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Effect of pressure on joint cascade of kinetic energy and helicity in compressible helical turbulence
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Direct numerical simulations of three-dimensional compressible helical turbulence are carried out at a grid
resolution of 10243 to investigate the effect of pressure, which is important for the joint cascade of kinetic energy
and helicity in compressible helical turbulence. The principal finding is that the pressure term of the helicity
equation [defined as �H = p∂i(ωi/ρ )] has a smaller effect on the helicity cascade in the aspect of amplitude
and a smaller effective range, which leads to a longer inertial subrange of the helicity cascade, in contrast to
a kinetic energy cascade. In addition, we also find that the effective range of �H is concentrated only in large
scales statistically, which is similar to the effect of the pressure term of the kinetic energy equation (defined
as �E = p∂iui). From the overall sense of the effect of �E and �H on the kinetic energy and the helicity,
respectively, both of them play a role of dissipation especially in the compression region. We propose that high
enough helicity can affect the process of energy transformation between kinetic energy and internal energy, which
means that the absolute local helicity hinders the process of kinetic energy transferring to internal energy, and
promotes internal energy transferring to kinetic energy. In addition, �H plays a source role both for positive and
negative helicity. We also study the mechanism of cancellations between compression and rarefaction regions,
and we find that the impact of a shocklet on the helicity cascade can be ignored statistically.
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I. INTRODUCTION

Compressible turbulence is a key and complex problem for
astrophysical systems, inertial confinement fusion, hypersonic
aircraft, and multiphase flows. In contrast to incompress-
ible turbulence, the complexity of compressible turbulence is
mainly reflected in the aspects of coupling between the ve-
locity field and the thermodynamic field, interactions among
vortices, acoustic waves, shock waves, and expansion-like
waves and transformation between kinetic energy and internal
energy [1]. The theory of turbulence cascade is limited to
fully developed incompressible turbulence with a high enough
Reynolds number according to the Richardson-Kolmogorov-
Onsager picture [2]. It is difficult to extend this theory to
compressible turbulence due to the variable-density effect
in the nonlinear term theoretically. Some experiments and
numerical simulations of compressible turbulence have con-
firmed the same scaling exponent −5/3, such as the warm
interstellar medium [3] and the intracluster medium between
galaxies [4]. Recently, however, some results of direct nu-
merical simulation (DNS) for compressible turbulence with a
high turbulent Mach number (Mt ) [5–10] also reveal the same
scaling exponent −5/3. Some scientific studies for compress-
ible turbulence involve the conception of scale decomposition
[11]. The most important research method for compressible
turbulence is “coarse-graining,” which was proposed by Aluie
[11–14]. He tried to employ this filtering method to extend
the theory of turbulence cascade in incompressible turbulence
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to compressible turbulence. The biggest obstacle is the ap-
pearance of �E in the governing equation of kinetic energy.
He argued that �E decays at a rapid rate and only operates
in large scales statistically, and then kinetic energy cascades
conservatively, which excludes the effect of �E over the tran-
sitional conversion range. According to previous conclusions,
it was confirmed that there exists a similarity of turbulence
cascade in incompressible and compressible turbulence, and it
motivates us to explore the theory of joint turbulence cascade
of compressible helical turbulence.

Similar to kinetic energy, helicity is also an inviscid in-
variance in three-dimensional compressible turbulence. It has
numerous interesting properties and has been the subject of
a huge number of theoretical, numerical, and experimental
investigations in the past few decades [15–27]. It is defined as

H =
∫

V
u(x) · ω(x)d3x, (1)

where u(x) is the velocity, ω(x) is the vorticity, and
the helicity density is defined as h = u · ω, and it is
a pseudoscalar. Helical turbulence occurs frequently in
atmospheric and astrophysical physics, and its mathematical
properties, which are similar to kinetic energy, provide us
with novel insight into the physical mechanism of turbulence.

Many studies have shown that a joint cascade of energy and
helicity exists in incompressible helical turbulence. Similar
to energy flux in the inertial subrange, helicity flux is also a
constant in the inertial subrange [15]. Andre et al. found that
the helicity cascade hinders the energy cascade and is carried
along locally and linearly by the energy cascade like a passive
scalar [18]. Chen et al. revealed that the inertial subrange of
the helicity cascade is not shorter than the energy cascade
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through the analysis of net helicity flux, and the helicity
flux is even more intermittent than the energy flux through
the method of helical wave decomposition [20,21]. Biferale
et al. discovered that a stationary inverse energy cascade
is Eback(k) ∼ k−5/3 and a pure helicity cascade corresponds
to a spectrum with Eforw ∼ k−7/3 [23], and they also found
that energy flux is always reversed when mirror symmetry is
broken or the relative weights of triadic interactions are altered
through creating different novel ways to perform numerical
investigations of Navier-Stokes equations (NSEs) [22,24].
Controlling the rate of helicity injection at all scales, Kessar
et al. found that energy flux could not be changed even with a
high rate of helicity injection, and energy scaling law changes
from E (k) ∼ k−5/3 in nonhelical status to E (k) ∼ k−7/3 in
maximal helical status [28]. To study the impact of helicity on
the energy cascade to small scale, Stepanov et al. discussed
various scenarios of direct turbulence cascade, and they found
that the helical bottleneck effect would appear in the process
of energy cascade [25].

