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Ionization potential depression and Pauli blocking in degenerate plasmas at extreme densities
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New facilities explore warm dense matter (WDM) at conditions with extreme densities (exceeding ten times
condensed matter densities) so that electrons are degenerate even at temperatures of 10–100 eV. Whereas in
the nondegenerate region correlation effects such as Debye screening are relevant for the ionization potential
depression (IPD), new effects have to be considered in degenerate plasmas. In addition to the Fock shift of the
self-energies, the bound-state Pauli blocking becomes important with increasing density. Standard approaches
to IPD such as Stewart-Pyatt and widely used opacity tables (e.g., OPAL) do not contain Pauli blocking effects
for bound states. The consideration of degeneracy effects leads to a reduction of the ionization potential and to a
higher degree of ionization. As an example, we present calculations for the ionization degree of carbon plasmas
at T = 100 eV and extreme densities up to 40 g/cm3, which are relevant to experiments that are currently
scheduled at the National Ignition Facility.
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I. INTRODUCTION

The availability of new experimental facilities allows ex-
ploration of matter under warm dense matter (WDM) condi-
tions [1], where strong correlations in the ionic system and
degeneracy of the electron system are of relevance. The region
of densities and temperatures that can be probed has been
extended toward multimegabar pressures and temperatures up
to tens of eV at synchrotrons, with pulsed power, high-power
optical, and free-electron lasers or other methods of high-
pressure experimental technique. There, strong correlations
and quantum effects have to be treated consistently, and
simple models and approximations are pushed beyond their
applicability limits.

Within the model of the partially ionized plasma, WDM
consists of free electrons (particle density ne) and ions ai with
different ionization states Zi and densities ni (including the
neutral atom with Z0 = 0). It is characterized by the ionization
degree Z̄ = ne/na, na = ∑

i ni being the particle density of
all nuclei. However, concepts such as the partially ionized
plasma and the ionization degree have to be analyzed and
applied with care, because medium effects that influence the
properties of isolated atoms and ions become more dominant
with increasing density, leading to shift and broadening of
energy levels and eventually to the disappearance of bound
states (Mott effect, see Ref. [2]). Nevertheless, the concept
of the composition of a partially ionized plasma is a use-
ful tool to investigate the consequences of the appearance
of bound states on thermodynamic properties, conductivity,
optical spectra, Thomson scattering spectra, and other phys-
ical properties. However, near the Mott transition where the
bound states merge with the continuum and are dissolved,

the subdivision into (weakly) bound states and free states,
including resonances, becomes questionable, and there exists
no clear criterion to subdivide the electron subsystem into
“free” and “bound” electrons. As discussed below, a many-
body theory provides a consistent approach to WDM allowing
for a systematic treatment of correlations including bound-
state formation.

The properties of atoms and ions immersed in a dense
plasma are modified owing to medium effects. This refers also
to the ionization energy Ii of the ion ai in the charge state Zi,
which at least is necessary to remove one electron from the
ground state to the continuum of free electrons. As a conse-
quence, the ionization potential Ii is modified compared to its
vacuum value I (0)

i . The ionization potential depression (IPD)
�Ii = I (0)

i − Ii is a particular property of WDM presently
under intense discussion. In the low-density, weakly coupled
limit, the shift of the energy of charged particles is given by
screening. For an ion (atom) with charge state Zi, the well-
known Debye result for the energy shifts (see, e.g., Refs. [3,4])
leads to a reduction of the ionization potential IDebye

i = I (0)
i −

�IDebye
i as compared to the unperturbed ionization energy

I (0)
i . For the global ionization process ai � ai+1 + e (further

particles must participate to realize conservation laws), we
find the IPD in Debye approximation

�IDebye
i = κclass(Zi + 1)

e2

4πε0
,

κ2
class = e2

ε0kBT

(∑
i

Z2
i ni + ne

)
. (1)
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A more general expression for the screening parameter (in-
verse Debye radius) κ = 1/rD which takes into account also
the degeneracy of electrons, is given below in Sec. II C.

At high densities where the ions are strongly correlated,
the ion sphere model, see Ref. [5], is more appropriate. In
contrast to the Debye approximation, the density dependence
of the shift is weaker (∝n1/3). Semiempirical interpolations
have been proposed by Ecker and Kröll (EK) [6] and Stewart
and Pyatt (SP) [7] which are frequently used for estimating
the IPD. In the SP approach, the IPD is given according to

�ISP
i = 3

2

(Zi + 1)e2

4πε0rIS
[(1 + s3)2/3 − s2], (2)

with the ion sphere radius rIS = [3Zi/(4πne)]1/3 and s =
(κrIS)−1. New experiments on high-density plasmas [8–14]
cannot be explained using any of these simple approxima-
tions, and the need for a better approach is obvious when
going to extreme conditions where the ions are strongly
coupled.

According to Crowley [15], the chemical picture has to be
replaced by a physical picture based on quantum statistical
many-body theory [3,4]. In this work, such a systematic
treatment of different plasma effects is worked out using
Green-function techniques. Alternatively, numerical simula-
tions such as path integral Monte Carlo (PIMC) simulations
[16,17] have been used to give a systematic approach to
properties of WDM. Because of the fermion sign problem,
PIMC simulations of two-component plasmas are restricted
presently to high temperatures and high densities.

The electron-ion interaction is strong in the low-
temperature region where bound-state formation is relevant.
A very successful and practicable approximation is density-
functional theory (DFT) for electronic structure calculations
in combination with molecular dynamics simulations for the
ions (DFT-MD). It has proven to predict results for WDM
states; see, e.g., Ref. [18]. Using standard expressions for
the exchange-correlation part of the (free) energy, detailed
properties of the electron system like the density of states
as well as the ionic structure factor are obtained. Electron-
electron correlations are treated approximately using appro-
priate expressions for the energy-density functional. For the
treatment of IPD using this formalism see Refs. [9–12].

Coming back to the quantum statistical approach using
Green-function techniques, the shift of the continuum is re-
lated to the single-particle self-energy. A systematic discus-
sion of the energy spectrum of hydrogen atoms in dense
plasmas within the Green function approach has been given
by Seidel et al. [19]. An improved treatment of the self-energy
using the Montroll-Ward expression, which gives the Debye
shift in the low-density limit, has been proposed recently by
Lin et al. [20]. Using the fluctuation-dissipation theorem, the
inverse dielectric function is related to the dynamical struc-
ture factor. With known expressions for the ion-ion structure
factor (SF), the calculated IPD show a better agreement with
experimental data.

If going to even higher densities, in addition to the strong
coupling of the ions, then the degeneracy of electrons becomes
important. Related effects, in particular Pauli blocking and
Fock shifts, are not included in the approaches to the IPD

[7,20] discussed so far. The electron degeneracy parameter is
defined as

� = T

TFermi
= 2mekBT

h̄2 (3π2ne)−2/3. (3)

In the region of the temperature-density plane, where ��1,
a classical description is no longer valid. Instead, quantum
effects, in particular the Pauli principle as a consequence
of the antisymmetry of the many-electron (fermonic) wave
function, lead to so-called exchange terms. The related
condition ne�

3
e � 1 with ne�

3
e = ne(2π h̄2/mekBT )3/2 =

8/(3π1/2)�−3/2 is well known as a condition where the clas-
sical gas approach is not applicable, and the quantum descrip-
tion based on the Fermi distribution function must be applied.
For instance, in carbon plasmas at T = 100 eV, the electrons
become degenerate at electron density ne ≈ 4 × 1024 cm−3

corresponding to a carbon mass density of 20 g cm−3. New
experiments are planned and will be performed, for instance,
at the National Ignition Facility (NIF) in Livermore to explore
WDM [21] at very high densities where plasmas become
degenerate even at temperatures of the order of 100 eV.

New physics becomes of importance in degenerate sys-
tems. Whereas at lower densities, in the classical region,
dynamical screening is the most important medium effect,
at extreme high densities exchange effects become of in-
creasing relevance. Note that SP is widely used to calculate
IPD and ionization at these extreme conditions, see also
Ref. [22]. However, degeneracy effects such as bound-state
Pauli blocking and Fock shifts are not consistently included.
Pauli blocking effects have been extensively investigated for
light clusters (2H, 3H, 3He, 4He) in nuclear matter [23], see
also Ref. [24], as a mechanism of hadron dissociation. For
hydrogen plasmas they have been discussed in Ref. [25].

