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Phase-field modeling of an immiscible liquid-liquid displacement in a capillary
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We develop a numerical model for a two-phase flow of a pair of immiscible liquids within a capillary tube.
We assume that a capillary is initially saturated with one liquid and the other liquid is injected via one of the
capillary’s ends. The governing equations are solved in the velocity-pressure formulation, so the pressure levels
are imposed at the capillary inlet and outlet ends. We model the structure of the flow and the shape of the
interface. We are able to reproduce the flow for a wide range of capillary numbers, when the meniscus preserves
its shape moving together with the flow, and when the meniscus constantly stretches resembling the transport of
a passive impurity. We demonstrate that the phase-field approach is capable of reproducing all features of the
liquid-liquid displacement, including the motion of a contact line, the dynamic changes of the capillary pressure,
and the dynamic changes of the apparent contact angle.
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I. INTRODUCTION

We aim to develop a theoretical model for description of
a liquid-liquid displacement in a porous medium. We assume
that the porous medium is initially saturated with one liquid
that is displaced by injection of another liquid. Numerous
processes in nature and industry can be reduced to a similar
physical configuration, including oil recovery and aquifer and
soil remediation.

A macroscopic description of a liquid-liquid displacement
in a porous medium is traditionally given in the framework of
an extended Darcy model that is adopted for multiphase flows.
The model introduces such phenomenological parameters as
the relative permeabilities and the capillary pressure that
strongly depend on the relative amounts of liquids in a porous
matrix, which essentially means that the theory incorporates
not three but a (infinite) number of phenomenological con-
stants, as the experimental determination of the functions (or
curves) of the relative permeabilities and capillary pressure
requires a series of measurements of these quantities for a
number of saturation levels. This fact renders the numerical
results obtained on the basis of the Darcy model less valuable,
making the results site and fluids specific.

For a more universal understanding of multiphase flows
through a porous medium a pore-level analysis is required.
A pore-level model is usually based on the network approach
when the porous matrix is represented as a network of inter-
connected capillaries, that, for a more general representation,
may be taken with different (random) diameters [1,2]. Hence,
for understanding of a multiphase flow in a porous medium,
the initial task is reduced to the accurate description of a
multiphase flow within a single capillary, which is undertaken
in the current work.

*A.Vorobev@soton.ac.uk

The first studies of multiphase flows in a capillary were
carried out by West [3] and Washburn [4]. It was established
that for low Reynolds and capillary numbers (that are defined
as Re = ρ∗V∗d/η∗ and Ca = V∗η∗/σ∗, where V∗ is the typical
velocity of the flow in a capillary, d is the capillary’s diameter,
ρ∗ is the typical density, η∗ is the viscosity coefficient, and
σ∗ is the surface tension coefficient), the flow structure has
a parabolic Poiseuille profile, with an axisymmetric meniscus
that moves with the same speed as the rest of the liquids (like a
piston that displaces one of the liquids). The speed of the flow
is determined by the pressure difference that is reduced by
the value of the capillary pressure associated with the curved
interface. It was later pointed out that the capillary pressure,
associated with the liquid-liquid meniscus, is to be given by an
apparent contact angle that is different from the static contact
angle and that is determined by the flow rate [5].

In the cases of stronger injections, when the flow rates and
hence the capillary numbers are higher, the displacement of
one liquid by another occurs differently. A meniscus in this
case has a finger-type shape, with the injected fluid penetrat-
ing through the middle section of the capillary, displacing
the liquid at the far end, and leaving some liquid on the
capillary’s wall. This is termed a fingering displacement. The
major focus is to investigate the ratio of the volume of the
displaced liquid over the volume that remains deposited on
the capillary’s walls as a function of the capillary number
[6]. The theoretical modeling of a fingering displacement was
undertaken by Cox [7], who developed an approximate theory
capable of predicting the flow pattern near the liquid-liquid
interface, and the value of the fraction left on the tube’s
walls. The most recent series of works was probably published
by Soares et al. [8–10], who developed the Galerkin finite
element numerical technique for the modeling of a liquid-
liquid flow in a capillary.

These studies were also extended onto consideration of
the displacement of the liquid by another liquid when the
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liquids are miscible [11,12]. The miscible liquids correspond
to a limiting case of the fingering displacement, when the
capillary number is (infinitely) large due to low (absent)
interfacial stresses. For miscible liquids, a new parameter,
the Peclet number (Pe = V∗d/D∗, where D∗ is the diffusion
coefficient), needs to be introduced. It is found that for larger
values of the Peclet numbers (above Pe ∼ 1000) the observed
behavior agrees with immiscible systems (for the case of large
capillary numbers), with a clearly visible sharp interface that
separates the fluids and even the values of the surface ten-
sion coefficient for this miscible interface could be estimated
(∼0.43 dyn/cm). For lower Peclet numbers the experimental
results were difficult to obtain due to strong smearing of
interfaces.

The numerical model for miscible systems was developed
by Chen and Meiburg [12], who represented a pair of miscible
liquids as a homogeneous system (as a single-phase fluid with
impurity, neglecting capillary effects). The results of Chen
and Meiburg [12] agree with the experimental observations
achieved for the case of higher Peclet numbers.

The current paper provides the results of the direct numer-
ical simulation of an immiscible liquid-liquid displacement.
The numerical model is built up on the basis of the phase-field
approach, that introduces the possibility of mixing between
two phases. Nevertheless, in the current work, we always
assume that diffusive transport is negligible at least for the
duration of the displacement run and hence the liquids remain
immiscible. The advantages of the phase-field approach are
the ability of tracing the changes of the interface shape and
the ability of modeling the capillary and wetting properties
(including the modeling of the contact line slippage) that de-
termine the overall dynamics of a liquid-liquid displacement.

