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Spectral collocation method for collisional power absorption in
radially inhomogeneous helicon plasmas
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A spectral collocation method using Chebyshev polynomials is applied to compute the electromagnetic fields
and the collisional power absorption in radially inhomogeneous helicon plasmas. The governing equation has a
singularity at the cylindrical axis, which has been resolved by imposing the appropriate boundary conditions. The
results are compared with those of the finite difference method. The present work not only shows the superior
accuracy of the spectral collocation method with a proper treatment of the singularity, but also discusses the
advantages of using Chebyshev nodes for helicon plasmas in particular. It is possible to extend the range of
parameters efficiently in cases for which the finite difference method fails to obtain reliable solutions without
drastically decreasing the grid size. The spectral collocation method is shown to be especially useful near the
lower hybrid resonance condition.
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I. INTRODUCTION

Helicon discharge has been of great interest mainly in view
of its high ionization efficiency and its applications in many
areas such as basic plasma and fusion experiments, material
processing reactors, and plasma thrusters. Typical character-
istics of helicon plasmas include the linear dependence of
the density on the magnetic field [1], occurrence of abrupt
density jumps [1–3], and the existence of density peaks at
low magnetic fields [4–7] and near the lower hybrid resonance
[1,8–12]. These characteristics can be explained with power
balance in which the absorbed power equals the power lost
in the plasma [13–15]. The power absorption has been in-
vestigated by many researchers [16–26], and its computation
has recently been performed to analyze characteristics of
discharges [27–29].

The high efficiency of ionization appears to be at-
tributed to collisional damping of the Trivelpiece-Gould (TG)
mode, at least in part, which exists with the helicon wave
[18,25,30–34]. Mainly because of the short wavelength of
the TG mode, computing the wave electromagnetic fields and
the power absorption accurately is not trivial, depending on
the values of various parameters. In fact, the operating ranges
of wave and plasma parameters are quite wide. For example,
the density is up to the order of 1014 cm−3, the magnetic field
up to a few kG, and the frequency range up to 102 MHz.

For radially inhomogeneous plasmas, the Maxwell equa-
tions reduce to a system of ordinary differential equations that
can be solved by using various numerical methods, such as
the finite difference [7,35–38], finite element [30], direct in-
tegration [20,24,31,39], and stratified model methods [19,40].
In the stratified model, the continuous profile of the plasma
parameters is replaced with a stepwise variation, then the
analytic solutions in each stratum are matched at the interfaces
to obtain the solution in the entire region.
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By treating the problem as an initial value problem, it is
relatively simple and straightforward to apply the integration
method using many standard libraries, but it may yield un-
reliable results in certain but quite wide ranges of the wave
and plasma parameters because the governing differential
equations can be stiff. In such a case, a method using a series
expansion in the electron mass might be used to obtain the
approximate solutions [24].

The finite difference method [7,35–38] and the finite el-
ement method [30] have also been applied for numerical
modeling of helicon plasmas. These methods are less sensitive
to the parameter range, but the accuracy may not be assured
in some cases. The accuracy might be improved by decreasing
the mesh size, but its convergence rate with varying mesh size
is generally slow [41–43]. Compared to these methods using
expansion of local interpolant polynomials, the accuracy of
the spectral collocation method is known to be excellent with
a minimal number of computational nodes. In the spectral
method, the solutions is expanded as a global interpolant,
and the Chebyshev polynomials are the natural choice for
bounded, nonperiodic domains among various polynomials
[41,42]. In addition, it is especially advantageous to adapt the
Chebyshev polynomials for helicon plasmas because they are
based on the node points highly clustered near the boundary,
where the TG mode can vary rapidly with significant damping.

In this work, a spectral collocation method using the
Chebyshev differentiation matrix is applied to the helicon
plasma configuration, and its superior accuracy and advan-
tages are demonstrated by comparing the results with those of
the finite difference method. The spectral collocation method
is sometimes called just the spectral method for the sake of
brevity in this paper.

II. MODEL

As in previous works [7,39], it is assumed that the plasma is
confined in the region 0 � r � rp and that there are an antenna
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and a conducting wall at ra and rb, respectively. The electro-
magnetic fields are governed by the Maxwell equations, which
may be written as

∇̂ × E = −H, (1)

∇̂ × H = ε · E, (2)

where ∇̂ = (c/ω)∇, H = i
√

μ0/ε0H, and ε is the dielectric
tensor of a cold plasma in the form

ε =
⎡
⎣ ε1 iε2 0

−iε2 ε1 0
0 0 ε3

⎤
⎦. (3)

Here c, ε0, and μ0 are the speed of light, the permittivity,
and the permeability of free space, respectively. It is assumed
that the plasma is uniform in the azimuthal and axial direc-
tions and that the first-order electromagnetic fields vary as
exp [i(mθ + kz − ωt )]. Then the Maxwell equations reduce
to a set of ordinary differential equations with respect to the
radial coordinate:

du
dρ

+ L · u = 0, (4)

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

ρ
− mε2

ρε1
0 −mN‖

ρε1

m2

ρ2ε1
− 1

−N‖
ε2

ε1
0 1 − N2

‖
ε1

mN‖
ρε1

−mN‖
ρ

m2

ρ2
− ε3

1

ρ
0

ε1 − ε2
2

ε1
− N2

‖
mN‖
ρ

−N‖
ε2

ε1

mε2

ρε1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5)

where u = (Eθ , Ez,Hθ ,Hz )T, N‖ = kc/ω, and ρ = rω/c.
The superscript T denotes the transpose. The radial field
components are given in terms of the other components as

Hr = m

ρ
Ez − N‖Eθ , (6)

ε1Er = m

ρ
Hz − N‖Hθ − ε2Eθ . (7)

When the plasma is uniform in the radial direction too, the
fields are given in terms of Bessel functions, whose argument
is N⊥ρ where N⊥ is the root of the biquadratic equation [18]

N4
⊥ − (α + β )N2

⊥ + αβ − γ δ = 0, (8)

with α = ε3(1 − N2
‖ /ε1), β = ε1 − N2

‖ − ε2
2/ε1, γ =

N‖ε2/ε1, and δ = N‖ε2ε3/ε1. There are two solutions for
N2

⊥, related to the fast and slow waves, that are usually called
the helicon and TG modes in helicon plasmas.