In this work we give a systematic treatment of the effects
of degeneracy within a Green function approach and its
consequences for IPD in the region of very high densities
where standard approaches such as SP or widely used opacity
tables like OPAL [22] become inapplicable. In Sec. II we
consider the effective wave equation for few-particle (bound)
states in a plasma environment and discuss Pauli blocking
and Fock shifts. We apply these results to carbon plasmas at
high densities in Sec. III, where a significant increase of the
ionization degree compared to the frequently used SP model
is obtained. Pauli blocking effects are also of relevance for
K-edge shifting [26] to be discussed in Sec. IV.

II. IN-MEDIUM SCHRÖDINGER EQUATION

A. Low-density limit of the plasma composition

We consider an element a (e.g., carbon C in Sec. III) in
the WDM region. Let us first recall the low-density limit
where the in-medium effects can be neglected. The model
of partially ionized plasma (PIP) considers a plasma which
is composed of different ions (ai) with charge number Zi

at partial density ni (including neutral atoms), as well as
free electrons at density ne. The components of the PIP can
react, changing the state of excitation, including ionization
and recombination processes. Thermodynamic equilibrium is
described by relations between the corresponding chemical
potentials of the different components.
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The ideal electron chemical potential for arbitrary degen-
eracy follows from the expression for the density,

ne = ge

∫
d3 p

(2π )3

1

exp[β h̄2 p2/(2me) − βμe] + 1
, (4)

where β = 1/(kBT ). The factor ge = 2 accounts for spin
degeneracy. The Fermi distribution can be replaced by the
Boltzmann distribution in the classical case exp(βμe) � 1 so
that exp(βμe) ≈ ne(2πβ h̄2/me)3/2/2.

The density ni,n̂ of ions with its fully known quantum state
n̂, characterized by the complete set of quantum numbers
including total momentum, spin, angular momentum, etc.,
is given by the chemical potential μi,n̂. For instance, for
the two-body problem, the complete set of quantum num-
bers n̂ = {P, γ , ν} contains in addition to the center-of mass
momentum P and the channel quantum number γ further
intrinsic quantum numbers ν which describe the intrinsic
excitation. The channel quantum number γ contains, e.g., spin
and angular momentum depending on the observables which
are conserved in the two-body interaction.

In the low-density limit, where the interaction between
the particles and clusters can be neglected (with exception of
reacting collisions), the summation over the total momentum
P can be performed, and we obtain in thermodynamic equilib-
rium the well-known relation for the ideal gas,

ni,γ ,ν =
∫

d3P

(2π )3
e−β h̄2P2/(2M )+βμi,γ ,ν = 1

�3
eβμi,γ ,ν , (5)

where � = [2πβ h̄2/M]1/2 is the thermal wavelength of the
ions. We restrict to the region of thermodynamic parameters
where the ions can be treated classically; M is the ion mass
(dependence on charge number is neglected). The specific
chemical potentials μi,γ ,ν are gauged so that only the kinetic
energy of the cluster owing to the center-of-mass motion is
considered. The potential energy, in particular the binding
energies of ions, must be considered separately.

The description is simplified if we consider also the sum
over intrinsic degrees of freedom, similar to the spin degen-
eracy in the case of the electron component. With respect to
the ground state {γ , ν} = (0) of the ion ai with the chemical
potential μi for this ground state, the excitation energy is
denoted by Ei,γ ,ν (we assume that the energy of the intrin-
sic motion does not depend on P). Chemical equilibrium is
achieved if the condition μi,γ ,ν = μi + Ei,γ ,ν holds. For the
total contribution of ions ai with charge Zie we have

ni =
∑
γ ,ν

ni,γ ,ν = 1

�3

∑
γ ,ν

eβ(μi+Ei,γ ,ν ) = 1

�3

∑
γ

σi,γ (T )eβμi ,

(6)

with the intrinsic partition function in the channel γ ,

σi,γ (T ) =
∑

ν

eβEi,γ ,ν . (7)

In a further step, we can also perform the sum over the
different channels to obtain the full intrinsic partition function
σi(T ) = ∑

γ σi,γ (T ) of the ion ai so that

ni = 1

�3
σi(T )eβμi . (8)

Compared to the expression for the free electrons Eq. (4), the
spin summation is contained in the summation over γ , and the
intrinsic excitations are taken into account because the ion ai

is in general a composite particle. An important issue is that
the summation over ν in Eq. (6) has to be performed not only
over the bound states but also over the continuum of scattering
states.

For the summation over the continuum of scattering states,
the quantum number ν is replaced by the energy E of relative
motion. We denote the scattering phase shift in the channel
γ as δi,γ (E ). According to Beth and Uhlenbeck [27], for the
intrinsic partition function σi,γ (T ) the following expression is
derived

σi,γ (T ) =
bound∑

ν

(e−βEi,γ ,ν − 1) + 1

πkBT

∫ ∞

0
dE e−βEδi,γ (E ).

(9)

In particular, calculating the pressure as function of density
and temperature by integration of n(T, μi, μe), the result
Eq. (9) gives an exact expressions for the second virial coeffi-
cient [27]. More details concerning the intrinsic partition func-
tion in the low-density limit are presented in the Appendix.

Within a quantum statistical approach, a generalized Beth-
Uhlenbeck formula is derived which can be used also at
higher densities. It has a similar form like Eq. (9) but contains
medium-dependent quasiparticle energies Ei,γ ,ν and scattering
phase shifts δi,γ (E ), see Eq. (15) in Sec. II B. In this work, we
use this generalized Beth-Uhlenbeck formula to calculate the
composition and the ionization degree in WDM.

At this point, an important comment is necessary. Different
expressions are known for the intrinsic partition function
σi(T ); see the Appendix. They all give exact results for the
second virial coefficient, but the separation of a bound-state
part is difficult. Usually, only the bound-state contribution to
the intrinsic partition function σi(T ) is taken into account to
define the degree of ionization which, as a consequence, is
model dependent. In this work we propose another concept
shown in Sec. II B. The total density can be decomposed
into a free quasiparticle density and a correlated one. This
can be used to define the ionization degree, including the
contribution of scattering states. In particular, the correlation
part contains, in addition to contributions of the bound states,
also a contribution owing to resonances if they exist. No
clear physical criterion is known to define bound states near
the continuum edge, because there is no principal difference
between the physical properties of a broadened, weakly bound
state and a resonance state in the continuum.

Measured properties, e.g., the second virial coefficient and
the corresponding thermodynamic variables such as pressure
and free energy, are not model-dependent. The calculation
of these properties should take into account both, bound as
well as scattering states. They are independent of the artificial
subdivision into bound and scattering state contributions. A
cluster decomposition can be used to determine the single
quasiparticle contribution and few-particle correlations in a
model-independent way. This concept gives the possibility to
generalize the concept of the composition of partially ionized
plasmas (PIP) valid in the low-density limit to a region of
higher densities.
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Reactions in PIP include also ionization and recombina-
tion processes ai,γ ,ν + s � ai+1,γ ′,ν ′ + e + s′. The conserva-
tion laws (in particular of energy and momentum) demand,
for instance, the collision with a third particle s (spectator) or
the emission and absorption of a photon. In thermodynamical
equilibrium, these processes lead to a relation between the
chemical potentials μi introduced above for the ground state
of the corresponding ionic components of the PIP. Using
the notation Ii (ionization potential) for the lowest excitation
energy Ei,0 of the ionic ground state to become ionized, the
condition for chemical equilibrium reads

μi = μi+1 + μe + Ii. (10)

The bound-state energy −Ii (ground-state energy of the ion
ai relative to the continuum of ai+1 + e) can be implemented
as potential energy in the scaling of the chemical potentials
of each ion charge state. Inserting relation Eq. (10) into
Eq. (8), the Saha equation is obtained which determines the
concentration of the different components of the PIP.