The previous studies on helicity cascade were mainly
limited to incompressible helical turbulence, and few attempts
have been made to investigate it in compressible helical
turbulence. The physical regularity of some extreme natural
phenomena with the compressibility effect is attributed to
helicity [29,30], and it is vital to explore in depth the joint cas-
cade in compressible turbulence. There exist several factors in
compressible turbulence that could affect the joint cascade of
kinetic energy and helicity, and the effect of pressure is one of
the main factors. In this paper, we try to investigate the effect
of pressure in detail.

The role of pressure in turbulence dynamics has attracted
a great deal of attention to illustrate some features of tur-
bulent flows. Gotoh et al. found that the contribution of the
pressure term is important to the dynamics of longitudinal
velocity with large amplitudes by analyzing numerical simu-
lation data at a very large Reynolds number in incompressible
turbulence [31]. The effect of pressure on turbulence veloc-
ity gradient dynamics was investigated through the inviscid
three-dimensional Burgers equation and the restricted Euler
equation by Bikkani et al., who determined the direction of
energy cascade in terms of the changing rate of the magnitude
of the velocity gradient tensor [32]. Pumir et al. found that
pressure acts on fluid elements to redistribute kinetic energy
very differently in two- and three-dimensional flows, and pres-
sure accelerates the three-dimensional fastest fluid elements
[33]. Wilczek et al. linked the role of pressure to actual
physical turbulent structures [34], and subsequent research
carried out by Lawson et al. and Bechlars et al. revealed that
pressure stabilizes rotational motions and allows vortices to
exist [35,36]. In compressible turbulence, there have also been
some attempts to study the effect of pressure Hessian on a
velocity gradient tensor [37].

In this paper, we investigate the effect of pressure on the
joint cascade of kinetic energy and helicity in compressible
helical turbulence. In Sec. II, we introduce some numerical
details such as governing equations, the numerical method,
and some characteristic parameters regarding our DNS. In
Sec. III, we analyze the role of the pressure term in the joint
cascade of kinetic energy and helicity. In Sec. IV, we carry
out statistical analysis of two pressure terms conditioned on

local velocity divergence and local helicity. In Sec. V, the role
of a shocklet is investigated, and we propose that there exist
cancellations between compression and rarefaction regions. In
Sec. VI, we summarize our conclusions.

II. GOVERNING EQUATIONS, NUMERICAL METHODS,
AND SOME CHARACTERISTIC PARAMETERS

The variables in compressible helical turbulence are nor-
malized by the reference density ρ f , velocity Uf , length L f ,
pressure p f = ρ f U 2

f , temperature Tf , viscosity μ f , thermal
conductivity κ f , and energy per unit volume ρ f U 2

f , respec-
tively [1]. Three reference governing parameters will appear:
the reference Reynolds number Re ≡ ρ f Uf L f /μ f , the ref-
erence Mach number M ≡ Uf /c f , and the reference Prandtl
number Pr ≡ μ f Cp/κ f , which is assumed to be equal to 0.7.
In addition, other parameters are the speed of sound c f ≡√

γ RTf , the specific gas constant R, the heat capacity ratio
γ ≡ Cp/Cv , which is assumed to be equal to 1.4, the specific
heat at constant pressure Cp, the specific heat at constant
volume Cv , and the parameter α ≡ Pr Re(γ − 1)M2.

The dimensionless NSEs for three-dimensional compress-
ible helical turbulence of ideal gas [38] are

∂ρ

∂t
+ ∂ (ρu j )

∂x j
= 0, (2a)

∂ (ρui )

∂t
+ ∂ (ρuiu j )

∂x j
= − ∂ p

∂xi
+ 1

Re

∂σi j

∂x j
+ Fi, (2b)

∂E
∂t

+ ∂[(E + p)u j]

∂x j
= 1

α

∂

∂x j

(
κ

∂T

∂x j

)

+ 1

Re

∂ (σi jui )

∂x j
− 
 + Fju j, (2c)

where ρ is the density, ui is the ith component of the velocity
vector, p is the pressure, T is the temperature, 
 is a cooling
function for sustaining a steady state statistically, and Fi is
the ith component of large-scale force composed of multipa-
rameters controlling kinetic energy and helicity. The ideal-gas
equation of state is

p = ρT

γ M2
. (3)

In addition, the viscous stress is

σi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
μ

∂ui

∂xi
δi j (4)

and the total energy is

E = p

γ − 1
+ 1

2
ρ(uiui ). (5)

The viscosity coefficient μ and the thermal conductivity co-
efficient κ are determined by the Sutherland law [39] for
simplicity,

