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Kinetic description of non-Boltzmann OH rotational distribution
in nonequilibrium stationary plasmas
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We present a model that describes the departure from equilibrium of the OH(A) rotational level distribution in
collisional plasmas. In this model, the OH(A) rotational state densities are governed by a rate equation including:
(i) a balanced rotational energy transfer process with the buffer gas species; (ii) unbalanced exothermic reactions,
which pump rotationally excited states into the system. Based on the prior assumptions, we formally derive a
model function describing the non-Boltzmann distribution. This function depends on five parameters, each of
which has a physical meaning. The temperature is given as one of the model function parameters, which can be
readily identified with the translational temperature of the buffer gas. The validity of the model was tested by
means of the least-squares fitting of data found in literature. Based on this analysis we propose the formation
processes of rotationally excited OH(A) in several discharge conditions.
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I. INTRODUCTION

Measurement of OH (A, X ) emission spectra from plasmas
and hot gases has been used for decades as a technique to
estimate the gas temperature [1]. When a rotational distribu-
tion is governed by a Boltzmann distribution, its temperature
can be determined from the slope of the log plot of the
spectrum intensities divided by some other parameters, which
may be calculated from first principles, such as transition
probabilities, statistical weight factors, and wavelength [1].
However, laboratory plasmas often operate in the nonthermal
regime, where rotational distributions have a non-Boltzmann
behavior [2,3]. Fundamental assumptions about equilibrium
do not hold in these cases, and temperature inference using
the conventional approach, i.e., Boltzmann plot, is invalid.

The departure from equilibrium in these systems is be-
lieved to be an image of the formation processes of OH(A
2�+) or at least to be influenced by it [2,3]. This effect is more
pronounced in low-pressure systems, where rotational energy
transfer (RET) rates are lower than RET rates in atmospheric
pressure plasmas (APPs) [2,3]. Still, molecular spectra from
APPs may also exhibit non-Boltzmann behavior [3,4].

This non-Boltzmann distribution has been frequently inter-
preted as a superposition of distributions with different tem-
peratures [5]. However, this physical interpretation is incon-
sistent with the foundations of equilibrium thermodynamics
and statistical physics. Indeed, if distinct macroscopic systems
with different temperatures are put into contact and form an
isolated system, the equilibrium condition imposes an equal
final temperature [6]. The condition of maximum entropy
applied to discretized systems of noninteracting identical par-
ticles necessarily leads to a Boltzmann distribution with only
one temperature [7]. One could possibly argue that different
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sets of states couple with distinct thermal baths, but still the
maximum entropy principle would require only one mean
temperature. Even in the grand canonical ensemble, which
better describes a system of a variable number of particles,
the resulting distribution is characterized by only one temper-
ature. However, equilibrium thermodynamics cannot be used
to predict relaxation times, which could be arbitrarily large in
metastable systems. Undoubtedly, the multitemperature pic-
ture cannot be explained by the well-established equilibrium
statistical physics, but it could eventually be explained by
other theories. Multitemperature methods may be useful to
indicate nonequilibrium behavior; but apparently it still lacks
a universally accepted explanatory theory.

In a previous work, Tsallis nonextensive statistics was
used to circumvent this problem [8]. The authors showed that
non-Boltzmann behavior observed in N+

2 first negative system
spectra can be fitted using a single Tsallis distribution with er-
rors as small as the ones obtained when the fit was carried out
using a two-temperature Boltzmann distribution [8]. However,
the adoption of this procedure may find some resistance in the
plasma community as the foundations of Tsallis nonextensive
statistics is still controversial [9–11], even though the balance
seems to be pending in favor of the new theory [12]. Another
issue contributing to the reluctance of many applied scientists
is the large number of unconventional statistical mechanics
in vogue [13]. Moreover, there seems to be no clear physical
interpretation connecting the q parameter and the associated q
entropy to microscopic phenomena in collisional plasmas.