If there are several ionization states Zi, then the repeated
use of Eq. (10) leads to a coupled system of Saha equations.
Finally, only the chemical potentials of the electrons and
the ionic nuclei remain, corresponding to the conserved total
number of electrons and nuclei of the WDM. Taking into ac-
count electrical neutrality, the thermodynamic state of WDM
is defined by the total mass density ntotal

a and the temperature
T . The composition of the PIP model, including the degree
of ionization Z̄ , follows from the solution of the coupled
system of Saha Eqs. (8) and (10). Results for the composition
within the PIP model in the low density region, neglecting
the interaction between the components, are well known.
According to the mass-action law, the ionization degree Z̄
increases with increasing T , but decreases with increasing
ntotal

a . Results for the ionization degree of the ideal carbon
plasma are given below in Fig. 2.

B. Quantum statistical approach for interacting plasmas

The definition of the composition of a dense system is not
free of model assumptions so that one should use a systematic
quantum statistical approach to calculate physical properties.
Nevertheless, the composition of a PIP and a corresponding
ionization degree are useful concepts for low-density plas-
mas, but have to be handled with care in the high-density
region. In the present work, we consider thermodynamics
to define the composition and the ionization degree of the
PIP. Instead of the contribution of free electrons to the total
density, free quasiparticles with medium-dependent energies
are considered. The remaining part of composition describes
correlations, in particular the contribution of bound states. A
quantum statistical approach to the composition of a PIP is
obtained from the equation of state which relates the total
densities of electrons ntotal

e and nuclei ntotal
a to the temperature

T = 1/(kBβ ) and the chemical potentials μe, μa,

ntotal
e (T, μe, μa) = 1



∑
1

∫ ∞

∞

dω

2π

1

eβ(ω−μe ) + 1
Ae(1, ω),

(11)

with the spectral function Ae(1, ω), the single-particle states
are denoted by wave number vector, and spin, |1〉 = |p1, σ1〉,
and  the system volume. A corresponding relation holds
also for ntotal

a . Both the variables μe, μa are related to each
other because of charge neutrality. With the charge number Za

of the nuclei, we have ntotal
e = Za ntotal

a . The relation Eq. (11)
gives an immediate access to the mass action law or, in plasma
physics, the Saha equation. Having the equations of state
μc(T, Za ntotal

a , ntotal
a ), c = a, e, at our disposal, thermody-

namic potentials such as the free energy F (T, Za ntotal
a , ntotal

a )
are obtained by integration. From this, all other thermody-
namic properties are derived. Note that also the density of
states is obtained from the spectral function.

The spectral function, which fulfills the normalization con-
dition

∫
dω
2π

Ae(1, ω) = 1, is related to the self-energy �e(1, z),

Ae(1, ω)= 2 Im �e(1, ω + i0)

[ω − Ee(1) − Re �e(1, ω)]2+[Im �e(1, ω+i0)]2
.

(12)

The self-energy, which is defined by the Dyson equa-
tion for the Green function as Ge(1, izν ) = 1/[izν − Ee(1) −
�e(1, izν )], can be calculated for given interaction using the
technique of Feynman’s diagrams. For small Im �e(1, ω +
i0), i.e., small damping of the quasiparticles, we have [28]

Ae(1, ω) ≈ 2π δ
[
ω − Equasi

e (1)
]

1 − d
dz Re �e(1, z)|z=Equasi

e −μe

− 2Im �e(1, ω + i0)
d

dω

P
ω + μe − Equasi

e (1)
,

(13)

with the quasiparticle energy

Equasi
e (1) = Ee(1) + Re �e(1, ω)|

ω=Equasi
e

= Ee(1) + �e(1)

(14)

and P denoting the principal value. For the self-energy
�e(1, z), a cluster decomposition can be performed, which
leads to mass action laws [29].

Considering two-particle contributions (T-matrix) to the
self-energy, we obtain the generalized Beth-Uhlenbeck for-
mula for the virial expansion in the quasiparticle picture
[28,30]

ntotal
e (T, μe, μa) = 1



∑
1

fe[Equasi(1)] + 1

�3

∑
i,γ

Zie
βμi

×
[

bound∑
ν

(e−βEi,γ ,ν − 1) + β

π

∫ ∞

0
dEe−βE

×
{
δi,γ (E ) − 1

2
sin[2δi,γ (E )]

}]
, (15)

fe(E ) = {exp[β(E − μe)] + 1}−1, and Ei,γ ,ν is the excitation
energy of the ion ai, channel γ . The contribution of free
electrons is replaced by the contribution of quasi-single par-
ticles with shifted energies Eq. (14). The contribution of the
scattering states is reduced (sin-term in the last expression)
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because part of the interaction in the continuum, in particular
the contribution of Born approximation, is already accounted
for introducing the quasisingle particle contribution [30,31].
As discussed in the following Sec. II C, the bound-state ener-
gies Ei,γ ,ν and scattering phase shifts δi,γ (E ) are modified by
the interaction with the surrounding plasma as well and are
calculated from an in-medium Schrödinger equation.

At this point we can perform a subdivision of the total elec-
tron density into a free part given by the (damped) quasisingle
particle contribution, and the remaining correlated density
contribution. This definition of a free-electron density ne and
the corresponding ionization degree is possible as long as the
single-electron spectral function Eqs. (12) and (13) show a
peak structure owing to the quasiparticle excitation. Within
a cluster decomposition of the self-energy, a similar decom-
position can also be performed for the higher order T-matrix
contributions; see the cluster-virial expansion discussed for
nuclear matter in Ref. [31].

As a consequence, the cluster contributions ni of the ion-
ization state Zi to the ion density and the density of electrons is

not restricted to only the bound-state contribution but contains
also continuum contributions given in terms of the scattering
phase shifts as shown in the second part of the right-hand side
of Eq. (15).

C. In-medium Schrödinger equation and density effects

The ideal plasma with the unperturbed energies Ei,γ ,ν of
the bound states and the kinetic energies of the free states
cannot describe plasmas at high densities where interaction
effects are important. For simplicity we consider here the
ionization degree of carbon at very high densities and/or
temperatures where the carbon atoms are either fully ionized
or in the C5+ state, i.e., with one bound electron.

We consider the in-medium two-particle problem of the
formation of the C5+ state, described by the two-particle
in-medium Schrödinger equation. A Green function approach
[3,4] leads to the following two-particle equation (quantum
number n̂ = {P, γ , ν}, total momentum P, spin variables not
given explicitly)

[Ee(p) + �e(p, z) + EC6+ (k) + �C6+ (k, z)]ψ5+
n̂ (p, k) + [1 − fe(p) ∓ fC6+ (k)]

∑
q

V eff
C6+,e(p, k, q, z)ψ5+

n̂ (p + q, k − q)

= E5+
n̂ ψ5+

n̂ (p, k), (16)

with the effective interaction

V eff
C6+,e(1, 2, q, z) = VC6+,e(q)

{
1 −

∫ ∞

−∞

dω

π
Im ε−1(q, ω + i0)[nB(ω) + 1]

[
1

z − ω − EC6+ (1) − Ee(2 − q)

+ 1

z − ω − EC6+ (1 + q) − Ee(2)

]}
. (17)

We neglected higher-order terms ∝ fc(p) = {exp[β(Ec(p) −
μc)] ± 1}−1, the Fermi/Bose function for c = e, C6+.
VC6+,e(q) = −Z6e2/ε0q2 is the Coulomb interaction. Without
any chemical potential, nB(ω) = [exp(βω) − 1]−1 is the Bose
distribution function.

The in-medium Schrödinger Eq. (16) contains the contribu-
tion of self-energies �c as well as the contribution of effective
interaction including Pauli blocking. As a consequence, the
energy eigenvalues E5+

n̂ of bound states as well as of contin-
uum states are dependent on density and temperature of the
surrounding plasma. These “dressed” states are denoted as
quasiparticle excitations. The Mott effect is the disappearance
of a bound state if the ionization potential I5+

γ ,ν = E5+
cont − E5+

γ ,ν

goes to zero (Mott density). The continuum edge E5+
cont =

�C6+ (k = 0) + �e(p = 0) is given by the quasiparticle shifts
Eq. (14). The bound-state energy E5+

γ ,ν is a function of tem-
perature and density. The bound-state part of the intrinsic
partition function Eqs. (6), (9), and (15) has the form

σ bound
C5+ (T ) =

bound∑
γ ,ν

[
eβI5+

γ ,ν − 1
]
θ
(
I5+
γ ,ν

)
,

θ (x) =
{

1 if x > 0,

0 else,

}
, (18)

with the channel γ (spin, angular momentum) and the intrinsic
excitation ν. Later on we use this approximation for the gen-
eralized Beth-Uhlenbeck (BU) Eq. (15) to define the density
contribution of bound states. As a function of temperature and
density, the intrinsic partition function Eq. (18) is continuous
at the Mott density. A more detailed approach based on in-
medium scattering phase shifts, see last term in Eq. (15),
can also take into account resonances in the continuum. In
this work we neglect the contribution of in-medium scattering
phase shifts. In the case of a separable potential, the phase
shifts are available, see Ref. [32], so that the contribution to
the intrinsic partition function can be evaluated. This issue
may be subject of future investigations.