μ = 1.4042T 1.5

T + 0.404 17
, (6)

κ = 1.4042T 1.5

T + 0.404 17
. (7)
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DNS for forced compressible helical turbulence in a cubic
box of (2π )3 with periodic boundary conditions is carried
out. The initial density field is homogeneous and set to a
constant of 1, and the velocity field is initialized with a
radial spectrum k2exp[−2(k/k0)2]. Our numerical statistical
analysis begins at t/teddy = 6.6 when the skewness of flow is
less than −0.5 and total kinetic energy and helicity approach
two constants, where teddy is the initial large-eddy turnover
time. A multiparameter controlling method for external force
is proposed for obtaining steady flows with high mean helicity.
Stationary injection rates of kinetic energy and helicity are
applied within the lowest two wave-number shells in spectral
space. A thermal cooling function 
 is applied for a steady
flow with the formula 
 = σI T 0 [38].

A hybrid compact-WENO scheme [38] is applied in the nu-
merical simulations, which employs a seventh-order WENO
scheme [40] in shock regions with a criterion defined as local
dilatation (θ = ∂ui/∂xi) for θ < −Rθ θ

′, where Rθ = 3.0 [1]
and an eighth-order compact finite-difference scheme [41] in
smooth regions. An explicit low storage second-order Runge-
Kutta technique is adopted for time marching. The following
numerical results are time-averaged over 20 instantaneous
flows from t/teddy = 6.6 to 7.5.

Next, we would like to introduce some basic characteristic
parameters for our numerical simulations [1]. Some charac-
teristic lengths are defined as

L f = 3π

2u′2

∫ ∞

0

E (k)

k
dk, (8)

λ = u′

〈[(∂u1/∂x1)2 + (∂u2/∂x2)2 + (∂u3/∂x3)2]〉1/2
, (9)

and

η = [〈μ/Reρ〉3/ε]1/4, (10)

where L f is the longitudinal integral length scale, λ is the
transverse Taylor microscale, and η is the Kolmogorov length
scale. Here, E (k) is the spectrum of kinetic energy per
unit mass, u′ is the root mean square (rms represented by

a prime) of velocity defined as u′ =
√

u2
1 + u2

2 + u2
3, and ε

is the ensemble-averaged viscous dissipation rate of kinetic
energy per unit volume defined as ε = 〈σi jSi j/(Reρ)〉, where
the strain-rate tensor is defined as Si j = (1/2)(∂ui/∂x j +
∂u j/∂xi ).

The Taylor microscale Reynolds number and turbulence
Mach number are

Reλ = u′λ〈ρ〉√
3〈μ〉 (11)

and

Mt = M
u′

〈√T 〉 . (12)

In this paper, Helmholtz decomposition and helical wave
decomposition are used to analyze the DNS data. Both of
them provide two orthogonal basis vectors to decompose
a three-dimensional flow field. Helmholtz decomposition is
widely used in the area of compressible turbulence to decom-
pose velocity into compressive and rotational components.

The compressive component is rotation-free (ik × Vc = 0),
and the rotational component is divergence-free (ik · Vr = 0).
They are

Vc(k) = k
k2

(k · V)(k), (13)

Vr (k) = V(k) − Vc(k), (14)

where superscripts c and r represent the compressive and
rotational components, respectively [42]. Helical wave de-
composition has been popular for projecting velocity on a
pair of orthogonal bases formed by h+ and h− [43,44]. The
“inertial wave” forms are

hs = ν × κ + isν, (15)

where ν is a unit vector orthogonal to k, and an alternative
form is ν = (z × κ)/ ‖ z × κ ‖. Here k = kκ, κ is the unit
vector of wave-number vector k, and z is an arbitrary vector.
Therefore, we can expand the velocity as

u(x) =
∑

k

u(k)eik·x

=
∑

k

(u+ + uc + u−)eik·x, (16)

where right-chirality velocity is defined as u+ = a+h+, left-
chirality velocity is defined as u− = a−h−, and the compres-
sive component of velocity is called free-chirality velocity
uc. Here a+ and a− are the projections of velocity on h+
and h−. The basis vectors hs(s = ±1) could be complex and
orthogonal to k and to each other. The useful property of
these basis vectors is that they are the eigenmodes of the curl
operator:

ik × hs = skhs. (17)

In general, we can combine Helmholtz decomposition and
helical wave decomposition to propose a uniform decom-
position, which is called general helical wave decomposi-
tion (GHWD) of compressible turbulence in this paper. This
new uniform method of decomposition could be generalized
from helical wave decomposition, and the superscript s = 0
corresponding to the compressive component of velocity is
added in Eq. (17), in contrast to traditional helical wave
decomposition (s = −1, 1). Hence we extend helical wave
decomposition to GHWD, which provides three orthogonal
basis vectors in compressible turbulence. Here, s = −1 cor-
responds to left chirality, s = 0 corresponds to free chirality,
and s = +1 corresponds to right chirality. For simplicity in
this paper, we use the notation s = −, 0,+, respectively. The
kinetic energy content of three modes is