The power absorbed by the plasma can be expressed as
Pabs = 1/2RpI2

a where Ia is the antenna current and Rp is the
plasma resistance given by

Rp =
∑

m

∫ ∞

−∞
Sp(m, k) dk, (9)

Sp(m, k) = 4π2ε0ω

I2
a

∫ rp

0
Im[E∗ · ε · E]r dr, (10)

where rp is the plasma boundary radius. The absorbed
power must be equal to the power radiated by the antenna
calculated from

Sa(m, k) = 4π2

I2
a

∫ rp

0
Re[Ja · E∗]r dr, (11)

where Ja is the antenna current density.

III. SPECTRAL COLLOCATION METHOD

A. Series expansion

A function f (ξ ) can be approximated by the series,

f (ξ ) �
n∑

j=1

f jφ j (ξ ), (12)

where {ξ j} and {φ j} are sets of distinct interpolation nodes and
interpolating functions, respectively, f j = f (ξ j ), and n is the
number of nodes. By using the differentiation matrix {Di, j},
the derivative at the node ξi is given as [42,43]

f ′(ξi ) �
n∑

j=1

f jφ
′
j (ξi) ≡

n∑
j=1

Di, j f j . (13)

As mentioned earlier, we use the differentiation matrix based
on the Chebyshev polynomials and points. To describe the
plasma confined in the range 0 � ρ � ρp(= rpω/c), we may
use the change of variable ρ = ρp(1 − ξ )/2 with the differen-
tiation matrix multiplied by −ρp/2. This transform yields to
highly clustered points near both the origin and the boundary
at ρp. The existence of clustered points in the small region
near the origin is not efficient unless the function has a strong
gradient and narrow peaks there [42,44].

The quadratic transform

ρ2 = 1
2ρ2

p(1 − ξ ) (14)

leads to clustering of grid points only near ρp and generally
better accuracy [44]. In addition, it is especially useful to have
a high density of grid points near the boundary ρp, where the
TG mode can vary rapidly.

B. Boundary conditions

Equation (5) has a singularity at the origin, which should
be resolved to obtain proper solutions in the entire domain.
Using the boundary conditions instead of Eqs. (4) and (5),
we can set up the relation between du/dρ (and then du/dξ )
and u at the origin. Noting that the field components should
be independent of θ as ρ → 0 [45], we obtain the boundary
conditions at ρ = 0 as

Er = Eθ = 0, for m = 0, (15)

Er + imEθ = Ez = 0, for |m| = 1, (16)

Er = Eθ = Ez = 0, for |m| > 1. (17)

These relations also hold for H.
For m = 0, Eqs. (4) and (5) with Eθ = Hθ = 0 lead to

dEz

dρ
= 0,

dHz

dρ
= 0, (18)
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which enable one to approximate Eθ , Ez, Hθ , and Hz, with
their respective leading terms in the power series as ρ → 0,
such as

Eθ = E1ρ, Hθ = H1ρ, Ez = E0, Hz = H0, (19)

where E0, E1, H0, and H1 are constants. The equations for
E1 = dEθ /dρ|ρ=0 and H1 = dHθ /dρ|ρ=0 in Eqs. (4) and (5)
yield

E1 = 1
2 H0, H1 = 1

2ε3E0. (20)

To use Di, j = φ′
j (ξi ), we need dEθ /dξ and dHθ /dξ for ξ

given by Eq. (14), but as

dEθ

dρ
= −4ρ

ρ2
p

dEθ

dξ
(21)

indicates, dEθ /dξ should be infinite for dEθ /dρ to be finite
at ρ = 0. This problem can be circumvented by taking u(1) =
ρEθ and u(3) = ρHθ to obtain

dEθ

dρ
= − 2

ρ2
p

du(1)

dξ
(22)

at ρ = 0 and to solve for u(1) and u(3) first. These substitutions
will be also explained at the end of this subsection. Then
Eq. (20) yields

du(1)

dξ
+ aH0 = 0, (23)

du(3)

dξ
+ aε3E0 = 0 (24)

or

au(4)
1 +

n∑
j=2

D1, ju
(1)
j = 0, (25)

aε3u(2)
1 +

n∑
j=2

D1, ju
(3)
j = 0, (26)

at ρ = 0, where a = ρ2
p/4 = ρ2

n/4. Here we use the notation

ui = [
u(1)

i , u(2)
i , u(3)

i , u(4)
i

]T
, (27)

= [ρiEθ (ξi ), Ez(ξi), ρiHθ (ξi ),Hz(ξi)]
T. (28)

For |m| = 1, applying Eq. (16) to Eqs. (4) and (5), we find

dEθ

dρ
= 0,

dHθ

dρ
= 0. (29)

Then Eθ , Ez, Hθ , and Hz can be also approximated with

Eθ = E0, Hθ = H0, Ez = E1ρ, Hz = H1ρ, (30)

as ρ → 0, where E0, E1, H0, and H1 are constants different
from the previous ones for m = 0. In the same way as for

m = 0, we finally obtain

(mε1 − ε2)E0 − N‖H0 + mH1 = 0, (31)

N‖E0 − mH0 − mE1 = 0 (32)

or

2aN‖
m

u(1)
1 − 2au(3)

1 +
n∑

j=2

D1, ju
(2)
j = 0, (33)

−2a
(

1 − ε2

m

)
u(1)

1 + 2aN‖
m

u(3)
1 +

n∑
j=2

D1, ju
(4)
j = 0, (34)

where ui = [Eθ (ξi ), ρiEz(ξi),Hθ (ξi), ρiHz(ξi )]
T.

