quadrature of order Qλ = Q is
employed along the direction which is perpendicular to the
boundary. In order to ensure the same degree of accuracy
between the VLB and CLB implementations, the half-range
Gauss-Hermite quadrature must be employed on both axes
in the CLB implementation, with quadrature orders equal to
the one employed in the VLB implementation, namely, Qx =
Qy = Q. The total number of velocities in the VLB imple-
mentation is NVLB

vel = 10Q, while in the CLB implementation,
NCLB

vel = 4Q2 velocities are employed. The time �T required
to perform one iteration can be estimated as in Eq. (5.68) (after
minor adjustments to account for a two-dimensional grid). In
the case of the VLB implementation, �T can be estimated
through

�TVLB = 10avQ + 10bv(2Q + 5)Q + cv, (6.65)

while in the case of the CLB implementation, the force term
is absent (bc = 0):

�TCLB = 4acQ2 + cc. (6.66)

Formally, the algorithmic complexity of the VLB and
CLB implementations is similar. At large values of Q,
�TVLB/�TCLB 
 5bv/ac, where bv and ac are the values of
the coefficients b and a corresponding to the VLB and CLB
implementations, respectively. In the context of the circular
Couette flow, the analysis in Sec. V G shows that 5b/a 

0.11, thus, it can be expected that the VLB implementa-
tion is roughly one order of magnitude faster than the CLB
implementation.

In order to quantitatively assess the computational perfor-
mance of the VLB and CLB implementations, we evaluate
the number of million of sites updated per second (Msites/s)
MS [Eq. (5.73)], which in the case of the gradually expanding
channel reads as

MS = Nλ × Nξ

106�T
= 0.006

�T
, (6.67)

where �T is expressed in seconds. In order to account for
runtime fluctuations, we perform for each value of Q a series
of simulations with total number of iterations Niter varying
between 5 � Niter � 15. For each simulation, the value of MS

FIG. 34. Number of millions of site updates per second in the
context of the gradually expanding channel flow for a system
with Nλ × Nξ = 30 × 200 nodes when the VLB HHLB(4; Q) ×
HLB(4; 5) (lines and squares) and CLB HHLB(4; Q) × HHLB(4; Q)
(lines and circles) models are employed. The solid lines correspond
to Eqs. (6.65) and (6.66), where the parameters a, b, and c are
obtained using a fitting routine.

is computed using the formula

MS(Niter ) = 0.006Niter

T (Niter )
, (6.68)

where T (Niter ) is the total runtime to complete Niter iterations,
expressed in seconds. The value of MS corresponding to a
given quadrature order Q is computed by averaging over the
values MS(Niter ).

Figure 34 shows the dependence of MS with respect to Q
for the VLB (lines and squares) and CLB (lines and circles)
implementations. The solid lines correspond to the best fits of
Eqs. (6.65) and (6.66) to the numerical data. The results of the
numerical fits for the particular case of a grid comprised of
Nλ × Nξ = 30 × 200 = 6000 nodes are av 
 4.97 ms, bv 

0.071 ms, ac 
 4.12 ms, while the free coefficient c appears
to be negligible in both implementations. Thus, at large
quadrature orders Q, it can be expected that the time per
iteration ratio between the VLB and CLB implementations
is 5bv/ac 
 0.086. For low Mach number flows, Qξ can be
decreased below the value Qξ = 5 considered above such that
the time per iteration ratio becomes Qξ bv/ac 
 0.0172Qξ .
Thus, it can be expected that the VLB implementation is in
general at least one order of magnitude faster than the CLB
implementation at the same level of accuracy.

H. Summary

In this section, the vielbein formalism was employed to
study flows through channels with nonplanar walls. In partic-
ular, we considered the case of the gradually expanding chan-
nel, for which the expanding section is governed by a hyper-
bolic tangent. Adapting the coordinate system to the channel
boundary induces a nondiagonal metric. Our choice for the
vielbein field allows the momentum space to be aligned along
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the boundary, such that the diffuse reflection boundary condi-
tions can be implemented just like in the case of planar walls.