II. PROBLEM STATEMENT

A. Phase-field model: Governing equations

Within the phase-field approach the system of two liquids
is represented as a heterogeneous binary mixture. The position
of an interface is traced through the field of concentration,
that is defined as the mass fraction of one of the liquids in a
liquid-liquid mixture. A single set of the governing equations
is written for the entire multiphase system, including the
interface boundary, that is represented as a transitional layer
of a finite thickness (across the boundary all variables experi-
ence sharp but continuous changes). To take into account the
surface tension effects existent at interfaces, the free energy
function of a mixture is redefined as follows [13]:

f = f0(C) + ε

2
(∇C)2. (1)

Here f is the total specific free energy function and f0 is its
classical part. The magnitude of the additional term is given
by the capillary constant ε, that is assumed to be so small
that this term is negligible everywhere except for the location
of very strong concentration gradients that correspond to
interfaces.

The full equations that determine the evolution of a hetero-
geneous binary mixture with the states given by the free en-
ergy function (1) are called the Cahn-Hilliard-Navier-Stokes
equations [14]. The full equations are rather difficult for

numerical treatment, with the main difficulty caused by the
effect of quasicompressibility (the continuity equation needs
to be used in the full form owing to dependence of the mixture
density on concentration). In all works (e.g., Refs. [15–17]),
the numerical solution is given in the framework of the
Boussinesq approximation of the full equations. The Boussi-
nesq approximation of the Cahn-Hilliard-Navier-Stokes equa-
tions was strictly derived in paper [18], and this approximation
is employed in the current work.

The governing equations include the laws of conservation
for momentum, species, and mass:

∂�u
∂t

+ (�u · ∇)�u = −∇� + 1

Re
��u − 1

M
C∇μ, (2)

∂C

∂t
+ (�u · ∇)C = 1

Pe
�μ, (3)

∇ · �u = 0. (4)

Here t is the time and �u is the velocity vector (velocity is
defined as the mass-averaged velocity of a fluid particle that
includes two components of a mixture). The quantity � stands
for the modified pressure that needs to be determined through
the incompressibility constraint. The real pressure is given by
the following expression:

p = � − 1

M

(
Cn

(∇C)2

2
− μC + f0

)
. (5)

One sees that the right-hand side of Eq. (2) includes an
additional term that is frequently called the Korteweg force.
This term determines the action of the capillary forces that
define the shape of the interfacial boundary. In the equation
for the species balance (3) the diffusion term is given by
using the generalized Fick’s law, that defines the diffusion
flux proportional to the gradient of the chemical potential. The
chemical potential μ is set by the expression

μ = df0

dC
− Cn�C. (6)

The equations are written in the nondimensional form. The
quantities h, Vmax, h/Vmax, ρ∗V 2

max, μ∗ that set a typical flow in
a capillary are chosen as the scales of length, velocity, time,
pressure, and chemical potential. Here h is the diameter of a
tube, Vmax is the maximum velocity, and μ∗ and ρ∗ are the
typical values of the chemical potential and density.

The governing equations include the Reynolds, Peclet,
Mach, and Cahn numbers,

Re = ρ∗Vmaxh

η∗
, Pe = ρ∗Vmaxh

α∗μ∗
,

M = V 2
max

μ∗
, Cn = ε

μ∗h2
. (7)

The Reynolds number defines the ratio between the inertia and
viscous forces. For flows in a capillary the primary interest
plays the limit of low Reynolds numbers when the inertia
terms are negligible (although, in some porous media, e.g.,
in fixed beds of chemical reactors, the Reynolds numbers
may be as high as 1000 [19]). The Peclet number determines
the role of diffusion effects. Considerable smearing of an
initially sharp interface should occur after a time period of
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the order ∼Pe. In the current study we focus on the dynamics
of immiscible displacement, and we assume that Pe � 1 and
that the time needed for a liquid-liquid meniscus to move
through the whole tube is also much smaller than Pe. The
Mach number determines the role of the capillary effects in
the Navier-Stokes equation. The Cahn number determines the
thickness of the liquid-liquid interface, as δ = √

2Cn [14,18].
It should be added that the set of Eqs. (2)–(4) assumes

that two liquids of a mixture are characterized by similar
viscosity coefficients. For derivation of these equations [18],
it was assumed that the viscosity coefficients of the liquids are
different, although the difference is small, so the leading term
of the viscous force, that is kept in the equations, includes
just one single parameter, that may be defined as the average
viscosity of two liquids.

Finally, we need to define the expression for the classical
free energy function f0 that determines the equilibrium states
of a binary mixture (with omission of capillary effects) [20].
We are interested in the dynamics of a pair of immiscible
liquids. Such a mixture can be effectively represented by the
so-called double-well potential (see, e.g., Refs. [15–17]), that
can be written as

f0 = − 1
2C2 + C4. (8)

This expression has two minima, C = ± 1
2 , that correspond to

two pure components of the binary mixture.

B. Geometry: Boundary conditions

The governing equations are solved for a capillary that
is represented by a plane layer with two plates of length L
separated by a unit distance. The results shown below are
obtained for the layers of the length L = 6. This length was
found to be long enough for a sufficiently long evolution of
the liquid-liquid interface that would allow for general conclu-
sions to be made. The numerical runs were also conducted for
longer tubes, with L = 12, and no significant differences were
observed. The consideration in the current work is restricted
to the two-dimensional (2D) problem, with the Cartesian
coordinates, x and y, along and across the layer.