Es(k) =
∑

k�|k|<k+1

1

2

∣∣us
k

∣∣2
, s = −, 0,+. (18)

If there exists a joint cascade of energy and helicity
and the distortion time is the same for both energy and
helicity transfer, we can obtain the power-law solutions,
which ignore any intermittency corrections in incompressible
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FIG. 1. (a) Compensated spectra of right-chirality kinetic energy
(solid red line), free-chirality kinetic energy (dashed green line),
left-chirality kinetic energy (blue dot-dashed line), and total kinetic
energy (double dot-dashed pink line). (b) Compensated spectra of
right-chirality helicity (dashed red line), left-chirality helicity (dot-
dashed green line), and total helicity (solid blue line).

turbulence [15,20,45],

E (k) ∼ CEε2/3k−5/3, H (k) ∼ CHδε−1/3k−5/3, (19)

E±(k) ∼ 1

2
ε2/3k−5/3

[
1 ± β

2k

(
δ

ε

)]
, (20)

H±(k) ∼ ε2/3k−2/3

[
1 ± β

2k

(
δ

ε

)]
, (21)

where CE and CH are two constants, β = CH/CE , δ is
the ensemble-averaged viscous dissipation rate of helic-
ity per unit volume defined as δ = 〈μ/ReSi jRi j〉, and
Ri j = (1/2)(∂ωi/∂x j + ∂ω j/∂xi ). And the theory of three-
dimensional Burgers turbulence reveals that shock waves lead
to a k−2 spectrum of u0 [46].

According to the above-mentioned definitions of charac-
teristic parameters, we exhibit some results in Fig. 1, Fig. 2,
and Table I. In Fig. 1(a), we exhibit compensated spectra of
left-chirality and right-chirality kinetic energy normalized by
ε−2/3k5/3, free-chirality kinetic energy normalized by ε−2/3k2,

FIG. 2. Isosurface of the velocity divergence at θ = −3θ ′ of the
10243 simulation at Mt = 0.71.

and total kinetic energy normalized by ε−2/3k5/3 according to
Eqs. (19) and (20). In our numerical simulations, the Reynolds
number is high enough to show a visual inertial subrange rep-
resented by a large plateau range. The discrepancy of E+(k)
and E−(k) is large, especially in a low wave number, to ensure
a left-chirality dominant flow field. Compensated spectra of
negative left-chirality helicity normalized by ε−2/3k2/3, right-
chirality helicity normalized by ε−2/3k2/3, and total helicity
normalized by δ−1ε1/3k5/3 are shown in Fig. 1(b) according
to Eqs. (19) and (21), and they also exhibit a large plateau
range. We display an isosurface of the velocity divergence at
θ = −3θ ′ in Fig. 2, where θ ′ is the rms of θ . A great deal
of stochastic sheetlike shocklets are visible to the naked eye.
Shocklets that are present in compressible helical turbulence
are produced by the fluctuating field of turbulent eddies [47],
and their properties and features regarding jumps of pressure,
density, and temperature are similar to the typical shock
that is pivotal in high-speed flight. High enough kmaxη and
O(η/ � x) ∼ 1 in Table I ensure a fine resolution to resolve
the Kolmogorov length scale. The rate of mean kinetic energy
and mean helicity guarantees that the helicity cascade does
indeed exist.

III. THE ROLE OF THE PRESSURE TERM IN THE JOINT
CASCADE OF KINETIC ENERGY AND HELICITY

For the purpose of studying the dynamical behavior of
turbulence cascade in the inertial subrange of compressible
helical turbulence, we need a proper method of scale decom-
position and a proper definition of large-scale kinetic energy.

TABLE I. Some characteristic parameters of numerical simula-
tions.

Resolution Reλ Mt E H kmaxη η/ � x Lf /η λ/η

10243 232 0.71 2.56 −2.36 3.01 0.96 205 30
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Recently, Aluie proposed that a Favre decomposition satisfies
the inviscid criterion in compressible turbulence [11,13,14].
“Coarse graining” is popular for scale decomposition to un-
derstand scale interactions in compressible turbulence. The
coarse-grained filtered field for any physical variable a(x) is
defined as

al (x) =
∫

d3r Gl (r)a(x + r), (22)

which contains modes larger than filter width l , and Gl (r) is
a normalized convolution kernel. With the help of “coarse-
graining,” we can obtain coarse-grained field al and a residual
field a′, where a′ = a − al . In this paper, we employ a top-
hat filter to obtain a coarse-grained field in our numerical
simulations as follows [9]:

ai = 1

4n

⎛
⎝ai−n + 2

i+n−1∑
j=i−n+1

a j + ai+n

⎞
⎠, (23)

where the filter width is l = 2n�x, and �x is the grid scale in
our simulations.