Our implementation is validated in the incompressible
hydrodynamics limit, where our results obtained using the
H(2; 3) × H(2; 3) model (employing 9 velocities) are success-
fully compared with computational fluid dynamics (CFD) re-
sults. We further presented results for the compressible hydro-
dynamics case, when the temperature is no longer a constant.
Our analysis of the flow through the gradually expanding
channel ends with an analysis of rarefaction effects. In partic-
ular, we highlight the deviations from the hydrodynamic solu-
tion of the pressure-driven flow in the case when the pressure
gradient is no longer proportional to Kn. We further validate
the results for the temperature profile by successfully fitting a
quartic function of the distance from the channel center to the
numerical data. The ability of our implementation to capture
rarefaction effects was demonstrated by highlighting the log-
arithmic divergence of the vorticity inside the Knudsen layer.

Finally, we discuss the advantages of using the vielbein
formalism (VLB) in contrast with the case when the
momentum space is discretized with respect to its Cartesian
degrees of freedom (px, py) (CLB). In the context of the
gradually expanding channel, the flow domain cannot be
reduced to one dimension. However, the VLB formalism
allows the momentum space to be factorized such that one
component is always perpendicular to the wall. Our analysis
shows that this allows a full-range Gauss-Hermite quadrature
of low order to be employed on the direction which remains
parallel to the wall, while the accuracy of the simulation
depends only on the quadrature along the direction which is
perpendicular to the wall. In the CLB implementation, the
momentum space directions are always parallel to the (fixed)
x and y axes. Accurate simulation results of the flow inside the
expanding portion of the channel can be obtained only when
the half-range Gauss-Hermite quadrature is employed on both
axes, at equally high order. Moreover, the vorticity profile
obtained in the CLB formulation exhibits oscillations near the
wall (inside the Knudsen layer), which are not present when
the VLB implementation is used. An analysis of the runtime
of the CLB and VLB implementations at the same level
of accuracy (same values for the half-range Gauss-Hermite
quadratures) shows that, at large values of the quadrature
order, the VLB implementation is one order of magnitude
faster than the CLB implementation.

VII. CONCLUSION

In this paper, the Boltzmann equation with respect to
curvilinear coordinates was considered, written with respect
to orthonormal vielbein fields (triads in 3D), extending the for-
malism introduced in Ref. [48] for the relativistic Boltzmann
equation to the nonrelativistic case. The vielbein can be used
to align the momentum space along the coordinate directions,
while also decoupling the dependence of (p − mu)2 appearing
in the Maxwell-Boltzmann equilibrium distribution on the in-
duced metric tensor. The vielbein formalism allows the Boltz-
mann equation to be obtained in conservative form for any
choice of coordinates using elementary differential geometry.

Choosing a coordinate system adapted to the boundary of
the fluid domain allows the momentum space to be aligned

such that the incoming and outgoing fluxes are described
by conditions of the form pâ > 0 and pâ < 0, respectively.
The separation of incoming and outgoing particles is directly
amenable to discretizations of the momentum space based on
half-range quadratures. In the case when the flow shares the
symmetries of the curvilinear grid, aligning the momentum
space to the coordinate grid results in a phase space which pre-
serves the symmetries of the flow, allowing the spatial dimen-
sions along which the flow is homogeneous to be suppressed.

To illustrate the advantages of this methodology, we
considered two applications, namely, the circular Couette flow
between coaxial cylinders and the flow through a gradually
expanding channel. In the first case, the use of vielbeins in
the momentum space allows a one-dimensional spatial grid
to be employed. In the second case, the vielbeins allow the
momentum space degrees of freedom to be aligned along the
boundary, making the implementation of diffuse reflection
using half-range Gauss-Hermite quadratures identical to the
case of Cartesian geometries.