For the initial state we assume that the layer is filled with
two liquids, so that the first liquid occupies a small region at
the left end of the tube, and the second liquid occupies the rest
of the tube. Thus the initial concentration profile is determined
by the expression

C0 = 1

2
tanh

(
x − x0

δ0

)
. (9)

Here x0 is the initial position of the liquid boundary (usually,
x0 = 0.5). Initially the liquids are stationary and they are sepa-
rated by a thin flat vertical interface of a thickness δ0 = √

2Cn.
At the initial time moment, the fluids stay at rest (�u = 0). The
flow is driven by the pressure gradient enforced between the
ends of a capillary that is switched on at the time moment
t = 0. The effect of gravity is neglected: we assume that
the hydrostatic pressure is negligibly small as compared with
the capillary pressure and the pressure difference imposed
between the tube ends (e.g., due to a lower density contrast).

The governing equations are supplemented by the follow-
ing boundary conditions, at the upper and lower plates:

y = 0, 1 : ux = uy = 0,
∂μ

∂y
= 0,

∂C

∂y
= 0; (10)

at the left end of a capillary,

x = 0 : p = p1,
∂μ

∂x
= 0,

∂C

∂x
= 0; (11)

and at the right end,

x = L : p = 0,
∂μ

∂x
= 0,

∂C

∂x
= 0. (12)

Thus at the rigid plates we impose the standard no-slip
boundary condition for the velocity and the absence of the
diffusion flux (that is set by the gradient of the chemical po-
tential) through the boundary. The additional condition for the
concentration field sets the wetting conditions. In the current
work we assume the simplest case of the wetting condition
when the molecules of the walls interact with the molecules
of two liquids equally, so the contact line is orthogonal to the
wall. At the inlet and outlet boundaries we set the pressure
levels. We also impose the zero normal derivatives of the
chemical potential and concentration assuming continuity of
matter at the capillary’s ends.

The reference point for the pressure field is set at the right
(outlet) end of the tube. The pressure level at the left (inlet)
end of the tube is always set as

p1 = 8L

Re
. (13)

This value is chosen so that the maximum value of the velocity
(the velocity at the centreline) is equal to 1 for a single-phase
flow. Thus, in the simulations shown below, the pressure
gradient along the tube depends on the Reynolds number. For
the single-phase flow (negligible capillary effects) the velocity
profile always remains the same,

ux = 4y(1 − y); uy = 0, (14)

independent on the flow parameters.

C. Modeling of a contact line

A difficulty of the modeling of two-phase flows through
a capillary is given by a necessity to describe the motion
of a contact line [21]. Indeed, along the wall, the no-slip
condition is imposed for the fluid velocity (10), which seems
not to conform with the motion of the contact line that can be
observed in numerous experiments. To resolve this difficulty,
traditional sharp-interface models adopt a different condition
for the velocity field along the wall,(

ux + Ls
∂ux

∂y

)
wall

= 0, (15)

that introduces an additional phenomenological parameter Ls,
called the slip length. Although, as was shown by Jacqmin
[22], within the phase-field simulations the motion of a con-
tact line can be naturally obtained from the solution of the
governing Eqs. (2)–(4), and the use of the additional slip
model is not needed. To achieve this conclusion Jacqmin
conducted the work along two supplementary paths.
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Jacqmin fulfilled nanoscale computations of a multiphase
flow with the use of realistic liquid-liquid diffusivities and
with the use of the model for the shear-induced slip (15).
He demonstrated that with the no-slip condition “diffusion
can maintain the interface profile” for diffusivities as small as
D∗ ∼ 10−11 m2 s−1. At D∗ ∼ 10−12 m2 s−1 “the contact line is
maintained but the interface profile is distorted,” and at D∗ ∼
10−13 m2 s−1 “the contact line begins to fail.” Next, he showed
that if D∗ ∼ 10−10 m2 s−1 and slip length Ls = 10−8 m, then
slip effects are dominant. For the same diffusivity, but Ls =
10−9 m, “slip and diffusion are competitive in effect. With
L = 10−10 m diffusion effects are dominant.” He also noticed
that the molecular level simulations indicate slip lengths of
at most about Ls = 3 × 10−10 m, and thus, for realistic slip
lengths, diffusion effects are dominant over shear-induced
slip.

Jacqmin also examined the asymptotic behavior of flow
fields inside and outside the contact line region, which allowed
him to draw that “to leading order the outer-region velocity
field is the same as for sharp interfaces while the chemical
potential behaves like ln(r)/r” (when the equilibrium contact
angle αeq = 90◦). “The diffusive and viscous contact line
singularities implied by these outer solutions are resolved in
the inner region through chemical diffusion. The length scale
of the inner diffusion is about 10

√
η∗α∗/ρ∗. Diffusive fluxes

in this region are O(1). These counterbalance the effects of
the velocity, which, because of the assumed no-slip boundary
condition fluxes material through the interface in a narrow
boundary layer next to the wall.”

On the basis of his analysis, Jacqmin concluded that the
phase-field “contact line has the same far-field behavior as
the more traditional sharp-interface slip models of contact
line flow. A computational fluid dynamicist interested in
only macroscopic results can thus use either model. Certain
difficult to know parameters enter into both: in the case of slip
models it is the material dependent slip-length, in the case of
the phase-field model it is the material-dependent mobility.”

In our work, we solely rely on the description of the contact
line that is provided by the diffusion-interface approach. The
motion of the contact line is then determined by the mobility
coefficient α∗ (or, in nondimensional formulation, by the
Peclet number). Since we do not provide any empirical match-
ing to experiments, our results remain qualitative, neverthe-
less, we perform simulations for different Peclet numbers,
in the range from Pe = 103 to Pe = 105, and observe that
numerical results remain qualitatively similar.