At the plasma boundary, we have the relations

Hθ = b1,1Eθ + b1,2Ez + d1, (35)

Hz = b2,1Eθ + b2,2Ez + d2, (36)

where {bi, j} and {di} are given in terms of the modified
Bessel functions and the antenna current [18]. These equations
should be modified as

u(3)
n = b̃1,1u(1)

n + b̃1,2u(2)
n + d̃1, (37)

u(4)
n = b̃2,1u(1)

n + b̃2,2u(2)
n + d̃2, (38)

where

b̃1,1 = b1,1, b̃1,2 = b1,2ρn, d̃1 = d1ρn, (39)

b̃2,1 = b2,1

ρn
, b̃2,2 = b2,2, d̃2 = d2, (40)

for m = 0, and

b̃1,1 = b1,1, b̃1,2 = b1,2

ρn
, d̃1 = d1, (41)

b̃2,1 = b2,1ρn, b̃2,2 = b2,2, d̃2 = d2ρn (42)

for m = ±1.
Because T2 j (ρ) = (−1) jTj (1 − 2ρ2) (where Tj is a

Chebysheb polynomial of degree j), the change of variables
by Eq. (14) is equivalent to using polynomials of even degree
only. By noting that the radial and azimuthal components
vary as ρ|m|−1 or ρ for m � 1 or m = 0, respectively, and
that the axial component varies as ρ|m| as ρ → 0 [30], it is
necessary to take Ez = u(2)/ρ and Hz = u(4)/ρ for odd m and
Eθ = u(1)/ρ and Hθ = u(2)/ρ for even m. In other words, the
same procedure for m = 0 or |m| = 1 is applied to the case
of even or odd m, respectively, when |m| > 1. The asymptotic
behavior can also be seen from the analytic solutions for a
uniform plasma [18].

C. Governing equations

Using Eq. (14), we transform Eq. (4) to

du
dξ

+ Q · u = 0, (43)
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for −1 � ξ < 1, where the matrix Q can be obtained in a
straightforward way for

u = [ρ(ξ )Eθ (ξ ), Ez(ξ ), ρ(ξ )Hθ (ξ ),Hz(ξ )]T, (44)

u = [Eθ (ξ ), ρ(ξ )Ez(ξ ),Hθ (ξ ), ρ(ξ )Hz(ξ )]T, (45)

when m is even or odd, respectively. At ξ = 1, the relevant
equations are given by Eqs. (25) and (26) or Eqs. (33) and
(34) according to whether m is even or odd, respectively.

D. Algebraic equations

Equation (13) is extended to apply for a system of equa-
tions, and then Eq. (43) is converted to an algebraic equation

(A + B) · U = R, (46)

A =

⎡
⎢⎢⎢⎣

· A1,2 · · · A1,n−1 A1,n

A2,1 D2,2 · · · D2,n−1 A2,n

· · · · · · ·
An−1,1 Dn−1,2 · · · Dn−1,n−1 An−1,n

An,1 An,2 · · · An,n−1 An,n

⎤
⎥⎥⎥⎦, (47)

B =

⎡
⎢⎢⎢⎣

B1,1 · · · · · ·
· Q(ξ2) · · · · ·
· · · · · · ·
· · · · · Q(ξn−1) ·
· · · · · · Bn,n

⎤
⎥⎥⎥⎦, (48)

where Di, j = Di, jI4 (In is the identity matrix of size n). The
single dot is used to denote a zero or a zero matrix inside a
vector or matrix throughout the paper. Equation (46) is solved
by a direct solver using LU decomposition.

1. Matrices for m = 0

When m = 0, the matrices Ai, j and Bi, j (i = 2, . . . , n − 1
and j = 2, . . . , n − 1) and the vectors U and R are given as
follows:

A1, j =
[

D1, j · · ·
· · D1, j ·

]
, (49)

A1,n =
[

D1,n ·
D1,nb̃1,1 D1,nb̃1,2

]
, (50)

Ai,1 =

⎡
⎢⎣

· ·
Di,1 ·

· ·
· Di,1

⎤
⎥⎦, (51)

Ai,n =

⎡
⎢⎢⎢⎣

Di,n ·
· Di,n

Di,nb̃1,1 Di,nb̃1,2

Di,nb̃2,1 Di,nb̃2,2

⎤
⎥⎥⎥⎦, (52)

An, j =
[

Dn, j · · ·
· Dn, j · ·

]
, (53)

An,1 =
[ · ·

Dn,1 ·
]
, (54)

An,n =
[

Dn,n ·
· Dn,n

]
, (55)

B1,1 =
[ · −a
−aε3 ·

]
, (56)

Bn,n =
[

Q(n)
1,1 Q(n)

1,2

Q(n)
2,1 Q(n)

2,2

]
+

[
Q(n)

1,3 Q(n)
1,4

Q(n)
2,3 Q(n)

2,4

]
·
[

b̃1,1 b̃1,2

b̃2,1 b̃2,2

]
,

(57)

U = [u1, u2, · · · , un]T, (58)

u1 = [
u(2)

1 , u(4)
1

]
, (59)

ui = [
u(1)

i , u(2)
i , u(3)

i , u(4)
i

]
, (60)

un = [
u(1)

n , u(2)
n

]
, (61)

R = −[r1, r2, · · · , rn−1, rn]T, (62)

r1 = [ · , D1,nd̃1]T, (63)

ri = [ · , · , Di,nd̃1, Di,nd̃2]T, (64)

rn = [
Q(n)

1,3d̃1 + Q(n)
1,4d̃2, Q(n)

2,3d̃1 + Q(n)
2,4d̃2

]T
, (65)

where Q(n)
i, j = Qi, j (ξn).