Favre filtering is widely used in the area of large-eddy
simulations (LES) of compressible flows. Mathematically, any
scalar or vector weighted by density could be rewritten as [48]

ãl = (ρa)l

ρ l
, (24)

where l is the filter width. The main advantage of Favre
filtering is that the “Favre-filtered” equations are structurally
similar to their corresponding nonfiltered equations. This
similarity provides much convenience for studying subgrid
kinetic energy flux along different scales.

In the governing equation of kinetic energy in decaying
incompressible homogeneous and isotropic turbulence, the
only source of kinetic energy is the viscosity term, which
diffuses and dissipates kinetic energy via molecular viscosity.
In compressible turbulence, the source of kinetic energy is not
only the viscosity term, but also �E , which transforms energy
between kinetic energy and internal energy. If we define εi

k =
uiui/2 for kinetic energy in incompressible turbulence and
εc

k = ρuiui/2 for kinetic energy in compressible turbulence,
these ensemble-averaged equations are

∂
〈
εi

k

〉
∂t

= −
〈
σ i

i j

∂ui

∂x j

〉
, (25)

∂
〈
εc

k

〉
∂t

= 〈pθ〉 −
〈
σ c

i j

∂ui

∂x j

〉
, (26)

where σ i
i j = μ(∂ui/∂x j + ∂u j/∂xi ) for incompressible tur-

bulence, σ c
i j = μ(∂ui/∂x j + ∂u j/∂xi ) − 2/3μθδi j for com-

pressible turbulence, and the symbols i and c correspond
to incompressible turbulence and compressible turbulence,
respectively.

The biggest discrepancy in the above two equations lies
in the pressure term, which turns out to be an obstacle for
extending the theory of turbulence cascade in incompress-
ible turbulence to compressible turbulence. Fortunately, Aluie
proved that the pressure term for kinetic energy operates only
in large scales, which lie in the transitional “conversion” scale
range statistically [14]. If the effect of the pressure term were

avoided statistically in the kinetic energy equation, kinetic
energy would cascade conservatively in the inertial subrange
of compressible turbulence in analogy with incompressible
turbulence. The uniform formalism of the governing equation
makes it somewhat convenient to research issues of locality in
compressible turbulence [49].

Similar to the energy cascade in compressible turbulence,
there also exists the helicity cascade in compressible turbu-
lence from the standpoint of the property of the governing
equation of helicity. The identical challenge faced in analyz-
ing the helicity cascade in the area of compressible turbulence
is also the effect of �H , hence in this section we want to study
the effect of �H by the method used in �E .

Now, we review the ensemble-averaged governing equa-
tions of kinetic energy and helicity in compressible turbu-
lence. In what follows, all objects are compressible turbu-
lence. We define ε = ρuiui/2 for kinetic energy and H = uiωi

for helicity density. Then the ensemble-averaged equations are

∂〈ε〉
∂t

= 〈�E 〉 −
〈
σi j

∂ui

∂x j

〉
, (27)

∂〈H〉
∂t

= 〈2�H 〉 −
〈
2σi j

∂ (ωi/ρ)

∂x j

〉
. (28)

The first term 〈2�H 〉 on the right-hand side of the helicity
equation does not exist in incompressible turbulence because
of the constant density. After comparing �E and �H , we were
surprised to find that they are similar in structure, and both of
them involve the effect of variable density. In the following,
we will extend the researching method of �E to �H .

The definitions of the pressure-dilatation cospectrum [13]
in the kinetic energy equation (PD) and the pressure-vorticity
per mass cospectrum in the helicity equation (PV) are

EPD(k) =
∑

k−0.5<|k|<k+0.5

−p̂(k)̂∇ · u(−k), (29)

EPV(k) =
∑

k−0.5<|k|<k+0.5

−p̂(k) ̂∇ · (ω/ρ)(−k). (30)

If they decay fast enough along the wave number,

|EPD(k)| � C1urms prms(kL f )−β1 , β1 > 1, (31)

|EPV(k)| � C2(ω/ρ)rms prms(kL f )−β2 , β2 > 1, (32)

then the effect of two pressure terms over a transitional con-
version scale range would approach a limited extent, where C1

and C2 are two constants. Beyond this range, kinetic energy
and helicity would cascade conservatively in the inertial sub-
range. Under the above assumptions, ensemble-averaged �E

and �H would asymptote to a finite constant with the increase
of the filter width,

PD(l ) = −〈pl∇ · ul〉, ζ1 = −〈p∇ · u〉, (33)

PV(l ) = −〈pl∇ · (ω/ρ)l〉, ζ2 = −〈p∇ · (ω/ρ)〉, (34)

where PD(l ) is the cumulative PD, and ζ1 is an ultimate value
for it; PV(l ) is the cumulative PV, ζ2 is an ultimate value for
it, and l ∼ 1/k.
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effective range

FIG. 3. Compensated pressure-dilatation cospectrum (dashed
green line) and compensated pressure-vorticity per mass (solid blue
line).