We would like to highlight a method proposed recently
by Voráč et al. [14]. In order to deal with non-Boltzmann
behavior in large spectroscopic data sets with molecular spec-
tra superposition from different molecular bands the authors
proposed a state-to-state fitting procedure. The relative pop-
ulation of each excited state is treated as a parameter to be
determined in the fitting procedure. The Boltzmann plot is
then computed using the calculated populations. The resulting
fitting parameters are taken as the starting point for the study
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of the non-Boltzmann behavior of rotational distributions.
However, this procedure does not solve the problem of the
non-Boltzmann distribution; it is just an improved method to
compute the Boltzmann plot, since it can deconvolve all the
superposed lines that otherwise would have to be discarded.

Fortunately, we can always analyze a system starting from
its microscopic dynamics. If a microscopic model gives a
good description of the system, we may eventually derive
its macroscopic properties, which should be universally valid
even when the conditions of thermodynamic equilibrium are
not fulfilled. The kinetic theory of gases, for instance, is a
good example of this approach. In this paper, we show how the
rotational non-Boltzmann distribution of OH(A 2�+) may be
derived assuming an unbalanced effective exothermic reaction
and a balanced RET process with background gas. This non-
Boltzmann distribution is specified by five parameters, to be
fitted to data, all having a physical meaning. We show it is still
possible to identify one of the parameters with temperature,
since RET processes are usually dominant for low rotational
energy levels.

The present problem is somewhat related, though not
identical, to the effect observed when superrotors (J > 50)
are produced using optical centrifuges [15,16]. Experimental
observation showed that dephased time decay of coherent
states increases with rotational number [16,17]. In plasma
applications such superrotors and/or coherent states have
never been reported. In these cases, observable upper-lying ro-
tational states are below the limit J = 50. Besides, exothermic
reactions in plasmas are expected to produce only incoherent
states. Nonetheless, the analogy is valuable as we may get
some physical insight from the comparison of both systems.

In Sec. II the derivation of the non-Boltzmann distribution
is fully developed. In Sec. III we show how data can be fitted
using this distribution. Finally, in Sec. IV we apply this model
to fit some data extracted from recent literature and interpret
the physics of the observed distributions.

II. THEORY

The process of RET in a OH(A, ν = 0)1 containing plasma
or gas whose dominant species is an arbitrary atom or
molecule M may be represented by the equations

M j + OH(A)i+1

ki+1,(+)
j−−−⇀↽−−−

k
′ i,(+)
j+1

M j+1,(+) + OH(A)i (1)

M j + OH(A)i

ki,(−)
j−−−−⇀↽−−−−

k
′ i−1,(−)
j+1

M j+1,(−) + OH(A)i−1, (2)

where the subscript j (or j + 1) means that species M has
a kinetic energy Ej (or Ej + �E (+,−)) and the subscript i
represents the rotational level OH(A, J = i). The (+) super-
script refers to a transitions of the kind i + 1 � i and the (−)
superscript refers to a transitions of the kind i � i − 1. This
exhausts all the possibilities of population and depopulation
of a given rotational state i by a RET process. We may define

1We will only consider OH(A) molecules in the vibrational ground
state, so from now on we will drop (ν = 0) from the notation.

�E (+)
i = Ei+1 − Ei = E (+)

j+1 − Ej as the energy exchanged in

the collision process 1 and �E (−)
i = Ei − Ei−1 = E (−)

j+1 − Ej

as the energy exchanged in the collision process 2. The species
M may have internal degrees of freedom, but since we are
describing a RET process we shall assume that they do not
play any role here. However, such internal degrees of freedom
may transfer energy in a resonant process such as

M∗ + H2O
�κi−→ M + H2O∗

−→ M + H∗ + OH(A)i (3)

The excited species M∗ could be an electronically excited
atom, such as a metastable excited state from a noble gas
[18–21], an energetic electron [22], or a photon [23]. In the
above equation we considered water molecules to be one of
the precursors of the excitation process of OH, but it could
also be another molecule such as the OH(X ) or H2O2. The
requirement is that OH(A)i must be a product of the reaction,
but not a reagent. Reaction (3) must also be exothermic. In this
way, reaction (3) may be seen as a process that continuously
pumps rotationally excited OH(A) into the plasma, preventing
the thermalization of the system through the totally balanced
RET process [Eqs. (1) and (2)].