In the zero density limit where in-medium effects are ab-
sent, Eq. (16) reproduces the Schrödinger equation for the hy-
drogenlike atom. Density effects arising from the dynamical
self-energy �c(p, z), the Pauli blocking (1 − fe ∓ fC6+ ), and
the dynamical screening expressed by the dielectric function
ε(q, z) in Eq. (17) have to be treated in appropriate approxi-
mations. As mentioned above, the carbon ions can be treated
classically so that the contribution ∓ fC6+ (k) can be dropped.
The Pauli blocking becomes relevant if the free electrons
are degenerate. The contribution to the shift of bound-state
energies is discussed in Sec. II D.

Using the technique of Feynman diagrams, systematic
approaches for the dielectric function ε(q, z) can be found [3].
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A standard expression for the dielectric function is the random
phase approximation (RPA) where the polarization function
is calculated in lowest order with respect to the interac-
tion. In the static limit, the effective interaction Eq. (17)
gives the Debye result V Debye

C6+,e (1, 2, q, z) = VC6+,e(q)/(1 +
κ2/q2) with the Debye screening parameter κ2 = ∑

i Z2
i e2ni/

(ε0kBT ) + κ2
e ,

κ2
e = 4π

kBT
2

(
2π h̄2

mekBT

)−3/2
e2

4πε0

1√
π

∫ ∞

0
dt

t−1/2

et−βμe + 1

= 12π5/2 e2

4πε0
neβ

F−1/2(βμe)

(βEF )3/2
. (19)

The expression for the Debye screening parameter κ in-
cludes the contribution of free electrons (κe) which eventually
become degenerate. Then, in contrast to the classical limit
Eq. (1), the electron contribution is given by a Fermi integral
which, in the strongly degenerate limit, yields the Thomas-
Fermi screening length instead of the Debye screening length;
see Refs. [3,4,22]. The electron chemical potential μe is given
by Eq. (4).

For the dynamical self-energies �e(p, z), �C6+ (k, z) oc-
curring in Eq. (16), a systematic expansion is possible in terms
of Feynman diagrams [3]. For the electron quasiparticle shift
�e(p) Eq. (14) the expansion �e(p) = �Fock

e (p) + �corr
e (p)

results. As lowest order with respect to interaction, the Fock
shift for the electrons

�Fock
e (p) = −

∑
q

e2

ε0q2
fe(p + q) (20)

is obtained (the Hartree term vanishes because of charge
neutrality of the plasma). This shift is a typical quantum effect.
Because the ions are treated classically under the conditions
considered here, the corresponding contribution disappears.
The further treatment of the electron contribution Eq. (20) is
postponed to the following Sec. II D.

We consider in this section the next order of the expansion
of �e(p), the correlation shift (Montroll-Ward shift) �corr

e (p).
It describes the formation of a screening cloud and has been
intensely investigated. In the so-called GW approximation,
the RPA expression for the screened interaction can be used,
and we find the Debye shift

�corr
e (p) = − κe2

8πε0
(21)

in the low-density, nondegenerate limit. Because this is a clas-
sical effect, describing the formation of the screening cloud
as solution of the Poisson-Boltzmann equation, it applies also
to the ions ai, which are shifted according to the charge
number Zi,

�corr
i (p) = −κZ2

i e2

8πε0
, (22)

in particular, Z6 = 6 for C6+. With these expressions, the IPD
in Debye approximation Eq. (1) is found for the ionization
and recombination reaction ai + s � ai+1 + e + s′ discussed
above.

It is an advantage of the many-particle approach that sys-
tematic improvements can be given. The correlation shift has

the general form

Re �corr
c (p, ω) = −P

∫
d3q

(2π )3

∫
dω′

π
Vcc(q)

× Im ε−1(q, ω′+i0)
1 + nB (ω′)

ω − ω′ − Ec(p + q)/h̄
.

(23)

P denotes the principal value, the index c denotes electron as
well as, for our system here, the different carbon ions. Instead
of approximating the dielectric function by the RPA expres-
sion, which gives the Debye result, we can use the fluctuation-
dissipation theorem which relates the inverse dielectric func-
tion to the dynamical SF [20]. For a two-component plasma
(free electrons with charge −e, ions with effective charge Z̄e
and charge neutrality Z̄ni = ne), the imaginary part of the
inverse dielectric function can be expressed via the dynamical
SFs, see also Ref. [33],

Im ε−1(q, ω + i0) = e2

ε0 q2

π

h̄ [1 + nB (ω)]
[Z̄2 niSii (q, ω)

− 2Z̄
√

neniSei(q, ω) + neSee(q, ω)].

(24)

After using a plasmon-pole approximation for S(q, ω)
[20,34], the dynamical response of the system is determined
by the plasmon pole frequency ωpl = (

∑
c e2Z2

c nc/ε0mc)1/2.
Then, the integral over the frequency in Eq. (23) is executed.
Accounting for nonlinear screening [20], the ionic contribu-
tion to the single-particle shift is related to the static SF

�SF,ion−ion
i = 3(Zi + 1)e2�i

2π2ε0rWS

√
(9π/4)2/3 + 3�i

∫ ∞

0

dq

q2
SZZ

ii (q),

(25)

with rWS = (4πni )−1/3 and �i = Z2
i e2/(4πε0kBTrWS). We

can use known expressions for the SF such as the approxi-
mation given in Ref. [35] for recent calculations [20]. As ex-
plained there, an improved description of experiments [8–14]
has been obtained. For future work [36], HNC calculations
or DFT-MD simulations can be applied to implement the
structure factor in Eq. (25).

Instead of the phenomenological SP Eq. (2), the IPD is
related to the dynamical ion structure factor. Within the Green
function approach, Eq. (25) can be improved in a systematic
way considering higher order diagrams. In particular, the
electronic contribution to the correlated part of the self-energy
shift �corr

e (p) can be improved. Expressions for the Montroll-
Ward term are found, e.g., in Ref. [3].

In this work, we are not concerned with the improvement of
the correlated part of the self-energies that will be considered
in a forthcoming work, see also Refs. [3,4,20,37,38], but focus
on the effects of degeneracy. As discussed above, the Debye
approximation for the correlation shift can be replaced by the
Stewart-Pyatt expression or more advanced approximations
based on the dynamical structure factor if going to high densi-
ties. We consider here the SP approximation Eq. (2) frequently
used in IPD calculations, to have a result of reference. Results
for the corresponding IPD are shown in Fig. 1 below, where
also the comparison with SF calculations [20] is given.
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D. Degeneracy effects

To investigate the effects of degeneracy, i.e., Pauli blocking
and Fock shifts, we simplify the two-particle Eq. (16). The
ions are considered as nondegenerate so that their contribution

to the Pauli blocking term is dropped. In addition, we replace
the dynamical screening by a statically screened (Debye)
interaction V scr

C6+,e(q) and introduce the quasiparticle shifts
Eq. (14):

[Ee(p) + �e(p) + EC6+ (k) + �C6+ (k)]ψ5+
n̂ (p, k) + [1 − fe(p)]

∑
q

V scr
C6+,e(q)ψ5+

n̂ (p + q, k − q) = E5+
n̂ ψ5+

n̂ (p, k). (26)

In adiabatic approximation, the motion of electrons is
separated from the motion of ions. More systematically, we
introduce Jacobian coordinates, the center-of mass momen-
tum P, and the relative momentum prel. We use a separation
ansatz for the wave function ψ5+

n̂ (p, k) = �n̂(P)φn̂(prel ). The
center-of-mass motion is given by a plane wave. In limit
me � M, where prel ≈ p, we obtain for the relative motion

[Ee(p) + �e(p)]φn̂(p) + [1 − fe(p)]
∑

q

V scr
C6+,e(q)φn̂(p + q)