D. Estimations: Typical values of governing parameters

The full problem (2)–(4) is determined by four governing
parameters (7). In addition, the capillary number that de-
termines the ratio between the viscous and surface tension
forces, is frequently used for classification of capillary flows.
In terms of the already introduced parameters, the capillary
number is defined as

Ca = M

Re
= Vmaxη∗

ρ∗μ∗h
. (16)

The difficulty of the phase-field approach is the use of
the nonstandard phenomenological coefficients, which values

are not directly measurable. In particular, definitions of the
nondimensional parameters (7) involve the typical value of
the chemical potential μ∗, the capillary constant ε, and the
mobility coefficient α∗.

The most important parameter, whose value is required for
practical calculations, is the typical value of the chemical po-
tential μ∗. By comparison of the phase-field definition of the
capillary number (16) with its classical definition (V∗η∗/σ∗),
one may understand that the typical value of the chemi-
cal potential may be estimated through the surface tension
coefficient,

μ∗ = σ∗
ρ∗h

. (17)

For instance, if one assumes that σ∗ ∼ 10−2 N/m, ρ∗ ∼
103 kg/m, and h ∼ 10−4 m, then the typical value of the
chemical potential may be estimated as μ∗ ∼ 0.1 J kg−1.

Next, the speed of the fluid flow in a capillary can be
estimated by using the following equation:

Vmax = �p

L

h2

8η∗
. (18)

For oil recovery applications, a typical pressure difference
can be estimated as �p/L = 107 Pa/103 m–104 Pa/m. We
also assume that the mixture that saturates a capillary has
the viscosity coefficient η∗ ∼ 10−3 Pa s. For a capillary of the
diameter h ∼ 10−4 m, the velocity of the mixture is Vmax ∼
10−2m/s. In this case, the Reynolds and Mach numbers can
be estimated as Re ∼ 1 and M ∼ 10−3, respectively. The
capillary number is then Ca ∼ 10−3.

It should be mentioned that the above estimates strongly
depend on the diameter of the capillary, and for narrower
capillaries the Reynolds and Mach numbers can have lower
values. In addition, under subsurface conditions, both water
and oil absorb gases, which lowers the value of the surface
tension coefficient. The absorption rates primarily depend on
pressure (on the reservoir depth), and the surface tension
coefficient of the oil-water interface might be as low as
10−3 N/m. In this case the estimate of the Reynolds number
remains unchanged, while the Mach number (and the capillary
number) may be lower.

The capillary constant ε primarily determines the thickness
of the liquid-liquid interface. In reality the interface thickness
is just several molecular layers, which is zero for the macro-
scopic approach. This signifies that the capillary constant
should be also very small. For the sake of numerical solution,
the interface is represented by a transitional layer of finite
thickness, and hence higher values of the capillary constant
are considered. Although, to prove the physical meaning of
the results, it is important to show that the numerical results
converge upon gradual reduction of the capillary constant (or
the Cahn number), which is done in Sec. III.

At last, we need to discuss the values of the mobility
coefficient α∗. This parameter is proportional to the coefficient
of diffusion D∗, and thus its value can be estimated as α∗ =
ρ∗D∗/μ∗.

We are interested in propagation of immiscible interfaces,
assuming that the Peclet number is so high that diffusive pro-
cesses remain insignificant. Indeed, the typical diffusive time
scale is τd = Pe, and hydrodynamic changes are determined
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by a different time scale, τh = Re. Our results are obtained for
Pe = 104 and Re � 1. Propagation of a meniscus through the
full length of a capillary (with the length of L = 6) takes less
than ten units of nondimensional time. Diffusion obviously
does not play a significant effect over such a short time period.

On the other hand, as shown by Jacqmin [22], the mo-
bility coefficient determines the motion of a contact line,
and thus our results remain sensitive to its value, even
when its values are very small (and hence when the Peclet
number is very large). Most of our results are obtained for
Pe = 104, that would correspond to the mobility coefficient,
α∗ ∼ 10−6 kg2 J−1 s−1 m−1, and to the liquid-liquid diffusiv-
ity, D∗ ∼ 10−10 m2 s−1. Jacqmin [22] showed that for such
diffusivities, diffusion could successfully support the motion
of a contact line. The change of the actual value of the Peclet
number does affect characteristics of the multiphase fluid flow,
although we observe no qualitative changes in the results
when the Peclet number varies in the range of 103 and 105.

III. NUMERICAL SOLUTION

The governing equations are solved numerically using
the formulation of primitive variables, pressure velocity, and
using the fractional-step (or projection) method that is imple-
mented on the basis of the finite difference approach [23,24].

The numerical results are reported in the terms of the
flow fields (the fields of concentration, pressure, velocity,
and chemical potential), and in the terms of the integral
parameters, the speed of the meniscus’ tip, and contact line,
the flow fluxes at the inlet or outlet, the length of the interface,
the surface tension coefficient, the capillary pressure, and the
apparent contact angle.

The position of the interface is determined by the concen-
tration level, C = 0. To determine the speed of the menis-
cus’ tip Vtip and the speed of the meniscus’ ends Vwall, we
determine the rates of changes of the corresponding points
of the interface, xtip and xwall. To determine the length of
the interface Lδ , we first search for the nodes between which
the concentration changes sign and determine the position of
the interface between these nodes by using the linear interpo-
lation; we next obtain the length of an interface element that
lies within the cell formed of four nodes; and finally we sum
up these elementary lengths to obtain the length of the whole
interface line.

To determine the apparent contact angle α, we calculate the
angle between the horizontal line and the line that connects
the end of the meniscus on the wall with another point on
the meniscus. The x position of another point is taken as a
fraction of the distance (xtip − xwall ). Three different fractions
are used, 0.25, 0.33, and 0.5, and the results are shown if the
so-obtained three angles are sufficiently close to each other.