The validation of our scheme in the context of the circular
Couette flow was performed by comparing our simulation
results with the analytic solutions in the hydrodynamic
and ballistic regimes and with the transition regime results
reported in Ref. [85], which were obtained using high-order
discrete velocity models. We performed simulations in the
incompressible (low-Mach number) regime, as well as in
the non-negligible Mach number regime. In the latter case,
we were able to successfully recover the temperature, stress
tensor, and heat flux fields. Thus, we conclude that our
resulting scheme is applicable for the simulation of the
circular Couette flow of a compressible gas obeying the
Boltzmann-BGK equation for all degrees of rarefaction.

In the context of the gradually expanding channel, our
numerical results were validated in the incompressible limit of
the Navier-Stokes regime by comparison with the benchmark
CFD solutions reported in Refs. [97,126] for the case when
the Reynolds number is Re = 100, achieved by setting the
inlet debit at Q0 = 0.1 and a Knudsen number of Kn = 0.001.
Maintaining Re = 100 while increasing the viscosity μ = Kn
brings the flow in the compressible, nonisothermal regime,
where we highlighted the temperature variation in the
transverse direction, as well as the enhancement of the vortex
dimensions with the increase of the debit at the inlet. Finally,
we explored the rarefaction effects by keeping Q0 = 0.1 for
increasing values of Kn. We highlighted deviations from the
Hagen-Poiseuille law for the pressure gradient, as well as the
formation of a Knudsen layer where the vorticity diverges
logarithmically with the distance to the boundary.

Since our quadrature-based lattice Boltzmann models
are off lattice, we employed high-order finite-difference
methods such as the total variation diminishing third-order
Runge-Kutta (TVD RK-3) method developed in Ref. [81]
for the time-stepping procedure, together with the fifth-order
weighted essentially nonoscillatory (WENO-5) method for
the computation of the numerical fluxes. Noting that the
nontrivial features of the flow form predominantly near the
domain boundaries, we employed a grid stretching method
inspired from Refs. [40,62]. We were thus able to obtain
accurate simulation results with a comparatively small
number of grid nodes, ranging from 96 points to 16 points
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in the hydrodynamic and ballistic regimes for the circular
Couette flow and 30 × 200 = 6000 nodes for the gradually
expanding channel.

During the analysis of the circular Couette flow, we consid-
ered two formulations of the Boltzmann equation, namely, the
f̃ and χ formulations. In the f̃ formulation, the time evolution
and advection are performed at the level of f̃ = f

√
g and the

spatial derivative is taken with respect to the radial coordinate
R. In the χ formulation, the time evolution and advection are
performed at the level of the distribution function f , while
the spatial derivative is taken with respect to χR = R2/2. We
found that applying the TVD RK-3 and WENO-5 schemes
to solve the Boltzmann equation in the f̃ formulation could
not recover the simple solution f = const in the case when
both cylinders were kept at rest and at the same tempera-
ture. We further demonstrated that in the f̃ formulation, the
macroscopic variables (number density n, temperature T , and
radial and tangential heat fluxes qR̂ and qϕ̂) develop sharp
jumps near the boundaries, as well as nonphysical oscillations
when the lattice spacing is coarse. With our implementation
of the χ formulation of the Boltzmann equation, we were able
to reproduce the exact solution f = const in the stationary
case, and in the case when the cylinders undergo rotation, the
resulting stationary profiles of n, T , uϕ̂ , and qϕ̂ are smooth.
However, the radial heat flux still exhibits jumps which are
formed in the two nodes which are nearest to the boundaries.
These jumps were visible only in the hydrodynamic regime,
while at larger values of the relaxation time (i.e., for τ �
0.01), the stationary profile of qR̂ became smooth. We found
that the effects of these irregularities on the bulk profiles were
greatly diminished by applying the grid stretching technique
to increase the resolution near the boundaries, while main-
taining a considerably coarser resolution within the bulk of
the flow. The gain in performance is evident since we were
able to obtain the same level of accuracy with a stretched
grid comprised of 32 points per unit radial length as with the
unstretched grid employing 128 points per unit radial length.