Another important process, which has exactly the same
effect as (3), i.e., producing rotationally excited OH(A) states,
is the dissociative recombination of water ions, e.g., [24]

e + H2O+ −→ OH + H or

e + H3O+ −→ OH + H.

These reactions are exothermic and the excess of energy could
be shared among rotationally excited OH(A) states, so we may
write

e + H2O+ �κi−→OH(A)i + H∗ or (4)

e + H3O+ �κi−→ OH(A)i + H∗. (5)

Evidently, the reactions above may be included within the
class of reactions represented by (3), since all of them obey
the criterion that OH(A)i be a product but not a reagent of the
reaction.

There is another assumption implicit in our formulation:
the energy distribution of M∗ has little or no influence in the
branching ratio of the rotationally excited OH(A) states. The
M∗ species surely must have enough energy to create an
intermediary excited state H2O∗. After it is created, it even-
tually dissociates, but this process is uncorrelated to the initial
energy of M∗. Indeed, the M∗ energy distribution could affect
the total rate coefficient of the reaction, but, as we will see,
this will be expressed as a fitting parameter of our model. The
shape of the formation energy distribution, however, remains
unaffected.

In order to understand how reactions of type (3) cause the
departure from equilibrium, let us first analyze the dynamics
of a system where OH(A)i population is totally controlled by
the RET process and then introduce the effect of exothermic
reactions. If Ni is the density of OH(A) molecules in state i,
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its time rate of change may be written as

dNi

dt
= Ni+1

∑
j

ki+1,(+)
j [M j] − Ni

∑
j

k
′i,(+)
j+1 [M(+)

j+1]

+ Ni−1

∑
j

k
′i−1,(−)
j+1 [M(−)

j+1] − Ni

∑
j

ki,(−)
j [M j], (6)

where the [M j] is the density of species M with kinetic energy
Ej , and the summation is taken over the kinetic energy for an
arbitrary small �E (+,−)

i
2. Now we introduce the notation

k(+)
i+1 =

∑
j

ki+1,(+)
j [M j];

d

dE
k(+)

i =
∑

j

d

dE
ki,(+)

j [M j]

d

dE
k(−)

i−1 =
∑

j

d

dE
ki−1,(−)

j [M j]; k(−)
i =

∑
j

ki,(−)
j [M j]

and the approximation

ki±1,(±)
j+1 = ki(±)

j+1 ± �E (±)
i

d

dE
ki,(±)

j+1 .

The Ni time rate of change may be written now as

dNi

dt
= (Ni+1k(+)

i+1 − Nik
′(+)
i ) − (Nik

(−)
i − Ni−1k

′(−)
i−1 )

=
(

dNi

dt

)(+)

+
(

dNi

dt

)(−)

. (7)

We can safely assume microscopic reversibility and a
Maxwellian distribution for species M, so we may write [25]

k
′(±)
i

k(±)
i+1

≈ e− �E (±)
i

kBT , (8)

where the approximation symbol was used because we con-
sider gi+1/gi ≈ 1. The balance equation can be written now
as

(
dNi

dt

)(+)

= Ni+1k(+)
i+1 − Nik

(+)
i

+ �E (+)
i Ni

(
k(+)

i

kBT
− k̇(+)

i

)
+ O((�E )2) (9)

(
dNi

dt

)(−)

= −
[

Nik
(−)
i − Ni−1k(−)

i−1

+ �E (−)
i Ni

(
k(−)

i

kBT
− k̇(−)

i

)
+ O((�E )2)

]
.