= E5+
n̂,relφn̂(p), (27)

so that E5+
n̂ = EC6+ (k) + �C6+ (k) + E5+

n̂,rel.
The Fock shift of an electron with momentum p is given

by Eq. (20). In the limit of strong degeneracy, T � TF, we
approximate the Fermi distribution function as step function,
fe(p) = θ (pF − p). The Fermi wave number follows as pF =

1023 1024 1025 1026 1027

free electron density ne [cm-3]
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structure factor
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FIG. 1. Ionization potential depression (IPD) of C5+ as function
of the free-electron density ne at fixed temperature T = 100 eV. The
Fock shift of the continuum edge (cont. Fock), Eq. (20) at p = 0,
together with the Stewart-Pyatt (SP) IPD (2) yields the shift of the
continuum (cont. Fock+SP). For the ion C5+ in its ground state, the
Pauli shift Eq. (32) (Pauli) and the bound-state Fock shift Eq. (30)
(bound Fock) as well as the sum of both (bound Fock+Pauli) are
presented. For comparison, the IPD obtained from the ionic structure
factor shift of the continuum (SF, ions) as improvement of the SP
model [20] is also shown. The Mott transition is predicted at ne =
1.3 × 1025 cm−3. Upper scale: Carbon mass density.

(3π2ne)1/3. At zero temperature, we find for the Fock shift

�Fock
e,T =0(p) = − e2

4πε0

1

π p
Re

[
p pF+(

p2
F − p2

)
arctan

(
p

pF

)]
.

(28)

The contribution of the Fock shift �Fock
e (0) to the shift

of the continuum edge is given by the value at p = 0.
At T = 0 we have for the shift of the continuum edge
�Fock

e,T =0(0) = − 2
π

e2

4πε0
pF . At finite T , the Fock shift of the

continuum edge, Eq. (20) at p = 0, is calculated numerically.
Considering the bound states of the in-medium

Schrödinger Eq. (26), the ions a5, two contributions arise
owing to the electron degeneracy: the Fock shift Eq. (20)
which modifies the kinetic energy in the Schrödinger equation
as well as the Pauli blocking term in front of the interaction
potential. Because the Fermi function occurring in both
contributions depends on T and ne, the solution E5+

n of the
Schrödinger Eq. (26) also depends on these parameters. Both
contributions to the shift of E5+

n , the Pauli blocking and the
Fock shift, are found solving Eq. (27) for the relative motion.

As an example we give the shift �0 = �bound, Fock
0 +

�bound, Pauli
0 of the ground-state energy E5+

0 in perturba-
tion theory. The two-particle Schrödinger equation with-
out any medium corrections has the well-known hydro-
genlike ground-state solution E (Z−1)+

0 = −Z2 e4

(4πε0 )2
me

2h̄2 =
−13.602 Z2 eV with Z = 6 for the case considered here, and

φ0(p) = 8
√

πa3
Z

1(
1 + a2

Z p2
)2 , ψ0(r) = 1√

πa3
Z

e−r/aZ ,

(29)

aZ = 4πε0
Ze2

h̄2

me
= aB/Z .

The Fock shift �bound, Fock
0 of the bound-state energy results

in perturbation theory as average of the momentum-dependent
Fock shift Eq. (20) with this unperturbed wave function
Eq. (29),

�bound, Fock
0 = −

∑
p,q

φ2
0 (p)

e2

ε0q2
fe(p + q)

= −32

π

∫ ∞

0
d p

p2a3
Z(

1 + a2
Z p2

)4 �Fock
e (p). (30)

An explicit expression can be given for zero temperature
(T = 0),

�bound, Fock
0,T =0 = − e2

4πε0

2

πaZ

5a3
Z p3

F + 3a5
Z p5

F(
a2

Z p2
F + 1

)2 . (31)
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Compared to the Fock shift �Fock
e (0) of the continuum edge,

the bound-state Fock shift �bound, Fock
0 is determined by the

momentum-dependent Fock shift Eq. (20). The latter becomes
smaller near the Fermi momentum, so that the bound-state
Fock shift is also smaller compared to the Fock shift of the
continuum edge.

The Pauli blocking shift is given by

�bound, Pauli
0 = −

∑
p,q

φ0(p) fe(p)VC6+,e(q)φ0(p + q)

= Ze2

4πε0

16a2
Z

π

∫ ∞

0
fe(p)

p2d p(
1 + a2

Z p2
)3 , (32)

which becomes at T = 0

�bound, Pauli
0,T =0 = Ze2

4πε0

2

πaZ

[
aZ pF

(
a2

Z p2
F − 1

)
(
a2

Z p2
F + 1

)2 +arctan(aZ pF)

]
.

(33)

At finite temperatures, the integrals in Eqs. (30) and (32) are
calculated numerically. Note that both effects, the Fock shift
and the Pauli shift, have different sign and compete partially.
Calculations are shown in Sec. III; see Fig. 1.

III. RESULTS FOR DEGENERATE PLASMAS

A. Pauli blocking in carbon plasmas

We present results for the ionization degree of carbon
plasmas in the WDM regime. The composition of the carbon
plasma for given mass density and temperature is determined
by the abundances of ions Ci+ with different charge Zie, Zi =
0, 1, . . . , 6 (including the neutral atom). The composition of
the partially ionized plasma (PIP) is described by the partial
densities, Eq. (6), obtained in Sec. II B.

To start with we briefly recall the ideal PIP model
neglecting any medium effects. This approximation is
applicable in the low-density region where we have nearly free
motion of the constituents of the PIP. In this limiting case, we
consider noninteracting ions Ci+ in its ground state and bound
excited states. The electrons which are not bound to ions are
considered as free electrons. The densities of the different
components of the plasma are connected by the neutrality
condition

∑
i Zini = ne. The ionization energies Ii necessary

to separate an electron from the carbon ion Ci+ are known
(I (0)

0 = 11.2603 eV, I (0)
1 = 24.3833 eV, I (0)

2 = 47.8878 eV,
I (0)
3 = 64.4939 eV, I (0)

4 = 392.087 eV, I (0)
5 = 489.9933 eV).

In addition, the excited states must be included, data can
be found in Ref. [39]. To have convergent results, the
Planck-Larkin Eq. (A6) is used for the intrinsic partition
function. The solution of the Saha equations for the partial
densities of different ions (ground state and excited state)
gives the average ionization degree Z̄ and the corresponding
free-electron density ne = Z̄nC as function of the temperature
T and the density of carbon nuclei nC in the charge-neutral
equilibrium state. Results for Z̄ are shown below in Fig. 2
(“ideal mixture”) for T1 = 100 eV as function of ne. The
convergent Planck-Larkin intrinsic partition functions are [39]
σ PL

5 (T1) = 266.241, σ PL
4 (T1) = 54.197, σ PL

3 (T1) = 1.6889,
σ PL

2 (T1) = 1.2345, σ PL
1 (T1) = 0.5459, and σ PL

0 (T1) =
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FIG. 2. Average ionization degree Z̄ of carbon as function of the
free-electron density ne for temperature T = 100 eV. Ideal mixture
with electron treated classically (ideal,class) and as Fermi gas (ideal,
deg), OPAL and Stewart/Pyatt (BU,SP) are also shown. BU denotes
the use of the Beth-Uhlenbeck Eqs. (15) and (18) for the intrinsic
partition function, SP the Stewart-Pyatt contribution Eq. (2). In
addition the SP Eq. (2), the full IPD (BU,SP,Pauli) contains the Fock
shift of the continuum Eq. (20) at p = 0 as well as the Fock shift of
the bound-state Eq. (30) and the Pauli blocking Eq. (32).

0.08885. For the ideal electron gas, the classical
approximation has been compared to the ideal Fermi gas
Eq. (4), but effects of degeneracy are small in the region of
density and temperature considered there. However, an ideal,
noninteracting plasma model with occasional reactions to
establish chemical equilibrium is not appropriate for a dense
plasma where interactions have to be taken into account.