We finally draw some conclusions regarding the efficiency
of our implementation. Since the dynamics along the vertical
axis in the flows considered in this paper is trivial, we inte-
grated out the pz degree of freedom of the momentum space
and introduced two sets of reduced distributions.

In the incompressible limit of the Navier-Stokes regime,
we recovered the analytic solution in the circular Couette flow
problem, as well as the benchmark solutions of Refs. [97,126]
for the flow through the gradually expanding channel using
the H(2; 3) × H(2; 3) model (i.e., the third-order full-range
Gauss-Hermite quadrature on both axes) employing 3 × 3 =
9 velocities. While the number of velocities is the same as
that employed by the popular D2Q9 lattice Boltzmann model,
the efficiency of our implementation with respect to, e.g.,
Refs. [45,53], is immediately obvious in the context of the
circular Couette flow since the vielbein approach allows us
to employ a one-dimensional discretization of the spatial grid
(i.e., only along the radial direction).

In the slip-flow and transition regimes of the circular Cou-
ette flow, our models employ a number of velocities similar
to that used in the implementation presented in Ref. [43],
which is based on a Cartesian split of the momentum space.
Since the latter approach does not preserve the symmetries

of the geometry, a 2D spatial grid is required, which makes
our implementation more efficient by at least two orders of
magnitude. Furthermore, the number of velocities employed
in Ref. [85], where the cylindrical symmetry in the momentum
space is retained (allowing a one-dimensional spatial grid to
be used) is significantly larger than the one employed in our
models, mainly due to the fact that our models employ the
half-range Gauss-Hermite quadrature in order to implement
the boundary conditions. Thus, our implementation is at least
two orders of magnitude faster than that employed in Ref. [85]
for Kn � 10. It is worth mentioning that at larger values of
Kn, the number of velocities required for our models increases
dramatically, becoming of the same order of magnitude as the
number of velocities employed in Ref. [85].

The versatility of our models to probe rarefaction effects in
non-Cartesian geometries is demonstrated by our simulations
performed in the context of the gradually expanding channel
for values of Kn up to 0.5, highlighting the formation of
a Knudsen layer where the vorticity presents a logarithmic
divergence with respect to the distance to the channel wall.
Our results represent an account for rarefaction effects in
the gradually expanding channel geometry. Our investigations
show that the simulation of rarefied flows in the geometry of
the gradually expanding channel is around one order of mag-
nitude faster in the vielbein approach than when a Cartesian
decomposition of the momentum space is employed.
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APPENDIX A: BOLTZMANN EQUATION WITH RESPECT
TO GENERAL COORDINATES

It is easy to check that Eq. (2.4) is in covariant form, i.e.,
that its form remains unchanged under a change of coordinate
system from {x ı̃} to some new coordinates {xi}. Also, it can
be checked that Eq. (2.4) reduces to the Boltzmann equation
(2.1) when Cartesian coordinates are employed.

For completeness, this appendix presents a derivation of
the form in Eq. (2.4) without the use of the tools of differential
geometry. The first step in writing the Boltzmann equation
with respect to the new coordinates is to consider the differ-
ential of f :

df = ∂ f

∂t
dt +

(
∂ f

∂xi

)
pj

dxi + ∂ f

∂ pi
d pi (A1a)

= ∂ f

∂t
dt +

(
∂ f

∂x ı̃

)
p j̃

dx ı̃ + ∂ f

∂ p ı̃
d p ı̃, (A1b)
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where the notation (∂ f /∂xi)pj refers to the derivative of f
with respect to xi while keeping pj constant. In order to
replace the derivatives occurring in Eq. (A1a) with those
occurring in Eq. (A1b), the following results can be used:

dx ı̃ = ∂x ı̃

∂x j
dx j, d p ı̃ = ∂x ı̃

∂x j
d pj + pj ∂2x ı̃

∂xk∂x j
dxk . (A2)