(10)

We look for a solution in the stationary regime, so we may
take dNi/dt = 0. If we now divide Eqs. (9) and (10) by �Ei

2Physically, �E cannot be made arbitrarily small, because the
OH rotational levels are discretized. Nonetheless, we shall assume
that �E can be made arbitrarily small, because we are searching
for a continuous function of energy that behaves as the rotational
distribution function.

and take the limit �Ei → 0, we obtain

dN

dE
(k(+) − k(−) ) + N

kBT
(k(+) − k(−) ) = 0

⇒ dN

dE
+ N

kBT
= 0, (11)

which gives the Boltzmann distribution as the solution, i.e.,
N = N0 exp (−E/kBT ). Note that N (E ) is the continuous
equivalent to Ni, i.e., N (Ei ) = Ni, where N (E ) is now de-
fined for all real values of E between 0 and ∞. Although
physical values of E are always discrete (Ei)—except in the
continuum limit—we may always define a continuous N (E )
function which best fits experimental points (Ei, Ni), as long
as N (Ei ) = Ni is satisfied for every energy level.

Until now we neglected quenching processes, in which
a molecule M collides with OH(A)i and quenches it. One
possible way to account for this effect is to add the term
−�qiNi in the balance equation, where �qi is the quenching
rate (�qi � 0). In this case, an analogous procedure would
lead us to

dN

dE
+ N

(
1

kBT
− 1

k

dq

dE

)
= 0, (12)

where k = k(+) − k(−). If Q/k � 0, where Q =∫ ∞
0 (dq/dE ) dE , we may neglect the effect of quenching.

This approximation is valid for most gases of interest at
atmospheric pressure, so we will neglect quenching in this
paper and leave it to future works.

We will consider now the effect of the exothermic reactions
represented by Eq. (3). First, let us note that the constant �κi

in Eq. (3) should be read as a reaction rate. We represented
it using the symbol �κi for convenience, as we define now
the total reaction rate κ0 of OH(A) formation at all possible
rotational energy levels, i.e.,

M∗ + H2O
κ0−→ M + H∗ + OH(A), (13)

where

κ0 =
∑

i

�κi

�Ei
�Ei

�Ei→0−−−−→ κ0 =
∫ ∞

0

dκ

dE
dE . (14)

We will also define κ (E ) as

κ (E ) =
∫ E

0

dκ

dE ′ dE ′, κ (0) = 0. (15)

Let us now introduce the term due to reaction (3) in the
balance equation, so that we may write

dNi

dt
=

(
dNi

dt

)(+)

+
(

dNi

dt

)(−)

+ �κi. (16)

Using the same procedure described in the previous case, we
now arrive to the following differential equation:

dN

dE
+ 1

kBT
N + 1

k

dκ

dE
= 0, (17)

where k = k+ − k−. Fortunately, this differential equation has
a closed solution, which is

N (E ) =
(

N0 +
∫ E

0

1

k

dκ

dE ′ e
E ′/kBT dE ′

)
e−E/kBT . (18)
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TABLE I. Formulas for the density distribution N (E ) for different distributions among exothermic states. The energies E and temperature
T are given in eV. The parameter N0 is given in arbitrary units and κ0/k0 must have the same unit as N0.

Case κ (E ) N (E )

(i) Heaviside κ0H (E − E0) [N0 + (κ0/k0 )eE0/T ]e−E/T , for E > E0, Boltz. otherwise
(ii) Gauss cum. error κ0erfc[−(E − E0)2/2σ 2] Eq. (21)
(iii) Linear κ0(E/E0) [N0 − (κ0T/k0E0 )]e−E/T + (κ0T/k0E0)
(iv) Quadratic κ0(E 2/E 2

0 ) [N0 − (κ0T 2/k0E 2
0 )]e−E/T + (κ0T/k0E 2

0 )(E − T )

The deviation from equilibrium is governed by the ratio
(1/k)(dκ/dE ). We do not know a priori the best function of
energy representing this ratio; nonetheless, we may establish
an educated guess or ansatz.

The rate constant of RET is usually given by an
expression, which only depends on �E , such as k =
k0 exp [−(�E )/(kBT )] [26,27]. We immediately verify that
this expression converges to a constant value when �E → 0.
Our problem now reduces to finding dκ/dE .