We now discuss the in-medium effects such as Debye
screening and its improvements by SP and SF as well as Pauli
blocking and Fock shifts, which determine the quasiparticle
energies in the dense plasma for the hydrogenlike ion C5+.
Results for the different contributions to the in-medium shifts
are shown for T = 100 eV as function of the free-electron
density ne in Fig. 1. For the ground state of C5+, the ionization
potential in free space is I (0)

5 = 489.9933 eV. It is reduced
by screening. Improving the Debye result for the correlation
part, the SP approximation Eq. (2) gives a Mott density
nSP

e,Mott = 6.89 × 1025 cm−3 where the bound state merges
with the continuum. Within the quantum statistical approach
[20] determined by the ionic structure factor (“SF, ions”), the
IPD is larger, see Fig. 1. The corresponding Mott density for
T = 100 eV follows as nSF

e,Mott = 3.78 × 1025 cm−3.
With increasing density, the effects of degeneracy of

the electron subsystem become of increasing importance.
Whereas the Fock shifts �Fock

e (0) Eq. (20) of the continuum
edge and, even more, the Fock shift of the bound-state Eq. (30)
remain small, the Pauli blocking Eq. (32) becomes relevant
for the dissolution of the bound state. Taking into account all
effects of degeneracy, the Mott density is further reduced and
the value ndeg

e,Mott = 1.28 × 1025 cm−3 is obtained. Note that
the condition � = 1, where the free-electron system becomes
degenerate, for a temperature of T = 100 eV is satisfied at
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an electron density ndeg
e = 4 × 1024 cm−3, which corresponds

to a mass density of 20 g cm−3 for a carbon plasma as
mentioned in the Introduction. Above this density, degeneracy
effects, in particular Pauli blocking and Fock shifts, have to
be considered. Similar results are obtained also for the other
ionization states of carbon.

In conclusion, the ionization potential Ii = I (0)
i + �corr

i +
�

deg
i contains contributions due to correlations as well as

degeneracy. At low densities the composition of the partially
ionized plasma is well described using the IPD in Debye
approximation or its improved versions, the semi-empirical
SP or the quantum statistical SF approaches, which also in-
clude strong correlation effects. The effects of degeneracy, in
particular Pauli blocking, become of relevance in the region of
higher densities where the free-electron system is degenerate,
� � 1. The region, where the plasma is nearly fully ionized,
is strongly modified if Pauli blocking is taken into account.

To demonstrate the effect of Pauli blocking on Z̄ , we
performed calculations of the ionization degree of carbon as
function of the free-electron density at a fixed temperature
T = 100 eV, see Fig. 2. Arbitrary ionization stages Zi of
carbon as well as excited states according to the NIST tables
[39] have been included. For the contributions of free and
bound electrons to the density, we use the definition Eq. (15)
but neglect the contribution of scattering states Eq. (18).
The term −1 in the bound-state contribution makes this part
continuous near the Mott density where the bound state dis-
appears. It compensates partly the contribution of scattering
states according to the Levinson theorem. Together with the
extraction of the Born approximation, which is transferred
to the quasiparticle shift [28,30], we assume that the contin-
uum contribution to the correlated density (second term of
the right-hand side of Eq. (15) becomes small and can be
neglected. For further discussion, see Sec. IV.

The calculation of the intrinsic partition functions and the
corresponding partial densities has been performed in a self-
consistent way. Starting from the given T and the number
density nC of carbon nuclei, the free-electron density ne,
the electron chemical potential, and the shifts are calculated,
adopting a value Z̄ of the ionization degree. The Fock and
Pauli shifts are immediately calculated with the free-electron
density. For the Stewart-Pyatt shift Eq. (2) we need, in addi-
tion to the free-electron density, also the screening parameter
κ Eqs. (1) and (19), where

∑
i Z2

i ni ≈ Z̄
∑

i Zini has been
used. Choosing the density of ions C6+, the partial densities
of all ion states are calculated solving the Saha Eqs. (8) and
(10) with these shifts, as well as the free-electron density and
the ionization degree. Then, the self-consistent solution for
Z̄ was found. After that, the density of ions C6+ is changed
to reproduce the given carbon number density. Finally, κ is
calculated consistently with the partial densities according
Eqs. (1) and (19). As a result, for given T and nC , we found the
densities of all components of the partially ionized plasma, as
well as the ionization degree Z̄ .

Neglecting all in-medium effects, the approximation of an
ideal mixture discussed above becomes increasingly worse
when ne exceeds the value 1023 cm−3. The account of IPD
according to SP (denoted as “BU, SP” in Fig. 2) gives an
ionization degree of about Z̄ = 4 even at very high densities.
This is also obtained from OPAL [22]. These values are used

1023 1024 1025 1026 1027

free electron density ne [cm-3]

102

103

104

T 
[e

V
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ideal
BU,ideal
BU,SP (class)
BU,SP (deg)
BU,SP,Pauli

ionization degree 5.9

Carbon plasma

ideal mixture

Beth-Uhlenbeck

BU, SP, deg.
BU,SP, class.

BU,SP,Pauli

FIG. 3. Temperatures for the ionization degree of Z̄ = 5.9
(isoionization lines) using different approximations for the IPD.
T ideal

5.9 for the ideal mixture is compared with the ideal Beth-
Uhlenbeck expression T BU,ideal

5.9 Eqs. (15) and (18), neglecting any
medium effects. The account of the correlation shifts for the IPD,
given by the Stewart-Pyatt model Eq. (2), yields the graph T BU,SP,class

5.9

for a classical free-electron gas or T BU,SP,deg
5.9 for the Fermi gas. In

addition to the SP shift, the full IPD contains the Fock shift of
the continuum Eq. (20), p = 0, as well as the Fock shift of the
bound-state Eq. (30) and the Pauli blocking Eq. (32). It gives the
graph T BU,SP,Pauli

5.9 .

when measurements have been compared to theory [40,41];
see Sec. III B. More recent quantum statistical approaches
[20] which relate the IPD to the ionic structure factor give a
slightly higher value for the ionization degree not shown here.

The ionization degree Z̄ is found to be further increased
if degeneracy effects, the Fock shift and the Pauli blocking,
are taken into account. The corresponding ionization degree is
shown in Fig. 2 (denoted as “BU, SP, Pauli”). The value Z̄ = 6
appears for densities larger than the Mott density ndeg

e,Mott =
1.29 × 1025 cm−3, i.e., at a much lower density than predicted
by the SP model. The Mott effect gives full ionization if
all bound states merge with the continuum of delocalized
electron states. This is clearly seen using the virial form
Eq. (15) of the intrinsic partition function, if only bound states
are taken into account.

Of interest are the properties of WDM at high densities
where the plasma becomes highly ionized. Because there is
no sharp transition to the fully ionized plasma, we consider
the value Z̄ = 5.9 for the ionization degree as a nearly fully
ionized carbon plasma with only 10 percent hydrogen-like
carbon ions. This concentration is decreasing with increasing
temperature. In Fig. 3, we show graphs of constant ionization
degree Z̄ = 5.9 (isoionization line) in the phase diagram T, nC

(or T, ne with the relation ne = 5.9 nC) for which the plasma
is nearly fully ionized. Isoionization lines with Z̄ = 5.9 in
carbon are calculated for different approximations.

For an ideal mixture of noninteracting components in
chemical equilibrium, treating the electrons classically, the
temperature T ideal

Z̄=5.9(ne) increases with increasing density. This
behavior is only slightly shifted to lower temperatures if the
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TABLE I. Ionization degree Z̄ of carbon at WDM conditions. The treatment within the Stewart-Pyatt (index SP) approach is compared to
a treatment where also the effects of degeneracy (index SP, deg) are taken into account. In addition to the ionization degrees in the respective
approaches also the SP contribution �I5,SP

SP, deg to the shift of the ionization potential as well as the contribution owing to the effects of degeneracy

�I5,deg
SP, deg are given, which contains in addition to the Fock shifts Eqs. (20) and (30) also the Pauli blocking term Eq. (32). � = T/TFermi is the

electron degeneracy parameter Eq. (3). For T = 8 eV (strong degeneracy), the Mott condition Eq. (18) with Ii,γ ,ν + EF > 0 has been used. The
different contributions for the energy shifts for the bottom line are visualized in Fig. 1 for ne ≈ 1025 cm−3, just before the Mott transition.