Thus, the Boltzmann equation takes the form

∂ f

∂t
+ p ı̃

m

∂ f

∂x ı̃
+
(

F ı̃ + 1

m

∂2x ı̃

∂x j∂xk
pj pk

)
∂ f

∂ p ı̃
= J[ f ]. (A3)

Writing

∂2x ı̃

∂x j∂xk
pj pk = ∂x j

∂x j̃

∂xk

∂xk̃

∂2x ı̃

∂x j∂xk
p j̃ p̃k = −∂x ı̃

∂x�

∂2x�

∂x j̃∂xk̃
p j̃ p̃k,

(A4)

the identification (2.6) can be made above, such that Eq. (A3)
reduces to (2.4).

APPENDIX B: BOLTZMANN EQUATION WITH RESPECT
TO ORTHONORMAL TRIADS

The same methodology as in Appendix A can be applied
in the case when orthonormal triads are employed:

df = ∂ f

∂t
dt +

(
∂ f

∂x ı̃

)
p j̃

dx ı̃ + ∂ f

∂ p ı̃
d p ı̃ (B1a)

= ∂ f

∂t
dt +

(
∂ f

∂x ı̃

)
pâ

dx ı̃ + ∂ f

∂ pâ
d pâ. (B1b)

In this case, it is possible to express d pâ as follows:

d pâ = d
(
ωâ

ı̃ p ı̃
) = ωâ

ı̃d p ı̃ + p ı̃ ∂ωâ
ı̃

∂x j̃
dx j̃ . (B2)

Thus, the Boltzmann equation becomes

∂ f

∂t
+ pâ

m
e ı̃

â

∂ f

∂x ı̃

+
[

F â + 1

m
p ı̃ p j̃

(
∂ωâ

ı̃

∂x j̃
− ωâ

k̃
�k̃

ı̃ j̃

)]
∂ f

∂ pâ
= J[ f ]. (B3)

The connection coefficients �â
b̂ĉ

are related to the covariant
derivative of ωâ

ı̃ through

∇ j̃ω
â
ı̃ = ∂ωâ

ı̃

∂x j̃
− ωâ

k̃
�k̃

ı̃ j̃

= ωĉ
j̃∇ĉω

â
ı̃

= −�â
b̂ĉ

ωb̂
ı̃ω

ĉ
j̃ . (B4)

The above result is sufficient to render Eq. (B3) in the form of
Eq. (2.20).

APPENDIX C: BOLTZMANN EQUATION
IN CONSERVATIVE FORM

Starting from Eq. (2.20), it is possible to arrive at Eq. (3.1)
by forcing a g−1/2 factor in front of each term on the left-hand

side, as follows:

1√
g

∂ ( f
√

g)

∂t
+ 1√

g

∂

∂x ı̃

(
pâ

m
e ı̃

â f
√

g

)
+ 1√

g

∂

∂ pâ

[(
F â − 1

m
�â

b̂ĉ
pb̂ pĉ

)
f
√

g

]

− f

[
pâ

m

1√
g

∂

∂x ı̃

(
e ı̃

â
√

g
)− (�â

âb̂
+ �â

b̂â

) pb̂

m

]
= J[ f ].

(C1)

The only step required to arrive at Eq. (3.1) is to show that the
last term in the left-hand side of Eq. (C1) vanishes.