In our numerical simulations, we calculated the absolute
value of Eqs. (29) and (30), and we show our results of
these two compensated cospectra normalized by k in Fig. 3.
Obviously, both compensated cospectra begin to decay over
some critical wave number. This result confirms a previous
assumption about scaling of PD, and the reliability of our
numerical simulations. While in the range of lower wave
number, PV prefers to grow gradually faster than PD, and then
it begins to decay over a critical wave number. If we defined
a critical wave number where the compensated spectrum
begins to decay, the critical wave number for PV is larger
than the critical wave number for PD. In other words, the
effective range of PV on the helicity cascade is larger than the
effective range of PD on the kinetic energy cascade according
to assumptions in Eqs. (31) and (32). This phenomenon is
seemingly in conflict with the previous opinion. We try to
explain that the evaluation in Eqs. (31) and (32) is a sufficient
condition for the cumulative effect, and it overestimates the
actual effect of �E and �H through calculating the spectrum
of the corresponding absolute value. But this method can
predict the cumulative trend successfully, and it confirms that
the effect of �H on the helicity cascade only concentrates
in large scales statistically similar to the effect of �E on the
kinetic energy cascade.

To study �E and �H in detail, ensemble-averaged filtered
governing equations for kinetic energy and helicity are in-
ferred by Favre filtering as follows. The ensemble-averaged
filtered kinetic energy equation is

∂t

〈
ρ l

|̃ul |2
2

〉
= −〈

�E
l

〉 − 〈
l〉 + 〈
�E

l

〉 − 〈
DE

l

〉 + 〈
ε

inj
l

〉
, (35a)

where some terms in this equation are defined as

�E
l = −ρ l∂ j ũĩτ (ui, u j ), (35b)


l = 1

ρ l
∂ j pl (ρu j − u jρ l ), (35c)

�E
l = pl∇ · ul , (35d)
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FIG. 4. (a) Ensemble-averaged subgrid kinetic energy flux �E
l

(solid red line), and ensemble-averaged pressure term �E
l (dashed

blue line) in the kinetic energy equation. (b) Ensemble-averaged
negative subgrid helicity flux −�H

l (solid red line), and ensemble-
averaged pressure term �H

l (dashed blue line) in the helicity equa-
tion, where l is the filter width, and η is the Kolmogorov dissipation
length scale.

DE
l = ∂ j ũi

(
2μSi j − 2

3
μSkkδi j

)
, (35e)

ε
inj
l = ũiρ l F̃i, (35f)

�E
l is the kinetic energy flux due to subgrid scale stress, 
l is

the kinetic energy flux due to turbulent mass flux, �E
l is the

filtered pressure term, which is consistent with the definition
�E , DE

l is the viscous dissipation, ε
inj
l is the work of external

force, and the superscript E denotes kinetic energy.
The ensemble-averaged filtered helicity equation is

∂t 〈H̃〉 = −〈
�H

l

〉 + 〈
�H

l

〉 − 〈
DH

l

〉 + 〈
η

inj
l

〉
, (36a)

where some terms in this equation are defined as

H̃ = ũi · ω̃i, (36b)

�H
l = −ρ l∂ j (2ω̃i/ρ l )̃τ (ui, u j ), (36c)

�H
l = pl∂i(2ω̃i/ρ l ), (36d)

DH
l = ∂ j (2ω̃i/ρ l )

(
2μSi j − 2

3
μSkkδi j

)
, (36e)

η
inj
l = 2ω̃iF̃i, (36f)

H̃ is the filtered helicity density, �H
l is the helicity flux

due to subgrid scale stress, �H
l is the filtered pressure term,

which is consistent with the definition �H , DH
l is the viscous

dissipation, ηinj is the work of external force, and superscript
H denotes helicity. The notation we employ in the above
equations is τ̃ (ui, u j ) = ũiu j − ũiũ j .

We try to explain in detail the effect of �E
l on the kinetic

energy cascade and the effect of �H
l on the helicity cascade

from the standpoint of filtered governing equations. Filtered
results of different filter width are shown in Figs. 4(a) and
4(b), and they share a number of similar features. First, both
of them exhibit an inertial subrange, which is marked by a
green double-headed arrow. Second, the ensemble-averaged
values of pressure terms begin to increase and then reach an
ultimate value with the decrease of the filter width. There
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FIG. 5. (a) Normalized pressure term for kinetic energy of differ-
ent filter width. (b) Normalized pressure term for helicity of different
filter width.

exists a critical filter width that splits out the effective range
under pressure for the kinetic energy cascade and the helicity
cascade. If the filter width is less than the critical filter width,
the kinetic energy or the helicity will cascade conservatively,
escaping from the effect of the pressure term.

Apparently, the critical filter width of �E
l is smaller than

the critical filter width of �H
l , which is obvious in Figs. 4(a)

and 4(b). This means that the effective range of �H
l is smaller

and the inertial subrange of the helicity cascade is longer,
while the ratio of the pressure term and the subgrid term for
helicity is less than 10%, and the influence of �H

l on the
helicity cascade is less than the influence of �E

l on the kinetic
energy cascade.