We also calculate the coefficient of the surface tension as

σ = Cn

Lδ

∫
V

[(
∂C

∂x

)2

+
(

∂C

∂y

)2
]

dV . (19)

Here V is the volume (for the 2D case, the area) of the
computational domain.

Other studies on the liquid-liquid displacement in capillar-
ies are frequently focused on the determination of the fraction

FIG. 1. (a) The velocity of the tip of the liquid-liquid meniscus
and (b) the length of the meniscus vs time. The data are obtained for
Pe = 104, Cn = 4 × 10−4, Re = 1, M = 10−4 using the numerical
grids with the grid size of 1/250 (solid lines), 1/300 (dotted lines),
1/350 (dashed lines), and 1/400 (dash-dotted lines).

of the liquid that initially saturates a capillary, and that is
left in the capillary at the end of displacement. We calculate
this fraction using the definition that is based on the velocity
profile [12],

m = 1 − Q

Vtip
. (20)

Here Q is the volumetric flow flux through a capillary that is
determined at the capillary’s inlet or outlet (as both liquids are
incompressible these two quantities are equal),

Q =
∫

y
(ux )x=0,Ldy. (21)

For validation of our numerical code, we first observed
establishment of the classical Poiseuille profile (14), that is
realized for sufficiently large values of Mach number (in fact,
for M = 1) when the capillary effects become insignificant.
Next, we checked the numerical convergence of our results.
We found that the calculations are more challenging (ex-
hibit slower convergence upon improvement of the numerical
resolution) for lower Mach numbers (M = 10−3 and lower).
Figure 1 shows the curves obtained for M = 10−4 for four
different sizes of the grid cells. One can notice that the curves
that are obtained by using the different numerical grids differ,
although slightly, and upon gradual increase of the resolution,
the convergence to a limiting result is observed. Based on
these test runs we concluded that the resolution with the size
of grid cells of 1/300 is sufficient for generation of suffi-
ciently accurate results. Figure 2 depicts the curves obtained
for different Cahn numbers (different interface thicknesses).
Convergence of our results to the behavior of a two-phase
system with a sharp interface can be observed, in the sense that
the distance between the curves decreases when the interface
thickness is taken smaller and smaller. Further, we show
the results of numerical simulations for the Cahn number,
Cn = 4 × 10−4, which is considered to be sufficiently low
to reproduce the behavior of a liquid-liquid system with an
infinitely thin (sharp) interface.

Finally, we wish to remind that Jacqmin [22] identified
a spatial scale that characterizes the size of a region where
diffusion controls the motion of a contact line. In terms of
the nondimensional parameters, the nondimensional thick-
ness of the Jacqmin length (that is scaled by the capillary’s
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FIG. 2. (a) The velocity of the tip of the liquid-liquid meniscus
and (b) the length of the meniscus vs time. The data are obtained for
Pe = 104, Re = 1, M = 10−2 for different Cahn numbers (different
interface thicknesses, as δ = √

2Cn) Cn = 5 × 10−5 (long-dashed
lines), Cn = 2 × 10−4 (solid lines), Cn = 4 × 10−4 (dotted lines),
and Cn = 8 × 10−4 (dashed lines).

diameter), is 10
√

M/(RePe) = 10
√

Ca/Pe. In our work, this
length varies from 0.1 (for M = 1, Re = 1 and Pe = 104)
to 10−3 (for M = 10−4, Re = 1, and Pe = 104). This typical
length remains greater than the spatial size of the computa-
tional mesh, which is also confirmed by the mesh indepen-
dence of our results.

IV. RESULTS

The numerical problem is characterized by a number of
governing parameters. In particular, the behavior of a mix-
ture is strongly affected by the value of the Mach number.
Figures 3 and 4 depict the fields of concentration and pressure
for three time moments that are obtained for the runs fulfilled
for M = 10−2 and M = 10−4 (or for Ca = 10−2 and Ca =
10−4, as Re = 1). These two cases represent two different
scenarios for the motion of the meniscus. In the case of higher
Mach number (higher capillary number), the displacement of
a liquid from a tube occurs via development of a finger that
displaces the liquid from the middle of the tube, although
some volume of the liquid remains attached to the tube’s
walls. The motion of the meniscus’s tip occurs considerably
faster as compared with the motion of the meniscus’s ends,
so the interface constantly stretches. One can also notice

that the visible (apparent) contact angle that determines the
shape of the interface near the wall also constantly changes,
becoming smaller. The shape of the interface is determined
by the concentration field. Owing to the boundary condition
for concentration (10), the isolines of the concentration field
always remain orthogonal to the wall, and the contact line also
remains orthogonal to the wall. This property can, however, be
noticed only if the region near the contact line is magnified.

In the case of smaller Mach number (smaller capillary
number), the meniscus propagates down the tube, preserving
its shape. The complete displacement of the liquid that ini-
tially saturates a tube is observed. One can also notice that at
lower values of the Mach number (lower capillary numbers)
the speed of the meniscus is considerably lower.

In Fig. 4 one observes that the pressure drops linearly along
the tube. Although near the meniscus the pressure isolines
become substantially different from a simple set of vertical
lines, so the shape of the meniscus could be clearly seen
from the isolines of the pressure field. We assume that the
fluids stay at rest at the initial moment, when the pressure
difference between the tube ends is switched on. Very quickly
after that, a “steady” fluid flow is established in a capillary,
in terms that the inlet and outlet flow fluxes remain constant;
nevertheless, during this motion one liquid is being displaced
by another, and the propagation of a liquid-liquid interface
induces a nonsteady vortical motion in the tube.