We know that any function of energy, which might repre-
sent κ , i.e., κ = κ (E ), must satisfy the conditions κ (E = 0) =
0 and limE→∞ κ (E ) = κ0. In exothermic reactions, in general,
the final rotational states are not expected to be equally
distributed; on the contrary, there should be a more probable
final set of rotational states.3 Considering these requirements,

we may conveniently parametrize κ (E ) as

κ (E ) = κ0erfc

(
E − E0√

2σ

)
, (19)

whose derivative is

dκ

dE
= κ0√

2πσ 2
e− (E−E0 )2

2σ2 . (20)

This expression can be interpreted as the energy probability
function of the final rotational states, which is given by a
Gaussian distribution. If nothing is known a priori about
the distribution, the central limit theorem guarantees that this
should be the best choice.4 The Eq. (18) can be written now as

N (E ) =
{

N0 + κ0

k0

√
2πσ 2

∫ E

0
exp

[
− (E ′ − E0)2

2σ 2

]
exp

(
E ′

kBT

)
dE ′

}
e− E

kBT . (21)

This is our key result, which will be used as the model function in the fitting procedure of spectroscopic data described in the
next section.

We could generalize Eq. (21) to account for distinct exothermic processes. As a matter of fact, if more than one exothermic
process occurs in a given circumstance, Eq. (21) may be insufficient. In some cases, the different exothermic processes may be
superposed, if all have similar E0 values. In this case, we may use Eq. (21) to fit a nonequilibrium distribution. However, if E0

values are distinguishable, then Eq. (21) could be generalized and written as

N (E ) =
⎧⎨
⎩N0 + κ01

k01

√
2πσ 2

1

∫ E

0
exp

[
− (E ′ − E01)2

2σ 2
1

]
exp

(
E ′

kBT

)
dE ′

+ κ02

k02

√
2πσ 2

2

∫ E

0
exp

[
− (E ′ − E02)2

2σ 2
2

]
exp

(
E ′

kBT

)
dE ′

⎫⎬
⎭e− E

kBT (22)

in the case of two exothermic processes. The above equations
can be readily generalized for any number of exothermic (or
formation) processes.

Before proceeding with the application of this formalism
to experimental data, let us study some particular solutions

3The average energy of the more probable rotational states, which
we may call E0, should scale with the total energy provided by the
reaction.

4If only one rotational state was excited after the reaction, then we
could write κ = κ0H (E − E0), where H (E − E0) is the Heaviside
function. This is a very particular case, which does not describe cor-
rectly our problem in general. Indeed, the expression we propose here
reduces to this particular case if σ → 0.

of Eq. (18) given a well-defined distribution of energy among
the final states, dκ/dE . We have already done this for the case
where dκ/dE is proportional to a Gaussian. Let us now plot
the solution for this and other cases given a reasonable set of
prescribed parameters. This should give us an insight of the
dependence of the density distribution on κ (E ).

Table I shows the four different functions representing
κ (E ). The first case (i) describes the limit in which only one
energy state is pumped by exothermic processes. It is equiv-
alent to the Gaussian case in the limit of σ → 0. The second
case (ii) is the Gaussian distribution of final states, which is
considered in this work as the most realistic model. Cases (iii)
and (iv) correspond to a linear and quadratic dependence of
κ (E ) on energy or, equivalently, a constant (iii) or linear (iv)
distribution of energy among final states.
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FIG. 1. Density distribution function N (E ) for each of the four
cases listed in Table I. The prescribed parameters are E0 = 4.5 eV,
T = 1.0 eV, σ = 0.6, N0 = 1000.0, and κ0/k0 = 50. The equivalent
Boltzmann distribution is also shown.

In Fig. 1 we plot the density distribution for each of
the four cases mentioned above (see Table I). In this plot,
the prescribed parameters are E0 = 4.5 eV, T = 1.0 eV, σ =
0.6, N0 = 1000.0, and κ0/k0 = 50. We readily verify that all
distributions converge to the equilibrium one at low energies,
as expected. The idealized limit, in which only one state is
populated after the exothermic process, gives rise to a distri-
bution with a positive discontinuity. The derivative of N (E )
for E > E0 remains the same, so the effective temperature is
always T . If the distribution among final states is Gaussian,
then a similar deviation from equilibrium is observed, though
it deviates continuously. The apparent temperature near E0

increases [the derivative of N (E ) decreases for E < E0],
and then decreases again until recovering the value T when
E � E0 + σ . This local decrease in the distribution derivative
may give rise to an apparent second temperature T2, with
no physical meaning, always higher than the real one (the
temperature of the dominant gas in equilibrium). The density
distribution in the linear case (iii) converges to a constant
value (κ0T/k0E0) for large energies (E > E0), while in the
quadratic case (iv) it diverges linearly.