2. Matrices for |m| = 1

The boundary conditions at the origin for m = ±1 give rise
to slightly different entries in the first two rows and columns
of the matrices and the first two rows of the vectors obtained
previously. The matrices and vectors that are different from
those for m = 0 are listed as follows:

A1, j =
[ · D1, j · ·

· · · D1, j

]
, (66)

A1,n =
[

· D1,n

D1,nb̃2,1 D1,nb̃2,2

]
, (67)

Ai,1 =

⎡
⎢⎣

Di,1 ·
· ·
· Di,1

· ·

⎤
⎥⎦, (68)

An,1 =
[

Dn,1 ·
· ·

]
, (69)

B1,1 = 2a

[
−N‖

m 1

ε1 − ε2
m −N‖

m

]
, (70)

u1 = [
u(1)

1 , u(3)
1

]
, (71)

r1 = [· , D1,nd̃2]T. (72)

3. Matrices for |m| > 1

Because Eθ = Ez = Hθ = Hz = 0 for |m| > 1, the system of
equations is simply obtained by deleting the first two rows and
two columns of the matrices A and B and the first two rows of
the vectors U and R.
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IV. FINITE DIFFERENCE METHOD

For comparison of methods, the finite difference method
is reviewed in this section. Using the approximations with
second-order error in hi+ 1

2
,

du

dρ

∣∣∣∣
ρ

i+ 1
2

� −ui + ui+1

hi+ 1
2

, (73)

u(ρi+ 1
2
) � 1

2 (ui + ui+1), (74)

where hi+ 1
2

= ρi+1 − ρi, ρi+ 1
2

= (ρi + ρi+1)/2, and i is the
node number, Eq. (4) is discretized as

(A + B) · U = R, (75)

where

A =

⎡
⎢⎢⎢⎣

A(1) D+ · · · · · ·
· D− D+ · · · · ·
· · · · · · · ·
· · · · · · D+ ·
· · · · · · D− A(n−1)

⎤
⎥⎥⎥⎦, (76)

B =

⎡
⎢⎢⎢⎢⎣

B(1)
− B(1) · · · · · ·
· B(2) B(2) · · · · ·
· · · · · · · ·
· · · · · · B(n−2) ·
· · · · · · B(n−1) B(n−1)

+

⎤
⎥⎥⎥⎥⎦, (77)

D± = ±I4, B(i) = 1
2 hi+ 1

2
L(ρi+ 1

2
), (78)

U = [u1, u2, · · · , un]T, (79)

ui = [Eθ (ρi ), Ez(ρi ),Hθ (ρi ),Hz(ρi )]
T, (80)

un = [Eθ (ρn), Ez(ρn)]T. (81)

The matrices and the vector A(1), B(1)
− , and u1 are specified

according to the boundary condition at the origin, depending
on the value of m. The singularity at the origin does not matter
if the central difference is used, because Eqs. (4) and (5) are
evaluated at the mid points between grids. The value of u at
the origin is also given by Eqs. (15)–(17), which lead to

A(1) =

⎡
⎢⎣

· ·
−1 ·
· ·
· −1

⎤
⎥⎦, B(1)

− =

⎡
⎢⎢⎢⎢⎢⎣

B(1)
1,2 B(1)

1,4

B(1)
2,2 B(1)

2,4

B(1)
3,2 B(1)

3,4

B(1)
4,2 B(1)

4,4

⎤
⎥⎥⎥⎥⎥⎦, (82)

and

A(1) =

⎡
⎢⎣

−1 ·
· ·
· −1
· ·

⎤
⎥⎦, B(1)

− =

⎡
⎢⎢⎢⎢⎢⎣

B(1)
1,1 B(1)

1,3

B(1)
2,1 B(1)

2,3

B(1)
3,1 B(1)

3,3

B(1)
4,1 B(1)

4,3

⎤
⎥⎥⎥⎥⎥⎦, (83)

for m = 0 and m = ±1, respectively. The vector u1 is
[Ez(0),Hz(0)]T for m = 0 or [Eθ (0),Hθ (0)]T for m = ±1.
For |m| > 1, the system of equations is obtained by deleting
the first two rows and two columns of the matrices A and B

FIG. 1. The normalized perpendicular wave numbers given as
functions of N‖ for a uniform plasma. The real and imaginary parts
are indicated by the solid and dashed lines, respectively.

and the first two rows of the vectors U and R, as in the spectral
method. The boundary conditions given by Eqs. (35) and (36)
yield

A(n−1) =
[

I2

b

]
, (84)

B(n−1)
+ = B̂ + B̃ · b, (85)

R = [· · · ,−(B̃ + I2) · d]T, (86)

where

B̂ =

⎡
⎢⎢⎢⎢⎢⎣

B(n)
1,1 B(n)

1,2

B(n)
2,1 B(n)