The probability distribution function (PDF) of normalized
�E

l and �H
l with a different filter width is exhibited in Fig. 5.

The filter width l = 20η corresponds to the dissipation range,
l = 52η and 100η corresponds to the inertial subrange, and
l = 196η corresponds to the transitional conversion range.
The PDF of �E

l is skewed clearly to a negative value, and
the fluctuating amplitude is mainly decreased in the negative
branch with the increase of the filter width. As for �H

l ,
there does not exist an obvious skewness to the negative
or positive value, which leads to a small mean but a large

FIG. 6. (a) Ensemble-averaged �E
l conditioned on local velocity

divergence with a different filter width. (b) Ensemble-averaged �E
l

conditioned on absolute local helicity with a different filter width.

variation of �H
l . With the increase of the filter width, the

fluctuating amplitude is decreased both in the negative and the
positive branch simultaneously. This regularity of distribution
illustrates the reason why k | EPV(k) | is larger and decays
more slowly than k | EPD(k) | in Fig. 3. Figure 3 focuses on
the spectrum of absolute values, and Fig. 4 focuses on the net
contribution of total values. In the process of calculating the
net contribution, there is a cancellation between positive and
negative fluctuating values, but the fluctuating contribution is
reflected in the spectrum of absolute values.

Hence we conclude that the upper bound of the inertial sub-
range for kinetic energy is less than the helicity. For incom-
pressible turbulence, Ditlevsen et al. proposed that helicity
flux is not a constant up to a smaller wave number than energy
flux both in the right-hand mode and the left-hand mode
[50,51]. But Chen et al. argued that the inertial subrange of the
helicity cascade is not shorter than that of the kinetic energy
cascade [20]. All of them tried to compare the lower bound for
kinetic energy and the helicity cascade, while in our research
we prefer to determine their upper bound under the effect of
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FIG. 7. (a) Ensemble-averaged negative �E
l conditioned on ab-

solute local helicity with a different filter width. (b) Ensemble-
averaged positive �E

l conditioned on absolute local helicity with a
different filter width.

the pressure term statistically. Therefore, we can conclude
that the inertial subrange of the kinetic energy cascade is
shorter than that of the helicity cascade in compressible helical
turbulence.

IV. STATISTICAL ANALYSIS OF TWO PRESSURE TERMS
CONDITIONED ON LOCAL VELOCITY DIVERGENCE

AND LOCAL HELICITY

The gradient of the inverse of the density will increase
to some extreme value at some local area with strong com-
pressibility. We infer that these two pressure terms are both
sensitive to the presence of a shocklet, which is represented
by velocity divergence.

We analyze ensemble-averaged �E
l conditioned on local

velocity divergence and absolute local helicity with a differ-
ent filter width in Fig. 6. Obviously, the ensemble-averaged
�E

l grows monotonously with the increase of local veloc-
ity divergence in Fig. 6(a). With the increase of the filter
width, the ensemble-averaged value will decrease because the

FIG. 8. (a) Ensemble-averaged �H
l conditioned on local velocity

divergence with a different filter width. (b) Ensemble-averaged �H
l

conditioned on local helicity with a different filter width.

fluctuation of small scales is stronger than that of large scales.
While ensemble-averaged �E

l conditioned on absolute local
helicity in Fig. 6(b) behaves differently, it begins to increase
monotonously from a negative value to a positive value with
the increase of absolute local helicity when absolute local
helicity is high enough. Positive �E

l corresponds to the pro-
cess of internal energy transferring to kinetic energy, and
negative �E

l corresponds to the process of kinetic energy
transferring to internal energy under the effect of pressure. We
find that high enough absolute local helicity could affect the
energy conversion process in Fig. 6(b). To further confirm the
physical process of energy conversion, we show the ensemble-
averaged positive and negative �E

l conditioned on absolute
local helicity in Fig. 7. When absolute local helicity is high
enough, the process of internal energy transferring to kinetic
energy �E+

l is promoted while the inverse process �E−
l is

hindered. From that point of view, we can conclude that high
enough helicity could decrease the loss of kinetic energy and
increase the efficiency of energy conversion from internal
energy to kinetic energy through the pressure term.
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FIG. 9. Top left: two-dimensional slice of pointwise �E
l . Bottom left: normalized distribution curve for �E

l (red solid line) and the
corresponding Gaussian distribution (blue dashed line). Top right: two-dimensional slice of residual pointwise �E

l . Bottom right: normalized
distribution curve for residual �E

l (red solid line) and the corresponding Gaussian distribution (blue dashed line). Here μ1 is the mean value of
�E

l , σ1 is the standard deviation of �E
l , μ2 is the mean value of the residual of �E

l , and σ2 is the standard deviation of the residual of �E
l .