III. FITTING PROCEDURE

The fitting procedure was based on the least-squares
method, which consists of minimizing the function χ2 with
respect to some set of parameters {βi}. The χ2 function is
defined as

χ2 =
∑

i

(
yi − f (Ei,β)

σ (yi )

)2

, (23)

where {Ei, yi} is a Boltzmann plot data set, σ (yi ) is the data
uncertainty and f (Ei,β) is the model function. From (21) we

) 
 (

ar
b.

 u
ni

ts
)

Energy (eV)

FIG. 2. Fitting curve of the OH(A) Boltzmann plot obtained
from the optical emission spectroscopy of a discharge in water vapor
bubble with air present as an impurity [30]. The data was extracted
from the work of Bruggeman et al. [30].

may write the model function explicitly as

N (E ) =
{
β1+

∫ E

0
β2 exp

[
− (E ′−β3)2

2β2
4

]
exp

(
E ′

β5

)
dE ′

}
e− E

β5 .

(24)

Each parameter of this equation should be related to some of
the physical parameters in Eq. (21); the parameter β1 is pro-
portional to N0, the parameter β2 is proportional to κ0/(k0σ ),
β3 is equal to E0, β4 is equal to σ and β5 is equal to kBT . The
function (24) is not linear in the parameters {βi} and it must be
solved numerically. We used the Gauss-Marquardt-Levenberg
algorithm [28] to solve the nonlinear problem of minimizing
the χ2 function. The evaluation of the integral in expression
(24) was carried out using the MATLAB® built-in routine of
adaptive quadrature [29]. The Gauss-Marquardt-Levenberg
algorithm was implemented in MATLAB®.

IV. RESULTS

In order to verify the consistency of the model function, we
fitted some sets of data from a review by Bruggeman et al. [3]
on that topic. In these figures, we plot the logarithm of the
experimental optical emission intensity of the rovibrational
transition, I , divided by the statistical weight, gJ ′J , and the
Einstein coefficient AJ ′J of the transition. This quantity is
proportional to the density of OH(A) rotationally excited
states NJ ′ (or Ni, in our notation). We simply extracted the data
from the paper, without any further data processing. The fitted
curves are shown in Figs. 2–5 and the resulting parameters
are shown in Table II. The curves fit the concavities of the
data, such as in the Boltzmann plot of Fig. 4 and Fig. 5. These
concavities can be interpreted as a direct effect of newborn
energetic rotational states governed by Gaussian distributions,
which originates from exothermic processes creating rotation-
ally excited OH(A).
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Energy (eV)
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 (

ar
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)

FIG. 3. Fitting curve of the OH(A) Boltzmann plot obtained
from the optical emission spectroscopy of a He + 0.1%N2 discharge
produced at a current of 25 mA and voltage of 0.9 kV [31]. The data
was extracted from the work of Bruggeman et al. [31].

The discussion about the physics of these discharges is
done in detail by Bruggeman et al. [3], so we do not have
much more to add than some few words. First, the present
treatment gives a precise meaning to the claim that says the
departure from equilibrium is an image of the formation
processes of OH(A 2�+). In fact, the model includes the
effect of the rotationally excited levels of OH(A) formed just
after a chemical or photochemical process. It explains the
observed overpopulated rotational states. Besides, the model

Energy (eV)

) 
 (

ar
b.

 u
ni

ts
)

FIG. 4. Fitting curve of the OH(A) Boltzmann plot obtained
from the optical emission spectroscopy of a He discharge at 25 torr
[3]. The data was extracted from the work of Bruggeman et al. [3].
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ar
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ts
)

FIG. 5. Fitting curve of the OH(A) Boltzmann plot obtained
from the optical emission spectroscopy of a O2 discharge at 760 torr
(◦) and 25 torr (�) [3]. The data was extracted from the work of
Bruggeman et al. [3].

function contains the term and parameters, which accounts
for this effect.