First, we use the following property:

1√
g

∂

∂x ı̃

(
e ı̃

â
√

g
) = ∇ ı̃e

ı̃
â. (C2)

We note that in the above, the covariant derivative refers
only to the coordinate ı̃. Since the covariant derivative ∇ ı̃

transforms as a tensor with respect to changes of coordinates,
it is possible to express Eq. (C2) in terms of a covariant
derivative in the tetrad index b̂, as follows:

∇ ı̃e
ı̃
â = ωb̂

ı̃∇b̂e ı̃
â. (C3)

The covariant derivative of e ı̃
â with respect to b̂ can be writ-

ten, by definition, using the connection coefficients �ĉ
âb̂

, as
follows:

ωb̂
ı̃∇b̂e ı̃

â = ωb̂
ı̃�

ĉ
âb̂

e ı̃
ĉ . (C4)

Noting that, by construction, ωb̂
ı̃e

ı̃
ĉ = δb̂

ĉ , the following result
is obtained:

1√
g

∂

∂x ı̃

(
e ı̃

â
√

g
) = �b̂

âb̂
. (C5)

With the above result, the last term in the left-hand side of
Eq. (C1) reduces to

pâ

m

1√
g

∂

∂x ı̃

(
e ı̃

â
√

g
)− (�â

âb̂
+ �â

b̂â

) pb̂

m
= −�â

âb̂

pb̂

m
. (C6)

Expression (2.24) is obtained after noting that �â
âb̂

= 0, due
to the antisymmetry of the connection coefficients in the first
pair of indices.

APPENDIX D: PROJECTION OF THE FORCE TERM
ONTO THE SPACE OF ORTHOGONAL POLYNOMIALS

In this section of the Appendix, the implementation of
the momentum space derivatives ∂pâ f and ∂pâ ( f pâ) of the
distribution function f (or its reduced versions f ′ and f ′′
introduced in Sec. IV A) in the LB models employed in this
paper is reviewed for the cases when the full-range and half-
range Gauss-Hermite quadratures are employed. We consider
that the momentum space is two dimensional since in the
applications considered in this paper, the third dimension is
reduced by analytic integration, as described in Sec. IV A. It
is understood that all instances of f can be replaced directly
by the reduced distributions f ′ and f ′′.
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1. Projection on the space of full-range Hermite polynomials

a. Projection of ∂ f/∂pâ

The projection of ∂ f /∂ pâ onto the space of full-range
Hermite polynomials has been discussed in the context of
the LB models employed in this paper in Refs. [35,36]. For
completeness, we include in this section a brief review of the
results presented therein.

Let us consider the expansion of the distribution function
f with respect to the momentum component pâ in terms of
full-range Hermite polynomials:

f = e−p2
â/2

√
2π

∞∑
�=0

1

�!
F�H�(pâ). (D1)

The expansion coefficients F� can be obtained using

F� =
∫ ∞

−∞
d pâ f H�(pâ), (D2)

where the following orthogonality relation of the Hermite
polynomials was used:∫ ∞

−∞

dx√
2π

e−x2/2H�(x)H�′ (x) = �!δ�,�′ . (D3)

The derivative of f with respect to pâ is given by

∂ f

∂ pâ
= −e−p2

â/2

√
2π

∞∑
�=0

1

�!
F�H�+1(pâ), (D4)

where the relation ∂x[e−x2/2H�(x)] = −e−x2/2H�+1(x) was
used.

For definiteness, let us consider a full-range Gauss-Hermite
quadrature of order Q1 along the first momentum space
direction, such that p1̂ takes the discrete values p1̂

i (i =
1, 2, . . . , Q1) satisfying HQ1 (p1̂

i ) = 0. The other component
p2̂ → {p2̂

j} ( j = 1, 2, . . . ,Q2) is also discretized according to
an arbitrary quadrature, such that Eq. (D1) is replaced by

fi j = wH
i (Q1)

Q1−1∑
�=0

1

�!
F�; jH�

(
p1̂

i

)
, (D5)

where wH
i (Q1) is the full-range Gauss-Hermite quadrature

weight defined in Eq. (4.10). The above definition of fi j allows
the integral in Eq. (D2) to be exactly recovered using the
full-range Gauss-Hermite quadrature formula [37,38]

F�; j =
Q1∑
i=1

fi jH�

(
p1̂

i

)
. (D6)