2,2

B(n)
3,1 B(n)

3,2

B(n)
4,1 B(n)

4,2

⎤
⎥⎥⎥⎥⎥⎦, B̃ =

⎡
⎢⎢⎢⎢⎢⎣

B(n)
1,3 B(n)

1,4

B(n)
2,3 B(n)

2,4

B(n)
3,3 B(n)

3,4

B(n)
4,3 B(n)

4,4

⎤
⎥⎥⎥⎥⎥⎦, (87)

b =
[

b1,1 b1,2

b2,1 b2,2

]
, d =

[
d1

d2

]
. (88)

V. RESULTS

For illustrating the results, numerical calculations are
conducted with the following parameters: plasma density

FIG. 2. Relative errors of the numerical solutions obtained by the
finite difference and spectral collocation methods with respect to the
analytic solution. These are denoted by FDM and SCM, respectively.
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FIG. 3. Relative errors of power conservation for the numerical
solutions obtained by the finite difference and spectral methods. The
plasma is not uniform with μ = 2.2, but other parameters are the
same as in Fig. 2.

n0 = 5 × 1012 cm−3, magnetic field B0 = 500 G, wave fre-
quency f = 13.56 MHz, azimuthal mode number m = 0,
electron-neutral collision frequency of ν/ω = 0.1, and plasma
radius rp = 5 cm, antenna radius ra = 6 cm, conductor bound-
ary radius rb = 10 cm, and 100 subintervals, unless stated
otherwise. Ion collisions are neglected. Numerical methods
are compared for uniform and nonuniform plasmas with the
density profile

n(r) = n0J0

(
μ

r

rp

)
, (89)

FIG. 4. (a) Plasma resistance from the spectral method and
(b) the relative errors of power conservation from both methods given
as functions of the magnetic field.

FIG. 5. Comparisons of the power absorption profiles between
the finite difference and spectral methods at B0 = 300, 1600, and
2000 G, respectively. The profiles are normalized to their respective
maximum values.

where J0 is the zeroth-order Bessel function.
Figure 1 presents N⊥ as functions of N‖ for a uniform

plasma: N⊥ of the TG mode becomes large as N‖ increases,
which may bring inaccuracy into numerical results at large
values of N‖. The accuracy of the numerical methods is
examined by comparison with the analytic solutions for a
uniform plasma. Relative errors are compared in Fig. 2, which
shows that the finite difference method (FDM) does not give
acceptable solutions except for the relatively very small values
of N‖ for given grid points, while the spectral method yields
fairly accurate solutions over a wide range of N‖.

For inhomogeneous plasmas, the accuracy of calculation
can be checked by monitoring power conservation on how
the values of Sa and Sp agree with each other. Figure 3 shows
the relative difference |1 − Sp/Sa|. The FDM yields inaccurate
solutions except for a very narrow range of N‖, the same
as for the uniform case, unless the number of grid points is
increased.

Figure 4 shows the plasma resistance and the relative
errors of power conservation as functions of the magnetic
field for the density profile with μ = 2.2. The accuracy of
both methods decreases near the magnetic field, giving a peak
resistance around 1600 G. This peak is related to the lower
hybrid resonance [10].

If the magnetic field, the density, or the wave frequency is
in the range of the resonance, there can be a resonance layer
somewhere for a nonuniform density profile. When this layer
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FIG. 6. Plasma resistance and its accuracy of the FDM compared
with those of the spectral method. The numbers denote the number of
subintervals used in the FDM. For the spectral method, the number
of subintervals is 100.

is close to the boundary, the TG mode is damped strongly as
it propagates inward and the power absorption is localized
in the narrow region near the plasma boundary. The power
absorption profile pabs is compared at different magnetic fields
in Fig. 5, where

Pabs =
∫ rp

0
pabsr dr, (90)

pabs = 2π2ε0ω

∫ ∞

−∞
Im[E∗ · ε · E] dk. (91)

The value of N⊥ of the TG mode increases as the magnetic
field increases toward the lower hybrid resonance, and then it
decreases when the magnetic field exceeds its value for the
resonance [10]. Accordingly, the absorption profile shrinks
to the narrower region near the boundary as the magnetic
field increases up to the value giving the peak resistance, and
then it becomes slightly wider as the magnetic field increases
further. Errors are large around this value of the magnetic
field, because the absorption profile is extremely localized
near the edge.

The grid size should be small enough to resolve the wave-
length to obtain better accuracy when the radial variation of
the wave field is very large such as at high magnetic fields or
near the resonance condition. Figure 6 shows that the results
of the FDM converge to those of the spectral method as the
number of grid points increases. The FDM does not yield
accurate solutions near the resonance condition, unless the
mesh size is very small there. The number of grid points is also

FIG. 7. Plasma resistance from the spectral method and its accu-
racy given as functions of the magnetic field for different numbers of
subintervals.

varied to confirm that the spectral method converges faster
with fewer grid points than in the FDM, as shown in Fig. 7.

FIG. 8. Relative time and error versus the number of subintervals
when B0 = 1000 G and N‖ = 100. The time is normalized with
respect to that of the spectral method with 100 subintervals.
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FIG. 9. Plasma resistance from the spectral method and relative
errors of the spectral and the finite difference methods when the
electromagnetic fields are excited by a Nagoya Type III antenna. The
m = ±1 modes are included, and the other parameters are the same
as in Fig. 4.