In the present form, the model does not prescribe any
temperatures other than the assumed gas temperature T .
Therefore, we may readily identify the temperature in the
model function with the translational temperature of the buffer
gas. Some uncertainties may arise if the RET rate is not large
enough to overcome the newly born rotationally excited states
and the distribution becomes highly non-Boltzmann for all
states. However, this situation is more an exception than a rule.

Table II shows the parameters from the fittings presented
in Figs. 2–5. The temperatures can be determined with good
accuracy and the values are consistent with the ones deter-
mined by Bruggeman et al. [3] from the straight line fitting of
a subset of low rotational energy points. Actually, we used the
latter as the initial guess of the nonlinear fitting.

We also analyzed the data of Voráč et al. [14] and the
fitting curve is shown in Fig. 6. The fitting parameters are
shown in Table III. Here again, we found good agreement
between T and T1 determined by Voráč et al. [14]. In this case,
the concavity of the overpopulated tail is very clear, but we
observe more than one ripple. This behavior is consistent with
a description that considers two exothermic processes with
very different mean output energies. In this case, the model
function may be written as

N (E ) =
{
β1 +

∫ E

0
β2 exp

[
− (E ′ − β3)2

2β2
4

]
exp

(
E ′

β8

)

+ β5 exp

[
− (E ′ − β6)2

2β2
7

]
exp

(
E ′

β8

)
dE ′

}
e− E

β8 .

(25)

We truncated the data above 4.8 eV, because the dispersion
increases beyond that point. This case is especially interesting,
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TABLE II. Parameters obtained from the fitting procedure, for each data set extracted from the review of Bruggeman et al. [3]. Estimates
of errors are shown using parentheses notation [32]. Results from the two different curves of Fig. 5 are indicated using the shapes of the data
points (◦ or �).

Fig./Ref. β2(1/eV) β3(eV) β4(eV) T (103 K) T (103 K)a [3]

2/[30] 2.86(34) 4.68(15) 0.71(10) 2.88(12) –b

3/[31] 130.0(35) 4.27(35) 0.652(14) 1.380(18) 1.33(30)
4/[3] 250.3(35) 4.333(38) 0.779(25) 1.566(59) 1.94(30)
5(◦)/[3]c 0.4(14) ·104 7.6(32) 1.05(70) 2.715(25) 2.91(30)
5(�)/[3] 46.36(53) 4.617(19) 0.587(15) 1.897(49) 2.00(30)

aThe authors of the original work omitted the uncertainties for these values; we chose the highest error values reported in Ref. [3].
bIn this case Bruggeman et al. fits three temperatures, so any comparison is uncertain [3].
cThis data set is not complete enough for convergence; the parameters β2, β3, and β4 cannot be determined accurately.

because we may use the fitting parameters to infer which
exothermic processes are responsible for each ripple, as we
will see later.

It is in principle possible to determine κ0/k0 from fitted
values and compare it with experimental or theoretical values.
This would possibly allow us to determine the most probable
formation process in each case. However, as far as we are
concerned, there are no theoretical or experimental values
of κ0. We may find estimates of the total rate coefficient
of electron-ion dissociative recombination of water, which
accounts for all possible final states of OH [24]. This would
be insufficient, however, since we need a reliable estimate of
the branching ratio for the formation of OH(A). On the other
hand, we may find some rough estimates of k0 for many RET
processes in literature, but we would still need κ0. Besides, β3,
β4, and β5 parameters could be highly correlated so that our
estimate of κ0/k0 would be very likely imprecise.

Fortunately, we may use β3 (and β6, if it is the case) to
establish an educated guess about the formation processes
leading to overpopulation of excited states. The data of

Energy (eV)

) 
 (

ar
b.

 u
ni

ts
)

FIG. 6. Fitting curve of the OH(A) Boltzmann plot obtained
from the optical emission spectroscopy of a dielectric barrier dis-
charge (DBD) in water-argon interface at atmospheric pressure [14].
The data was extracted from the work of Voráč et al. [14].