Figure 5 shows the flow fields at an intermediate time mo-
ment. In addition to the fields of pressure and concentration,
one can also see the field of velocity [Fig. 5(b)]. Far from
the meniscus the velocity has a parabolic profile. Near the
meniscus the velocity profile is different, and Fig. 5(d) depicts
the deviation of the velocity field from the Poiseuille profile
(14). One can see that the motion of the meniscus is slowed
down by a reverse motion of the fluid near the meniscus’s
tip. Figure 5(c) also shows the field of chemical potential.
Figures 6 and 7 depict the characteristics of the meniscus’s
motion for the different Mach and Reynolds numbers. The
pressure difference that is set between the ends of the tubes
(13) is defined to have the maximum velocity equal to 1
when the capillary effects are negligible. The velocity of the
meniscus’s tip is shown in Fig. 6. The start of the numerical
run is characterized by a short adjustment period, during
which the flow flux (and the velocity of the meniscus’s tip)

FIG. 3. The typical fields of concentration for different time moments. The data are obtained for Pe = 104, Cn = 4 × 10−4, Re = 1, and
two different Mach numbers, M = 10−2 (a)–(c) and M = 10−4 (d)–(f).
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FIG. 4. The typical fields of pressure for different time moments. All parameters as in Fig. 3.

attains a certain constant value, that remains unchanged until
the meniscus stays within the tube.

In Fig. 6 one sees that for the higher Mach numbers (or
higher capillary numbers), when the surface tension effects
are weaker, the velocity profile is just slightly different from
the classical Poiseuille profile. For these parameters, the lower
the value of the Reynolds number, the closer the velocity of
the meniscus’s tip (that corresponds to the maximum velocity
of the flow) approaches 1, and hence, the closer the flow
profile approaches the classical Poiseuille solution (14).

The dependence on the Reynolds number becomes more
pronounced at lower Mach numbers. At very low Mach num-
bers (low capillary numbers), when a pistonlike displacement
is observed, the velocity of the meniscus’s tip becomes sig-
nificantly lower than 1, and the dependence on the Reynolds
number becomes very weak.

Figure 7 shows the time evolution of the meniscus’s length.
For higher Mach numbers, the fingering displacement is
observed, when the meniscus constantly stretches, and the
meniscus’s length grows linearly. For very low Mach num-
bers, the meniscus’s length quickly settles to a constant value.
The interface stretching depends on the Reynolds numbers
and the stretching is minimal at higher Reynolds numbers.
Figure 8 shows the velocity profiles at the meniscus’s tip and
at some distance from the tip (this profile is taken near the
outlet, at x = 5.5, although the velocity profile remains nearly
constant along the tube, except for a very narrow region in the
vicinity of the meniscus). One can see that the velocity profile
has a parabolic shape, with the maximum value lower than
1. The profile becomes nonparabolic near the meniscus. The
greater differences are observed for the case of lower Mach

numbers, when the velocity is nearly constant in the bulk (in
the region of the meniscus) with two thin boundary layers
formed near the tube’s walls. The difficulties with resolution
of these thin boundary layers explain the slower numerical
convergence of the results for lower Mach numbers.

The velocity of the meniscus can be calculated on the basis
of the classical Washburn equation [4],

Vtip = 1 − Re

8

(
−∂�

∂x

)
= Re

8

(p1 − p2) − pc

L

= 1 − Re

8L
pc. (22)

Thus, the flow in a tube is slowed down by capillary forces,
and the higher the value of the capillary pressure, the greater
the speed of the meniscus’s tip differs from 1. Figure 9 depicts
the pressure profiles along the centerlines. Outside the menis-
cus the pressure drops linearly. There is a jump in the pressure
levels at two sides of the meniscus, which corresponds to the
capillary pressure (the pressure is greater at the concave side
of the interface as expected). The capillary pressure depends
on the value of the Mach number, which explains the stronger
differences of the results obtained for lower Mach numbers
(for greater capillary pressures) from the classical Poiseuille
flows. It is interesting to note that the capillary pressure that
is determined in Fig. 9 and the speed of the meniscus’s tip
are in favorable agreement with the Washburn equation (22):
the capillary pressures in Fig. 9 are approximately 3.2 and 28
for M = 10−2 and M = 10−4, respectively, which gives the
meniscus’s velocities, 0.93 and 0.42, and which are close to
the values, 0.87 and 0.32, from Fig. 8.

FIG. 5. (a) The fields of pressure (isolines with the density fields); (b) concentration (isolines) and velocity (vectors); (c) chemical potential;
and (d) concentration and deviation of the velocity from the Poiseuille profile. The fields are shown for the time moment t = 3, and parameters
Pe = 104, Re = 1, Cn = 4 × 10−4.
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FIG. 6. The velocity of the meniscus’s tip for the numerical runs
with M = 10−1 (a), M = 10−2 (b), M = 10−3 (c), and M = 10−4 (d).
The other parameters are Pe = 104, Cn = 4 × 10−4, and different
Reynolds numbers, Re = 0.25 (long-dashed lines), Re = 0.5 (solid
lines), Re = 1 (dotted lines), and Re = 2 (dashed lines).

The pressure profiles have a sharp peak within the tran-
sition zone that separates two liquids. In Fig. 9(b), the peak
is cut for a clearer picture. We consider this peak an artefact
of the phase-field model. For instance, the phase-field model
predicts that the equilibrium concentration profile across the
interface is given by the tanh function [14], which is a
modeling assumption rather than a real concentration profile.

FIG. 7. The time changes of the meniscus’s length. The parame-
ters are the same as in Fig. 6.