Because the net power transfer to the plasma is propor-
tional to Rp/(Rp + Rc), where Rc is the resistance resulting
from conduction loss [46], discharge at high Rp is usually
desired in practice for high ionization efficiency. The plasma
resistance is large in general when the TG mode damps
within a narrow layer near the edge, yielding surface heating
[47]. Therefore, the spectral collocation method is especially
advantageous when the FDM gives inaccurate results, such as
in the case where the plasma resistance is relatively large.

The spectral method generates the full matrices, result-
ing in longer computing times than the FDM, where sparse
linear equations are solved for the same number of nodes.
Computing times and errors are compared in Fig. 8 for the

finite difference and spectral methods for different numbers
of subintervals when B0 = 1000 G and N‖ = 100. The time
is normalized with respect to that of the spectral method
with 100 subintervals, which takes slightly less time than the
finite difference method with 400 subintervals, yielding very
accurate results. The dependence of time and error on the
number of subintervals is quite general, irrespective of the
parameter values. In spite of the full matrices, the Chebyshev
spectral collocation method seems to be best suited for analy-
sis of the electromagnetic waves in helicon plasmas, because it
has excellent accuracy with rapid convergence with the node
number and, more importantly, highly clustered nodes near
the plasma boundary as well.

The superiority of the spectral method is not limited to a
particular azimuthal mode. Figure 9 shows the resistance and
the relative errors for the case of a Nagoya Type III antenna,
which excites primarily m = ±1 modes [34].

VI. CONCLUSIONS

The spectral collocation method with the Chebyshev dif-
ferentiation matrix is applied to compute the electromagnetic
fields and the collisional power absorption in radially inho-
mogeneous helicon plasmas. The governing equation has a
singularity at the origin, which has been resolved by imposing
the boundary condition that the field components should be
independent of the azimuthal angle there. The accuracy of
the Chebyshev spectral collocation method is outstanding
in comparison with the finite difference method. It appears
to be best suited to analysis of electromagnetic waves in
helicon plasmas, because it has excellent accuracy with rapid
convergence with the number of nodes and, more importantly,
highly clustered nodes near the plasma boundary, where the
TG mode varies rapidly with significant damping when the
power absorption is strong. It is possible to extend the range
of parameters such as magnetic field, plasma density, and
frequency, for which the FDM fails to obtain reliable solutions
without drastically decreasing the grid size. The spectral
collocation method is especially useful when the parameters
are in the range of the lower hybrid resonance

ACKNOWLEDGMENT

This work was supported by Kyonggi University Research
Grant 2017.

[1] R. W. Boswell, Plasmas Phys. Control. Fusion 26, 1147 (1984).
[2] J.-G. Kwak, H. D. Choi, H. I. Bak, S. Cho, J. S. Bak, and S. K.

Kim, Phys. Plasmas 4, 1463 (1997).
[3] K.-K. Chi, T. E. Sherican, and R. W. Boswell, Plasma Sources

Sci. Technol. 8, 421 (1999).
[4] F. F. Chen, X. Jiang, J. D. Evans, G. Tynan, and D. Arnush,

Plasmas Phys. Control. Fusion 39, A411 (1997).
[5] F. F. Chen, Phys. Plasmas 10, 2586 (2003).
[6] T. Lafleur, C. Charles, and R. W. Boswell, Phys. Plasmas 17,

043505 (2000).
[7] S. Cho, Phys. Plasmas 13, 033504 (2006).

[8] S.-M. Yun, J.-H. Kim, and H.-Y. Chang, J. Vac. Sci. Technol. A
15, 673 (1997).

[9] Y. Sakawa, T. Takino, and T. Shoji, Phys. Plasmas 6, 4759
(1999).

[10] S. Cho, Phys. Plasmas 7, 417 (2000).
[11] J. G. Kwak, S. K. Kim, and S. Cho, Phys. Lett. A 267, 384

(2000).
[12] S. Yun, S. Cho, G. Tynan, and H. Chang, Phys. Plasmas 8, 358

(2001).
[13] S. Cho, Phys. Lett. A 216, 137 (1996).
[14] K. P. Shamrai, Plasma Sources Sci. Technol. 7, 499 (1998).

033303-8

https://doi.org/10.1088/0741-3335/26/10/001
https://doi.org/10.1088/0741-3335/26/10/001
https://doi.org/10.1088/0741-3335/26/10/001
https://doi.org/10.1088/0741-3335/26/10/001
https://doi.org/10.1063/1.872325
https://doi.org/10.1063/1.872325
https://doi.org/10.1063/1.872325
https://doi.org/10.1063/1.872325
https://doi.org/10.1088/0963-0252/8/3/312
https://doi.org/10.1088/0963-0252/8/3/312
https://doi.org/10.1088/0963-0252/8/3/312
https://doi.org/10.1088/0963-0252/8/3/312
https://doi.org/10.1088/0741-3335/39/5A/038
https://doi.org/10.1088/0741-3335/39/5A/038
https://doi.org/10.1088/0741-3335/39/5A/038
https://doi.org/10.1088/0741-3335/39/5A/038
https://doi.org/10.1063/1.1575755
https://doi.org/10.1063/1.1575755
https://doi.org/10.1063/1.1575755
https://doi.org/10.1063/1.1575755
https://doi.org/10.1063/1.3381093
https://doi.org/10.1063/1.3381093
https://doi.org/10.1063/1.3381093
https://doi.org/10.1063/1.3381093
https://doi.org/10.1063/1.2179773
https://doi.org/10.1063/1.2179773
https://doi.org/10.1063/1.2179773
https://doi.org/10.1063/1.2179773
https://doi.org/10.1116/1.580704
https://doi.org/10.1116/1.580704
https://doi.org/10.1116/1.580704
https://doi.org/10.1116/1.580704
https://doi.org/10.1063/1.873763
https://doi.org/10.1063/1.873763
https://doi.org/10.1063/1.873763
https://doi.org/10.1063/1.873763
https://doi.org/10.1063/1.873813
https://doi.org/10.1063/1.873813
https://doi.org/10.1063/1.873813
https://doi.org/10.1063/1.873813
https://doi.org/10.1016/S0375-9601(00)00118-3
https://doi.org/10.1016/S0375-9601(00)00118-3
https://doi.org/10.1016/S0375-9601(00)00118-3
https://doi.org/10.1016/S0375-9601(00)00118-3
https://doi.org/10.1063/1.1332987
https://doi.org/10.1063/1.1332987
https://doi.org/10.1063/1.1332987
https://doi.org/10.1063/1.1332987
https://doi.org/10.1016/0375-9601(96)00262-9
https://doi.org/10.1016/0375-9601(96)00262-9
https://doi.org/10.1016/0375-9601(96)00262-9
https://doi.org/10.1016/0375-9601(96)00262-9
https://doi.org/10.1088/0963-0252/7/4/008
https://doi.org/10.1088/0963-0252/7/4/008
https://doi.org/10.1088/0963-0252/7/4/008
https://doi.org/10.1088/0963-0252/7/4/008