Voráč et al. [14] presented two ripples, as we have just shown
(see Fig. 6), each of which is associated with an average
energy β3 = 4.180(6) eV and β6 = 4.644(19) eV. This dis-
charge was produced in an environment of argon saturated
with water vapor at atmospheric pressure. We may identify
two high rate coefficient exothermic reactions under such
circumstances: (i) water vapor dissociative recombination [re-
actions (4) and (5)]; (ii) and dissociation by metastable atoms
(Arm). The estimated reaction energies are �E ≈ 7.5 eV for
(i) and �E ≈ 6.6 eV for (ii). Both reactions may excite
OH(A), whose minimum electronic energy is ∼4.0 eV [1].
Reaction (i) is more energetic, so we may assign the second
ripple to water vapour dissociative recombination and the first
ripple to process (ii).

The proposed assignment is also consistent with the data
of Bruggeman et al. [3]. The estimated value of E0 in a water
bubble plasma was β3 = 4.68(25) eV (see Table II). This
value is compatible with β6 (Voráč et al. data), as expected,
since (i) is the most probable exothermic process in the water
bubble case.

We may also explain the formation of OH(A) on helium
discharges based on our analysis. The estimated values of E0

are mutually consistent, whether or not a small percentage of
N2 is present (see Table II). In this case, a probable mechanism
is charge exchange,

He+
2 + H2O −→ OH + HeH+ + He. (26)

The reaction energy is ∼5.6 eV, which is also large enough to
excite OH(A). The estimated E0 values are lower than β6, so
that a mechanism other than water vapor dissociative recom-

TABLE III. Parameters obtained from the fitting procedure for
the data extracted from the work of Voráč et al. [14]. Estimates of
errors are shown using parentheses notation [32].

Parameter Value

β2 0.01505(3) eV−1

β3 4.180(6) eV
β4 0.164(8) eV
β5 0.00576(13) eV−1

β6 4.644(19) eV
β7 0.207(22) eV
T 351(7) K
T1 [14] 343(28) K
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bination takes place in this case. Charge exchange seems to be
the only one that satisfies all the requisites.

V. CONCLUSION

In this work we developed a model to describe the depar-
ture from equilibrium of the OH(A) rotational level distribu-
tion generated in collisional plasmas. It assumes that OH(A)
rotational state densities are governed by a rate equation in-
cluding the balanced RET process with the buffer gas species
plus a single unbalanced exothermic reaction, which pumps
rotationally excited states into the system. Based on the for-
mer, we formally derived a function of energy that describes
the non-Boltzmann distribution. This function depends on
five parameters, each of which has a physical meaning. The
validity of the model was tested by means of the least-squares
fitting of data relating to different discharge conditions [3]. All
the tested data could be fitted satisfactorily using the present
theory.

The present method is based on a theory that takes into
account the processes of formation of OH(A) rotationally
excited states. It assumes a buffer gas in thermal equilibrium,
with a well-defined temperature. In the present formulation,
the theory does not prescribe other temperatures.

Using this theory we were able to describe the ripples
in experimentally obtained rotational distributions, which we

interpreted as the effect of rotationally excited states pumped
into the system due to formation processes. In a very in-
teresting case (Voráč et al. [14]) two ripples were clearly
distinguishable. From our analysis and previous knowledge
about buffer gas composition, we assigned a formation pro-
cess to each ripple. We also proposed the main mechanisms
leading to OH(A) formation in discharges at other condi-
tions [3].

The present theory is not complete because it neglects
some effects, which may be important depending on the
discharge conditions. One of them is the quenching effect,
which we briefly mentioned in Sec. II. Another is the electron
impact excitation of OH. In this case, the OH(A) rotational
distribution may be coupled to the electron energy distribu-
tion. A two-temperature distribution is possible in this case.
These effects could be included in a more general version of
this model. Another possible development is the treatment of
the nonstationary case, which may be used to understand sub-
nanosecond resolved spectra. We leave these as suggestions
for future investigations.
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