FIG. 8. The profiles of the x component of the velocity across
the tube at the points of the meniscus’s tip (solid lines) and near the
inlet or outlet (dashed lines). The data are obtained for for t = 3,
Pe = 104, Re = 1, Cn = 4 × 10−4, and two different Mach numbers,
M = 10−2 (a) and M = 10−4 (b).

Similarly, the particular shape of the pressure profile within
the liquid-liquid interface is insignificant (and may not be
validated by any experimental study), but what is much more
important are the levels of the concentration at the sides of the
interface, that are measurable, and that are correctly predicted
by the phase-field model. The magnitude of this peak depends
on the Mach and Cahn numbers. For instance, Fig. 10 depicts
the pressure distributions for three values of the Cahn number
(or for three different interface thicknesses, as δ ∼ √

2Cn).
One sees that the magnitude of the peak becomes smaller
when the Cahn number (and the interface thickness) tends to
zero. This result confirms that the singular behavior in the
pressure field is a feature of the numerical approach. The
physically correct pressure field that could be obtained in the
limit of zero interface thickness would apparently have no
peak.

We need to underline that the results in the regions outside
of the transitional zone demonstrate the physically relevant
behavior even when the value of the capillary number is
different from zero (and, also important, that the results in the
outer regions are independent of the value of the Cahn number
when the Cahn number is sufficiently small). For instance, as
earlier demonstrated by Jacqmin [22], the chemical potential
within the contact line also exhibits the singular behavior
(and that is also observed in our simulations), although “the
outer-region velocity field is the same as for sharp interfaces.”
The surface tension coefficient for the liquid-liquid interface
can be calculated from the concentration field using Eq. (19).
In Fig. 11 one sees that the surface tension coefficient changes

FIG. 9. The profiles of the pressure along the centerline of the
tube. The parameters are the same as in Fig. 8.
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FIG. 10. The pressure profiles along the centerline and along
the wall for M = 0.01, Re = 1, Pe = 104, and three different Cahn
numbers, Cn = 8 × 104 (dashed line), Cn = 2 × 104 (solid line), and
Cn = 5 × 105 (dotted line). The profiles are shown for t = 3.

over time, and these changes are related to interface stretching
that alters the interface thickness (and the surface tension
coefficient is inversely proportional to the interface thick-
ness) [25]. For lower Mach numbers, when the shape of the
meniscus stabilizes, the surface tension coefficient eventually
reaches a constant value.

Figure 12 depicts the time changes of the apparent contact
angle. For higher Mach numbers, for the fingering displace-
ment, the contact angle becomes smaller and smaller over
time, ultimately approaching zero value. If the shape of the
meniscus stabilizes then the contact angle takes a certain
constant value, which depends on the Mach and Reynolds
numbers. For the case of very low Mach numbers and higher
Reynolds numbers, the apparent contact angle approaches
90◦, which is the static contact angle set by the boundary
condition for concentration (10).

For an axisymmetric meniscus enclosed in a capillary,
the capillary pressure can be determined using a standard

FIG. 11. The time evolution of the surface tension coefficient.
The parameters are the same as in Fig. 6.

FIG. 12. The time evolution of the dynamic contact angle. The
parameters are the same as in Fig. 6. In (d), only two curves are
shown for Re = 0.25 and Re = 0.5, as the adopted algorithm for
calculations of the contact angle generates too noisy results for
higher Reynolds numbers.

equation (written here in the nondimensional form),

pc = 2σ cos(θ )

MR
. (23)

Here R = 1/2 is the capillary’s radius.
The values of the capillary pressure that can be determined

from Fig. 9 are in a perfect match with the data given by
Eq. (23), if one uses the values of the surface tension coef-
ficient and the apparent contact angle from Figs. 11 and 12.
For instance, for M = 10−2 and Re = 1, the surface tension
coefficient equals 0.0079, the apparent contact angle is 7◦,
and using Eq. (23) one obtains pc ∼ 3.1, which is very close
to the value 3.2, as in Fig. 9(a). Finally, Fig. 13 depicts the
values of the mass fraction of the liquid that initially saturates
a capillary and that is eventually left on the capillary’s walls.
For higher Mach (and capillary) numbers, when the capillary
effects are negligible, and the flow profile is close to the
Poiseuille flow, Q = (2/3)Vtip, and hence m = 1/3. This value
differs from the asymptotic value 1/2, reported in numerous
studies [6,10,11], which is solely explained by the fact that we
consider a 2D geometry, while all other studies deal with 3D
configurations. It can be easily shown that for an axisymmetric
Poiseuille flow in a tube with the circular cross section, the
mass fraction defined by Eq. (20) is m = 1/2.

In spite of the difference in the asymptotic values at large
capillary numbers, the general dependence predicted by our
numerical simulations is in a good agreement with other
theoretical and experimental works [6,10,11]. In addition, the
calculation of the mass fraction m is traditionally fulfilled
for the fingering displacement, although formula (20) may be
applied for an arbitrary velocity profile. Figure 13 depicts the
data obtained for the fingering and pistonlike displacements,
which are marked by the circles and crosses, respectively.
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FIG. 13. The mass fraction (20) vs capillary number. The results
are shown for Pe = 104, Cn = 4 × 10−4, and different Reynolds
numbers. Circles correspond to the fingering displacement, and
crosses depict the pistonlike displacements.

V. DISCUSSION

An apparent difficulty of the direct numerical modeling of
the liquid-liquid displacement is the fact that the meniscus
may change its shape. The meniscus’s shape determines the
capillary pressure, and the capillary pressure can alter the flow
flux through the capillary. This complex problem seems to be
inherently unsteady: even if one agrees that the flow profile
from the meniscus is parabolic, the amplitude for this profile
remains undefined, as it is determined by the variable capillary
pressure. This is a major reason to solve the problem in the
formulation of pressure velocity, being able to set the pressure
levels at the capillary’s inlet or outlet ends, rather then the
velocity profiles.