SPECTRAL COLLOCATION METHOD FOR COLLISIONAL … PHYSICAL REVIEW E 99, 033303 (2019)

[15] F. F. Chen and H. Torreblanca, Plasma Sources Sci. Technol.
16, 593 (2007).

[16] K. P. Shamrai and V. B. Taranov, Plasmas Phys. Control. Fusion
36, 1719 (1994).

[17] K. P. Shamrai and V. B. Taranov, Plasma Sources Sci. Technol.
5, 474 (1996).

[18] S. Cho, Phys. Plasmas 3, 4268 (1996).
[19] Y. Mouzouris and J. E. Scharer, IEEE Trans. Plasma Sci. 24,

152 (1996).
[20] S. Cho and J.-G. Kwak, Phys. Plasmas 4, 4167 (1997).
[21] D. Arnush and F. F. Chen, Phys. Plasmas 5, 1239 (1998).
[22] M. Krämer, Phys. Plasmas 6, 1052 (1999).
[23] S. Shinohara and K. P. Shamrai, Plasmas Phys. Control. Fusion

42, 865 (1994).
[24] D. Arnush, Phys. Plasmas 7, 3042 (2000).
[25] K. P. Shamrai and S. Shinohara, Phys. Plasmas 8, 4659 (2001).
[26] K. Niemi and M. Krämer, Phys. Plasma 15, 073503 (2008).
[27] B. Soltani, M. Habibi, and H. Zakeri-khatir, Phys. Plasmas 23,

023507 (2016).
[28] M. Kabir and A. Niknam, Phys. Plasmas 24, 053511 (2017).
[29] M. Afsharmanesh and M. Habibi, IEEE Trans. Plasma Sci. 45,

2272 (2017).
[30] I. V. Kamenski and G. G. Borg, Comput. Phys. Commun. 113,

10 (1998).
[31] T. Enk and M. Krämer, Phys. Plasma 7, 4308 (2000).

[32] B. H. Park, N. S. Yoon, and D.-I. Choi, IEEE Trans. Plasma Sci.
29, 502 (2001).

[33] D. D. Blackwell, T. G. Madziwa, D. Arnush, and F. F. Chen,
Phys. Rev. Lett. 88, 145002 (2002).

[34] F. F. Chen, Plasma Sources Sci. Technol. 24, 014001 (2015).
[35] Y. Mouzouris and J. E. Scharer, Phys. Plasmas 5, 4253 (1998).
[36] G. Chen, A. V. Arefiev, R. D. Bengtson, B. N. Breizman, C.

Lee, and L. L. Raja, Phys. Plasma 13, 123507 (2006).
[37] S. Cho, Jour. Kor. Phys. Soc. 58, 461 (2011).
[38] L. Chang, M. J. Hole, J. F. Caneses, G. Chen, B. D. Blackwell,

and C. S. Corr, Phys. Plasma 19, 083511 (2012).
[39] S. Cho, Phys. Plasmas 16, 063504 (2009).
[40] B. McVey, PFC/RR-84-12 (Plasma Fusion Center, MIT, Cam-

bridge, MA, 1984).
[41] J. P. Boyd, Chebyshev and Fourier Spectral Methods (Dover,

Mineola, NY, 2001).
[42] L. N. Trefethen, Spectral Methods in Matlab (SIAM, Philadel-

phia, 2000).
[43] J. A. C. Weideman and S. C. Reddy, ACM Trans. Math.

Software 26, 465 (2000).
[44] J. P. Boyd and F. Yu, J. Comput. Phys. 230, 1408 (2011).
[45] M. Brambilla, Plasma Phys. Control. Fusion 41, 1 (1999).
[46] T. Shoji, Y. Sakawa, S. Nakazawa, and T. Sato, Plasma Sources

Sci. Technol. 2, 5 (1993).
[47] S. Cho and M. A. Lieberman, Phys. Plasmas 10, 882 (2003).