Truncating Eq. (D4) following the above recipe gives(
∂ f

∂ p1̂

)
i j

=
Q1∑

i′=1

K1̂,H
i,i′ fi′ j, (D7)

where the elements of the Q1 × Q1 matrix K1̂,H
i,i′ are given in

Eq. (4.15).

b. Projection of ∂( f pâ)/∂pâ

Starting from the expansion (D1) of f with respect to pâ, a
similar expansion for ∂ ( f pâ)/∂ pâ can be assumed:

∂ ( f pâ)

∂ pâ
= e−p2

â/2

√
2π

∞∑
�=0

1

�!
F ′

�H�(pâ). (D8)

The coefficients F ′
� can be obtained by multiplying Eq. (D8)

by H�(pâ) and integrating with respect to pâ:

F ′
� = −

∫ ∞

−∞
d pâ f pâ ∂H�(pâ)

∂ pâ
, (D9)

where integration by parts was used to arrive at the above re-
sult. Using the property xH ′

�(x) = �H�(x) + �(� − 1)H�−2(x),
the integral in Eq. (D9) can be performed in terms of the
coefficients F�:

F ′
� = −�F� − �(� − 1)F�−2. (D10)

We now assume that a represents the first momentum space
direction and p1̂ → p1̂

i (i = 1, 2, . . . , Q1) according to a full-
range Gauss-Hermite quadrature of order Q1. In this case, F ′

�

can be written as

F ′
�; j = −

Q1∑
i′=1

fi′ j
[
�H�

(
p1̂

i′
)+ �(� − 1)H�−2

(
p1̂

i′
)]

. (D11)

Thus, ∂ ( f p1̂ )/∂ p1̂ [Eq. (D8)] can be written as a linear
combination of fi j :[

∂ ( f p1̂ )

∂ p1̂

]
i j

=
Q1∑

i′=1

K̃1̂,H
i,i′ fi′ j, (D12)

where the elements of the Q1 × Q1 matrix K̃1̂,H
i,i′ are given in

Eq. (4.18).

2. Projection on the space of half-range Hermite polynomials

a. Projection of ∂ f/∂pâ

The construction of the derivative ∂ f /∂ pâ in the frame of
LB models based on the half-range Gauss-Hermite quadrature
was presented in Ref. [36]. In this section, the construction
procedure and the main results are briefly reviewed.

The idea behind LB models based on half-range Gauss-
Hermite quadratures is to acknowledge that the wall interac-
tion induces a discontinuity in the distribution function since
the distribution of particles emitted by the diffuse reflective
boundary has in general a different functional form compared
to that of the distribution of the incident particles. Thus, it
is natural to separate the space of incoming and outgoing
particles as follows:

f (pâ) = θ (pâ) f +(pâ) + θ (−pâ) f −(pâ). (D13)

Taking the derivative of Eq. (D13) with respect to pâ gives

∂ f

∂ pâ
= θ (pâ)

(
∂ f

∂ pâ

)+
+ θ (−pâ)

(
∂ f

∂ pâ

)−
, (D14)

where(
∂ f

∂ pâ

)±
= ∂ f ±

∂ pâ
+ δ(pâ)[ f +(0) − f −(0)]. (D15)
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The Dirac delta function is obtained as the derivative of the
Heaviside step functions:

δ(x) = ±∂xθ (±x). (D16)

In obtaining Eq. (D15), we used δ(pâ) → δ(pâ)[θ (pâ) +
θ (−pâ)], while f ±(0) are defined through

f +(0) = lim
pâ→0+

f (pâ), f −(0) = lim
pâ→0−

f (pâ). (D17)

In general, f +(0) �= f −(0) due to the interaction with the
boundary.

Let us now consider the expansion of f ±(pâ) with respect
to the half-range Hermite polynomials [34,36]:

f ± = e−p2
â/2

√
2π

∞∑
�=0

F±
� h�(|pâ|), (D18)

where the expansion coefficients F±
� are given as

F+
� =

∫ ∞

0
d pâ f h�(pâ), F−

� =
∫ 0

−∞
d pâ f h�(−pâ).