T ρ nC �I5
SP �I5,SP

SP, deg �I5,deg
SP, deg

Material [eV] [g cm−3] [cm−3] Z̄exp Z̄SP [eV] Z̄SP, deg [eV] [eV] �

CH [40] 8 ± 1 4.5 ± 0.5 2.08 × 1023 4 ± 0.5 2.04 90.47 4.0 114.02 54.45 0.213
CH [41] 86 6.74 3.12 × 1023 4.9 4.18 125.8 4.26 126.74 38.53 1.69

C 8 4.15 2.08 × 1023 — 2.88 101.7 4.0 113.9 46.9 0.247
C 86 6.22 3.12 × 1023 — 4.21 125.7 4.29 126.6 31.8 1.94
C 100 40 2.01 × 1024 — 4.14 236.9 5.19 258.1 182.4 0.574

IPD according to SP Eq. (2) is included. Two corrections
can immediately be done: the quantum description of the
electron gas according to Eq. (4) which determines the rela-
tion between density and chemical potential necessary for the
chemical equilibrium Eq. (10), and the term −1 occurring in
the Beth-Uhlenbeck Eq. (15). Neglecting the IPD, the bound
states are not dissolved with increasing density. As compared
to the “ideal” curve T ideal

5.9 , the more consistent T BU,ideal
5.9 which

contains the Beth-Uhlenbeck form Eq. (18) of the intrinsic
partition function, is shifted to lower values, but also increases
monotonically with density.

According to Eq. (18), only bound states are taken into ac-
count, i.e., the ionization potential of the bound state must be
positive. The Mott effect becomes visible if the IPD compen-
sates the vacuum ionization potential I (0)

i . The corresponding
T BU,SP,deg.

5.9 in Fig. 3 using the Stewart-Pyatt approximation for
the IPD shows a strong deviation from the other curves. (Note
that the classical result for the electron chemical potential used
for T BU,SP,class.

5.9 gives only small deviations.) In particular, for
electron densities higher than the Mott density nSP

e,Mott given
above, all electrons are free, and the isoionization curve for
T BU,SP,deg

5.9 abruptly goes to zero. Even larger is the effect if
exchange terms, in particular Pauli blocking, are included.
The curve T BU,SP,Pauli

5.9 in Fig. 3 indicates that the region of
full ionization is reached already at the Mott density ndeg

e,Mott
consistent with the results shown in Fig. 1.

The strong influence of the IPD on the onset of full
ionization, where T5.9 is shifted to lower temperatures if Pauli
blocking is taken into account, leads to higher values for the
average degree of ionization Z̄ . Higher values of Z̄ have been
observed in experiments [40,41] when comparing to OPAL
[22], which neglects degeneracy effects such as bound-state
Pauli blocking.

B. Comparison to other approaches and experiments

The ionization degree of carbon at T = 100 eV has also
been considered in Ref. [42]. The calculations used an average
atom model with different boundary conditions to mimic a
band width, and the bound-state contribution was defined
by the part of the band below the energy of the continuum
edge. Qualitatively, the results are similar to the results for
the ionization degree shown in Fig. 2, denoted as “BU, SP,

Pauli,” and full ionization is predicted near the Mott density.
Similar calculations have been performed recently for lower
temperatures and densities in Ref. [43]. It is not clear to which
extent correlation and degeneracy effects obtained from a
systematic quantum statistical approach are already contained
in those semiempirical approaches.

Recently, WDM has been treated successfully within DFT
approaches, see, e.g., Refs. [44,45]. Calculations for carbon
plasmas [26,53] have been performed, where results for the
pressure and the internal energy are obtained. As an approach
that is very appropriate to investigate condensed matter, the
DFT formalism also describes Pauli blocking and the for-
mation of band structures. However, composition, ionization
degree Z̄ , and IPD are not directly accessible within this
approach; see also Sec. IV.

Carbon ionization Z̄ at WDM conditions was measured in
experiments [40,41] with CH using x-ray Thomson scattering;
see Table I. The observed ionization degree of carbon ions was
higher than the predictions of SP. In Ref. [41], the mean charge
Z̄ = 4.9 was measured at density 6.7 g/cm3 and T = 86 eV,
which is higher than the prediction Z̄ = 4.18 from SP. This
discrepancy is only partly resolved using the SF approach
[20] for this two-component plasma in the simulations where
a value Z̄ = 4.79 has been reported. In contrast to pure carbon
plasmas, ionic structure factors SCC, SCH, SHH for the different
components have to be taken into account, and an increase
of the ionization degree was obtained. Further work is in
progress [36].

Taking Pauli blocking into account leads to a further in-
crease of the ionization degree. We show some results for the
energy shifts and ionization degree for pure carbon plasmas
as well as for CH plasmas in Table I. The temperatures T
and mass densities ρ are in accordance with the parameter
values given in the experiments of Refs. [40,41]. The number
densities nC of carbon atoms are calculated with the molar
mass number 12 for C and 13 for CH. We treat the CH plasma
in a simple approximation where the H component is fully
dissociated into a proton and an electron. Both the additional
proton and electron will change the screening parameter κ by
adding the proton to the ionic contribution in Eq. (1), and
it will change the free-electron density as ne = (Z̄ + 1)nC .
The influence of the additional electron on the chemical
equilibrium between the different carbon ions, as expressed
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by the coupled Saha equations, is complex and is calculated
self-consistently. The increase of the screening parameter
κ leads to an increase of the ionization degree. However,
the additional electrons owing to the ionized H atoms can
partially enter the ionic bound states as described by the Saha
equations. This leads to a decrease of the ionization degree,
because more bound electrons appear and the average charge
of carbon ions is decreasing. To compare CH plasmas to C
plasmas, a calculation for pure carbon plasmas with identical
T and carbon number density nC is shown in Table I. In
addition, we chose T = 100 eV and ρ = 40 g/cm3, which is
of interest for future experiments.

The composition was calculated with the generalized Beth-
Uhlenbeck Eq. (15) where the in-medium bound-state en-
ergies are shifted. With the Mott condition Ii,γ ,ν > 0, see
Eq. (18), the contribution of scattering states is neglected.
Here, Ii,γ ,ν = Ei,γ ,ν − Ei, cont denotes the ionization energy of
the ion ai in the state γ (channel, e.g., angular momentum)
and excitation ν, and Ei, cont is the continuum edge of the
ion ai+1 and the electron. For the lowest temperature, in the
case of strong degeneracy, contributions of scattering states
are of relevance because bound-state-like correlations exist for
energies below the Fermi energy EF = h̄2 p2

F /2me. As shown
in Ref. [32], for strong degeneracy the Mott condition Ii,γ ,ν +
EF > 0 can be used. The shift of the ionization potential
�I5,SP

SP, deg is the IPD according to SP for the ion C5+; see
Fig. 1. The additional shift owing to the effects of degeneracy
is denoted as �I5,deg

SP, deg = −�Fock
e + �bound,Pauli + �bound,Fock

which contains in addition to the Fock shifts Eqs. (20) and
(30) also the Pauli blocking term Eq. (32). The total IPD when
taking degeneracy effects into account is the sum of these
two contributions: �I5

SP, deg = �I5,SP
SP, deg + �I5,deg

SP, deg. The index
“SP” refers to a calculation where only the SP term for the
IPD is considered, the index “SP,deg” refers to a calculation
where both, SP and degeneracy, are taken into account for
IPD. For the latter case, the electron degeneracy parameter
� = T/TFermi Eq. (3) is also given.

As shown in Table I, taking the effects of degeneracy
into account (in particular Pauli blocking), leads to an in-
crease of the ionization degree Z̄ . This effect is marginal
for nondegenerate plasmas (� > 1) but becomes important in
degenerate plasmas (� � 1). The calculations for CH plas-
mas and C plasmas with corresponding plasma parameters
are not very different. With respect to the experimental data,
the inclusion of degeneracy effects gives better results. Our
exploratory considerations should be completed by including
further contributions such as the structure factor effects [20] or
the polarization of the ion core. A more detailed description
will be given in forthcoming work. In addition, the range of
validity of the perturbation theory must be checked.

Until now, experimental data show higher ionization de-
grees compared to the usually used SP approximation or the
OPAL data tables. The Pauli blocking discussed in our work
can be considered as a possible mechanism in degenerate
plasmas which contributes to the increase of the ionization
degree. Experiments for pure carbon plasmas at very high
densities up to 40 g/cm3 are in preparation at the NIF. We
expect that these experiments will show the relevance of the
Pauli blocking effect as a mechanism to increase the charge
state of carbon ions in degenerate WDM states.