033303-9

https://doi.org/10.1088/0963-0252/16/3/019
https://doi.org/10.1088/0963-0252/16/3/019
https://doi.org/10.1088/0963-0252/16/3/019
https://doi.org/10.1088/0963-0252/16/3/019
https://doi.org/10.1088/0741-3335/36/11/002
https://doi.org/10.1088/0741-3335/36/11/002
https://doi.org/10.1088/0741-3335/36/11/002
https://doi.org/10.1088/0741-3335/36/11/002
https://doi.org/10.1088/0963-0252/5/3/015
https://doi.org/10.1088/0963-0252/5/3/015
https://doi.org/10.1088/0963-0252/5/3/015
https://doi.org/10.1088/0963-0252/5/3/015
https://doi.org/10.1063/1.871556
https://doi.org/10.1063/1.871556
https://doi.org/10.1063/1.871556
https://doi.org/10.1063/1.871556
https://doi.org/10.1109/27.491753
https://doi.org/10.1109/27.491753
https://doi.org/10.1109/27.491753
https://doi.org/10.1109/27.491753
https://doi.org/10.1063/1.872537
https://doi.org/10.1063/1.872537
https://doi.org/10.1063/1.872537
https://doi.org/10.1063/1.872537
https://doi.org/10.1063/1.872782
https://doi.org/10.1063/1.872782
https://doi.org/10.1063/1.872782
https://doi.org/10.1063/1.872782
https://doi.org/10.1063/1.873352
https://doi.org/10.1063/1.873352
https://doi.org/10.1063/1.873352
https://doi.org/10.1063/1.873352
https://doi.org/10.1088/0741-3335/42/8/301
https://doi.org/10.1088/0741-3335/42/8/301
https://doi.org/10.1088/0741-3335/42/8/301
https://doi.org/10.1088/0741-3335/42/8/301
https://doi.org/10.1063/1.874157
https://doi.org/10.1063/1.874157
https://doi.org/10.1063/1.874157
https://doi.org/10.1063/1.874157
https://doi.org/10.1063/1.1394779
https://doi.org/10.1063/1.1394779
https://doi.org/10.1063/1.1394779
https://doi.org/10.1063/1.1394779
https://doi.org/10.1063/1.2947561
https://doi.org/10.1063/1.2947561
https://doi.org/10.1063/1.2947561
https://doi.org/10.1063/1.2947561
https://doi.org/10.1063/1.4942035
https://doi.org/10.1063/1.4942035
https://doi.org/10.1063/1.4942035
https://doi.org/10.1063/1.4942035
https://doi.org/10.1063/1.4983044
https://doi.org/10.1063/1.4983044
https://doi.org/10.1063/1.4983044
https://doi.org/10.1063/1.4983044
https://doi.org/10.1109/TPS.2017.2717951
https://doi.org/10.1109/TPS.2017.2717951
https://doi.org/10.1109/TPS.2017.2717951
https://doi.org/10.1109/TPS.2017.2717951
https://doi.org/10.1016/S0010-4655(98)00077-0
https://doi.org/10.1016/S0010-4655(98)00077-0
https://doi.org/10.1016/S0010-4655(98)00077-0
https://doi.org/10.1016/S0010-4655(98)00077-0
https://doi.org/10.1063/1.1288399
https://doi.org/10.1063/1.1288399
https://doi.org/10.1063/1.1288399
https://doi.org/10.1063/1.1288399
https://doi.org/10.1109/27.928948
https://doi.org/10.1109/27.928948
https://doi.org/10.1109/27.928948
https://doi.org/10.1109/27.928948
https://doi.org/10.1103/PhysRevLett.88.145002
https://doi.org/10.1103/PhysRevLett.88.145002
https://doi.org/10.1103/PhysRevLett.88.145002
https://doi.org/10.1103/PhysRevLett.88.145002
https://doi.org/10.1088/0963-0252/24/1/014001
https://doi.org/10.1088/0963-0252/24/1/014001
https://doi.org/10.1088/0963-0252/24/1/014001
https://doi.org/10.1088/0963-0252/24/1/014001
https://doi.org/10.1063/1.873161
https://doi.org/10.1063/1.873161
https://doi.org/10.1063/1.873161
https://doi.org/10.1063/1.873161
https://doi.org/10.1063/1.2402913
https://doi.org/10.1063/1.2402913
https://doi.org/10.1063/1.2402913
https://doi.org/10.1063/1.2402913
https://doi.org/10.3938/jkps.58.461
https://doi.org/10.3938/jkps.58.461
https://doi.org/10.3938/jkps.58.461
https://doi.org/10.3938/jkps.58.461
https://doi.org/10.1063/1.4748874
https://doi.org/10.1063/1.4748874
https://doi.org/10.1063/1.4748874
https://doi.org/10.1063/1.4748874
https://doi.org/10.1063/1.3133191
https://doi.org/10.1063/1.3133191
https://doi.org/10.1063/1.3133191
https://doi.org/10.1063/1.3133191
https://doi.org/10.1145/365723.365727
https://doi.org/10.1145/365723.365727
https://doi.org/10.1145/365723.365727
https://doi.org/10.1145/365723.365727
https://doi.org/10.1016/j.jcp.2010.11.011
https://doi.org/10.1016/j.jcp.2010.11.011
https://doi.org/10.1016/j.jcp.2010.11.011
https://doi.org/10.1016/j.jcp.2010.11.011
https://doi.org/10.1088/0741-3335/41/1/002
https://doi.org/10.1088/0741-3335/41/1/002
https://doi.org/10.1088/0741-3335/41/1/002
https://doi.org/10.1088/0741-3335/41/1/002
https://doi.org/10.1088/0963-0252/2/1/002
https://doi.org/10.1088/0963-0252/2/1/002
https://doi.org/10.1088/0963-0252/2/1/002
https://doi.org/10.1088/0963-0252/2/1/002
https://doi.org/10.1063/1.1542613
https://doi.org/10.1063/1.1542613
https://doi.org/10.1063/1.1542613
https://doi.org/10.1063/1.1542613