In Fig. 8, we show ensemble-averaged �H
l conditioned on

local velocity divergence and local helicity with a different fil-
ter width. The ensemble-averaged �H

l changes monotonously
conditioned on both local velocity divergence and local helic-
ity. Similar to the result in Fig. 6(a), the compression regions
play a sink role for total helicity represented by positive
�H

l . In Fig. 8(b), we see that when helicity is negative, the
ensemble-averaged �H

l is also negative and vice versa. Hence
we conclude that �H

l plays a source role for positive and
negative helicity, respectively, which is opposite to the sink
role of �E

l for kinetic energy.

V. THE ROLE OF A SHOCKLET

Another question arises when faced with shocklets. In
compressible turbulence, especially with high Mt , the in-
evitable issue is a shocklet, which is unique in compressible
turbulence. The appearance of a shocklet gives rise to many
challenging problems that cannot be fully explained. As for
the role of pressure terms in the turbulence cascade mentioned

above, we did not analyze the effect of a shocklet. So what is
the fundamental physical mechanism of a shocklet? In this
section, we try to answer that question.

There are a large number of compression regions and
rarefaction regions in flows, and these cancellations among
them lead to approximately negligible contributions to filtered
results for �E

l [13]. In Fig. 9, we show the results of a
two-dimensional slice of 10242 and the normalized PDF of
�E

l , residual (�E − �E
l ), and the corresponding Gaussian

distribution. In contrast to �E
l , the residual is one order higher

at pointwise value while it is one order lower at mean value.
This regularity confirms the above opinion about cancella-
tions among compression regions and rarefaction regions.
In addition, the distribution of the residual is far from the
corresponding Gaussian distribution, especially at the left tail,
which proves that the compression region is dominant in our
numerical simulations.

Likewise, we analyze a two-dimensional slice and the
PDF of �H

l in Fig. 10. We could get the same pattern as in
Fig. 9. The residual is one order higher pointwise but one
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FIG. 10. Top left: two-dimensional slice of pointwise �H
l . Bottom left: normalized distribution curve for �H

l (red solid line) and the
corresponding Gaussian distribution (blue dashed line). Top right: two-dimensional slice of residual pointwise �H

l . Bottom right: normalized
distribution curve for residual �H

l (red solid line) and the corresponding Gaussian distribution (blue dashed line). Here μ1 is the mean value
of �H

l , σ1 is the standard deviation of �H
l , μ2 is the mean value of the residual of �H

l , and σ2 is the standard deviation of the residual of �H
l .

order lower at mean value, showing the cancellations among
compression and rarefaction regions. This “coarse-graining”
method excludes small scales successfully and preserves the
features of large scales. Comparing the results in Figs. 9 and
10, we find that the distribution of residual �H

l deviates more
from Gaussian distribution. This phenomenon confirms the
previous opinion that the fluctuating amplitude of �H

l is larger
than that of �E

l . The gradient of the inverse of density only
shines through small scales, and that is the role of the shocklet
for �H

l . Hence we can extend the role of skocklets for �E
l to

�H
l successfully.

VI. CONCLUSIONS AND DISCUSSIONS

The present study was designed to determine the role
of �E

l and �H
l for the joint cascade of kinetic energy and

helicity in compressible helical turbulence. The method of
“coarse-graining” provides us with a deeper insight into the
fundamental physical mechanism of compressible turbulence.

This study has been one of the first attempts to thoroughly
examine the effect of �H

l extended from �E
l .

We found that �H
l operates only in large scales statisti-

cally similar to �E
l , but �H

l contributes a smaller cumulative
effect and its effective range is smaller than �E

l . From the
perspective of their PDF, the PDF of �H

l does not show an
obvious skewness to positive or negative values, and both tails
decrease with an increase of the filter width. These results
imply that there exists a longer inertial subrange for the he-
licity cascade, in contrast to the kinetic energy cascade. Even
though the pressure term is very sensitive to the appearance of
a shocklet, the cancellations between the compression and rar-
efaction regions make a negligible contribution to �H

l . Hence,
the presence of a shocklet could not affect our conclusions.

The effects of helicity on both �E
l and �H

l are investigated
in detail. High enough helicity hinders the energy conversion
process of kinetic energy transferring to internal energy and
promotes the transfer of internal energy to kinetic energy
through the effect of the pressure term. This discovery may
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provide a method of improving the energy efficiency for
engines, gas turbines, and so on. Similar to the contribution
of �E

l for kinetic energy, �H
l also dissipates the total helicity

on the whole. But �H
l plays a source role both for positive and

negative helicity, respectively.
This new understanding should help to improve pre-

dictions of accuracy for compressible turbulence model-
ing in LES. The larger inertial subrange of the helicity
cascade corresponds to a wider range of application of
turbulence modeling in LES based on the helicity cas-
cade. The above investigations of pressure terms elimi-
nate obstacles when extending some theories of the helic-
ity cascade in incompressible turbulence to compressible
turbulence, which may pave the way for further studies

focusing on the properties of helicity in compressible turbu-
lence.
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