IV. CONCLUSIONS

The Pauli blocking has to be taken into account for extreme
high-density WDM when the electrons are strongly degen-
erate. This exchange effect seems to be essential for the ap-
pearance of high ionization degrees as compared to standard
approaches considering only screening effects, e.g., SP used
for opacity tables like OPAL [8,13–15,40,41,46–49]. Within
the many-body approach described in the present work, fur-
ther effects such as the polarization shift of the bound states
can be considered, and the correlation (Montroll-Ward) con-
tribution to the electron self-energy can be improved taking
higher-order Feynman diagrams into account. For instance,
ion correlations expressed by the dynamical ionic structure
factor have been considered recently [20]. Another interesting
effect is that Pauli blocking is only approximately described
by the ideal Fermi distribution in Eq. (27). In general, cor-
relations and bound-state formation also contribute to phase
space occupation so that it deviates from the ideal Fermi
distribution; see Ref. [23]. In addition, the perturbative treat-
ment of Pauli blocking is improved if the full solution of
the in-medium Schrödinger Eq. (27) is worked out; see also
Refs. [3,19,37].

The concept of the ionization degree or plasma compo-
sition is a useful approach to PIP but has to be used with
care, in particular with respect to the inclusion of scattering
states. The ordinary chemical picture which considers the PIP
as a mixture of different components, the free particles as
well as the bound clusters, neglects the correlations between
these components. The so-called physical picture, where only
the “elementary” constituents (electrons and nuclei) and their
interaction are considered, provides a consistent description
of WDM. The drawbacks of the ordinary chemical picture
are avoided if spectral functions are considered, which are
well defined at arbitrary densities. Single-quasiparticle states
and bound states are approximations for the spectral functions
where the energy levels are shifted and broadened because of
the interaction with the plasma environment. In particular, the
broadening of energy levels (Inglis-Teller effect [50,51]) has
to be considered if the signatures of bound states as separate
peaks in the spectra disappear.

A challenge is the use of density-functional theory [9–12]
where the single-particle density of states is evaluated. As-
suming that the broadening of the bands is less important
for the integral over the spectral function, see Eq. (11), the
shifts of the bands can be compared with the level shifts
in our approach. Work in this direction is in progress [52],
see also Ref. [53] where orbital-free molecular dynamics is
performed, and the sensitivity of the equations of state, ob-
tained there, to the choice of exchange-correlation functionals
is investigated. Correct results for thermodynamic quantities
are also available from PIMC calculations [16] in the high-
temperature region where the difficulties using a nodal struc-
ture are less relevant. Controversies such as the treatment of
strongly degenerate systems [26,54] where μe ≈ EF may be
resolved within the quantum statistical approach, considering
the contribution of scattering phase shifts; see Ref. [55].
For the strongly degenerate electron gas, bound-state-like
contributions do not disappear if the bound state merges
with the continuum of scattering states. At zero tempera-
ture, correlations in the continuum give a contribution to the
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correlated density until the bound state merges with the Fermi
energy.

The full solution of the quantum statistical approach, in-
cluding the contribution of scattering states, is needed to
obtain a consistent description of physical properties of the
partially ionized plasma [32]. This is possible in the “phys-
ical” picture, i.e., the solution of the many-body problem
for interacting electrons and nuclei. The ordinary “chemical”
picture is improved using the quasiparticle concept. Instead of
free particles, single-quasiparticle states are introduced which
contain already contributions of interaction in mean-field
approximation. In addition, correlations are defined which
contain not only the in-medium bound states but also the
correlations in the continuum.

The Pauli blocking is a quantum effect based on the
antisymmetrization of the many-electron wave function. It is
only approximately described by an empirical potential for
the interaction of bound states. A consistent description is
given within the physical picture, solving the few-particle
in-medium Schrödinger equation (so-called Bethe-Salpeter
equation) which contains the phase-space occupation in the
interaction term. The expression for an uncorrelated medium
Eq. (26) given by the Fermi distribution function should be
improved taking correlations in the medium into account; see
Refs. [56]. In conclusion, the Pauli blocking is essential to
describe the dissolution of bound states and the increase of the
ionization degree at high densities when the WDM is strongly
degenerate.
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APPENDIX: EXACT RELATIONS FOR THE SECOND
VIRIAL COEFFICIENT AND THE PLANCK-LARKIN

EXPRESSION FOR THE INTRINSIC
PARTITION FUNCTION

According to Beth and Uhlenbeck [27], the contribution
of correlations from the channel γ to the intrinsic partition
function is expressed in terms of the bound-state energies
Ei,γ ,ν and the scattering phase shifts δi,γ (E ),

σi,γ (T ) =
bound∑

ν

e−βEi,γ ,ν +
∫ ∞

0

dE

π
e−βE d

dE
δi,γ (E ). (A1)

After integration by parts and using the Levinson theorem
[57,58], the alternative expression, Eq. (9), is obtained. A
remarkable property of both relations, Eqs. (9) and (A1), is

that they contain only properties which can be measured but
not the interaction potential.

However, in the case of Coulomb interactions, scattering
phase shifts can not be defined in the standard way because
of the long-range character of the Coulomb potential. This
problem has been investigated in plasma physics for a long
time; see Refs. [3,4,22,59]. We give here a result for the intrin-
sic partition function of hydrogenlike ions. Using the abbre-
viations ξab = −eaeb/(kBT λab), λab = h̄/

√
2mabkBT , mab =

mamb/(ma + mb), we have up to the second order of the
fugacity za = exp βμa the exact result (see, e.g., Refs. [3,60])

na = za − κe2

2
−

∑
b

zb

{
− π

3
(βeaeb)3 ln(κλab)

+ π

2
β3e2

ae4
b − 2πλ3

ab

[
Q1(ξab) ± δab

(−1)sa

sa + 1
Q2(ξab)

]}

+O
(
z3/2

a ln za
)
. (A2)

Here, the direct terms are described by the function

Q1(ξ ) = −
√

π

8
ξ 2 − ξ 3

6

(
C

2
+ ln 3− 1

2

)
+

∑
p=4

√
πζ (p − 2)

�(p/2 + 1)

×
(

ξ

2

)p

, (A3)

with the Riemann zeta function ζ (x), the � function �(x), and
C = 0.5772 being the Euler constant. The exchange term (+
for fermions, − for bosons) reads

Q2(ξ ) =
√

π

4
+ ξ

2
+ √

π ln 2

(
ξ

2

)2

+ π2

9

(
ξ

2

)3

+
∑
p=4

√
π (1 − 22−p)ζ (p − 1)

�(p/2 + 1)

(
ξ

2

)p

. (A4)

We separate the electron-ion bound-state contribution [with
the step function θ (ξ ) according to Eq. (18)]

Q1(ξ ) = 2
√

π [σ PL,bound(T ) + σ PL,cont (T )]

= 2
√

πσ PL,bound(T )θ (ξ ) − sign(ξ )Q1(−ξ )

− 1
4

√
πθ (ξ )ξ 2, (A5)

with the Planck-Larkin bound-state partition function

σ PL, bound(T ) =
∞∑

n=1

2n2[e−βEn − 1 + βEn], (A6)

where n runs over the intrinsic quantum numbers (including
spin) of all bound states, En = −e2/(4πε0aBn2). The total in-
trinsic partition function σ PL,bound(T ) + σ PL,cont (T ) is divided
into a bound-state part and a continuum part both of which
are convergent. As a peculiarity of the long-range Coulomb
interaction where scattering phase shifts cannot be introduced
in the standard way, instead of Eqs. (9) and (A1) the definition
Eq. (A6) can be used to define a convergent bound-state part
of the intrinsic partition function.

To calculate the plasma composition, usually only the
bound-state part of the intrinsic partition function is taken, and
the continuum contributions are neglected. Although Eqs. (9),
(A1), and (A6) for the intrinsic partition function σi(T ) give
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exact results for the second virial coefficient, the subdivision
into the contribution of bound states and scattering states is
different and the corresponding definition of composition and
ionization degree is model-dependent. In this work, another
approach is proposed. Instead of free electrons, we consider

the quasiparticle contribution to the spectral function, and
instead of electrons bound in ions we consider the correlated
part of the density, as shown with Eq. (15). This approach is
based on a cluster decomposition of the self-energy [29] and
allows to include also the contribution of resonances.
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