(D19)
The expansion of (∂ f /∂ pâ)± [Eq. (D15)] was obtained in

Ref. [36]:(
∂ f

∂ pâ

)±

= ±e−p2
â/2

√
2π

{ ∞∑
�=0

F±
�

∞∑
s=�+1

[
hs,0h�,0√

2π
− 1

as
δ�,s+1

]
hs(|pâ|)

− 1

2
√

2π

[ ∞∑
�=0

(F+
� + F−

� )h�,0

][ ∞∑
s=0

hs,0hs(|pâ|)
]}

,

(D20)

where the notation h�,s is defined in Eq. (4.13).
Let us now consider that â refers to the first momen-

tum space direction and p1̂ is discretized using p1̂
i (i =

1, 2, . . . , 2Qa) according to the half-range Gauss-Hermite
quadrature, as described in Eq. (4.6). Considering also that
p2̂ → p2̂

j according to an arbitrary quadrature method, the
equivalent of Eq. (D5) becomes

fi j = w
h

i (Q1)
Q1−1∑
�=0

1

�!
F+

�; jh�

(
p1̂

i

)
,

fi+Q1, j = w
h

i (Q1)
Q1−1∑
�=0

1

�!
F−

�; jh�

(
p1̂

i

)
, (D21)

where i = 1, 2, . . . , Q1 and the expansion on the second line
corresponds to the negative momentum semiaxis. The expan-
sion coefficients F±

�; j can be obtained using the following
quadrature sums:

F+
�; j =

Q1∑
i=1

fi jh�

(
p1̂

i

)
, F−

�; j =
Q1∑
i=1

fi+Q1, jh�

(
p1̂

i

)
. (D22)

Truncating Eq. (D20) following the above recipe gives(
∂ f

∂ p1̂

)
i j

=
2Q1∑
i′=1

K1̂,h

i,i′ fi′ j, (D23)

where the elements of the 2Q1 × 2Q1 matrix K1̂,h

i,i′ are given in
Eq. (4.16).

b. Projection of ∂( f pâ)/∂pâ

Since the product pâ f vanishes at pâ = 0, the δ term
appearing in the expression of ∂ f /∂ pâ does not appear in this
case, such that ∂ (pâ f )/∂ pâ can be expanded as

∂ (pâ f )

∂ pâ
= e−p2

â/2

√
2π

∞∑
�=0

Fσ ′
� h(|pâ|), (D24)

where σ = ±1 when ±pâ > 0. The coefficients F±′ can be
obtained by virtue of the orthogonality of the half-range
Hermite polynomials using integration by parts:

F+′
� = −

∫ ∞

0
d pâ f pâh

′
�(pâ),

F−′
� = −

∫ 0

−∞
d pâ f pâh

′
�(−pâ). (D25)

The product xh′
�(x) appearing above can be written as [34]

xh′
�(x) = �h�(x) + h

2
�,0 + h

2
�−1,0

a�−1

√
2π

h�−1(x)

+ 1

a�−1a�−2
h�−2(x). (D26)

Substituting the above result into Eq. (D25) and using
Eq. (D19) yields

F±′
� = −

[
�F±

� + h
2
�,0 + h

2
�−1,0

a�−1

√
2π

F±
�−1 + 1

a�−1a�−2
F±

�−2

]
.

(D27)

Let us now consider that the â direction corresponds to the
first direction of the momentum space and p1̂ is discretized
according to the half-range Gauss-Hermite quadrature of or-
der Q1, such that Eq. (D24) takes the form

[
∂ (p1̂ f )

∂ p1̂

]
i j

=
2Q1∑
i′=1

K̃1̂,h

i,i′ fi′, j, (D28)

where the elements of the 2Q1 × 2Q1 matrix K̃1̂,h

i,i′ are given in
Eq. (4.19).
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