Our results show that the meniscus shape does constantly
evolve if the capillary number is sufficiently high (the fin-
gering displacement). The capillary pressure [calculated with

FIG. 14. The capillary pressure as calculated from Eq. (23) vs
time. The curves are plotted for M = 10−2 and other parameters as
in Fig. 6.

FIG. 15. The position of a meniscus on a wall vs time. The curves
are plotted for M = 10−2, Re = 1, Cn = 4 × 10−4 and three different
Peclet numbers, Pe = 103 (dashed line), Pe = 104 (solid line), and
Pe = 105 (dotted line).

the use of Eq. (23)] also experiences some minor changes as
can be seen in Fig. 14. Nevertheless, the flow flux through
the capillary and the speed of the meniscus remain time
independent.

Modeling of two-phase flows in a capillary is also compli-
cated by the necessity to reproduce the movement of a contact
line. Other researchers either try to avoid this problem by
assuming that the wall is completely wetted by one of the
liquids [8–10], or adopt the model for the shear-induced slip
that introduces an additional phenomenological parameter, the
slip length (see, e.g., Ref. [26]).

In the phase-field approach the position of the interface
is traced on the basis of the concentration field: movements
of an interface, as well as movements of a contact line are
explained by the evolution of the concentration field that
is determined by the species balance Eq. (3). We need to
underline that all flow fields, including the concentration field,
are mesh independent in our simulations. The movement of
a contact line is ultimately determined by diffusion in a thin
region formed near a contact line. The diffusive transport is
determined by the Peclet number, and thus this parameter
determines the slippage rate of a contact line (see Fig. 15).
By performing the simulations for several different Peclet
numbers, we show that the flow characteristics depend on
this parameter, although no qualitative changes in the flow
behavior are observed [for Pe = (103–105)].

VI. CONCLUSIONS

In this work, we provide a direct numerical modeling
of the liquid-liquid displacement within the capillary. We
consider a wide range of the capillary and Reynolds numbers,
reproducing the scenarios of the fingering displacement and
the pistonlike displacement of a liquid by injection of another
liquid. The phase-field approach is used for modeling the
hydrodynamic evolution of two immiscible liquids.

We demonstrate that the phase-field approach is capable
of reproducing all features of the liquid-liquid displacement,
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predicting the temporal changes of the velocity profile, the
interface shape, the capillary pressure associated with the
meniscus, the apparent contact angle, and the volume of
the liquid that is left on the capillary’s walls. In particular, we
demonstrate the pressure profiles across the curved meniscus,
showing the values of the capillary pressure, which is not
available in other studies.

To verify our results, (i) we show that the pressure jump
across the interface is well aligned with the value of the
capillary pressure that is calculated using the surface tension
coefficient that is defined by the integration of the square of
the concentration gradient across the interface; and (ii) we
show that the effect of the capillary pressure on the motion of
fluids through the capillary agrees with the classical Washburn
equation. Moreover, far from a fluid-fluid meniscus, the veloc-
ity and pressure profiles are also in agreement with classical
expectations.

In conclusion, we would like to state that the developed
model allows dynamic determination of the capillary pressure
and the apparent angle for a liquid-liquid meniscus propa-
gating through a capillary, providing a robust approach for
dynamic simulation of the liquid-liquid displacement in a
single capillary. In our future work, we aim to adopt this
approach for the modeling of the liquid-liquid displacement
through a representative element of a porous medium to be
given by a regular network of capillaries.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for
Basic Research (Grant No. 18-01-00782). The numerical cal-
culations were performed using the “Uran” supercomputer of
the IMM UB RAS.

[1] E. Aker, K. J. Maloy, A. Hansen, and G. G. Batrouni, Transp.
Porous Media 32, 163 (1998).

[2] M. S. P. Stevar and A. Vorobev, Transp. Porous Media 100, 407
(2013).

[3] G. D. West, Proc. R. Soc. London, Ser. A 86, 20 (1911).
[4] E. W. Washburn, Phys. Rev. 17, 273 (1921).
[5] C. G. Ngan and E. B. Dussan, J. Fluid Mech. 118, 27 (1982).
[6] G. I. Taylor, J. Fluid Mech. 10, 161 (1961).
[7] B. G. Cox, J. Fluid Mech. 14, 81 (1962).
[8] E. J. Soares and R. L. Thompson, J. Fluid Mech. 641, 63 (2009).
[9] J. F. Freitas, E. J. Soares, and R. L. Thompson, Int. J.

Multiphase Flow 37, 640 (2011).
[10] E. J. Soares, R. L. Thompson, and D. C. Niero, Phys. Fluids 27,

082105 (2015).
[11] P. Petitjeans and T. Maxworthy, J. Fluid Mech. 326, 37 (1996).
[12] C.-Y. Chen and E. Meiburg, J. Fluid Mech. 326, 57 (1996).
[13] J. Cahn and J. Hilliard, J. Chem. Phys. 31, 688 (1959).
[14] J. Lowengrub and L. Truskinovsky, Proc. R. Soc. London, Ser.

A 454, 2617 (1998).

[15] D. Jacqmin, J. Comput. Phys. 155, 96 (1999).
[16] H. Ding, P. Spelt, and C. Shu, J. Comput. Phys. 226, 2078

(2007).
[17] M. Ahmadlouydarab and J. J. Feng, J. Fluid Mech. 746, 214

(2014).
[18] A. Vorobev, Phys. Rev. E 82, 056312 (2010).
[19] R. A. Wooding and H. J. Morel-Seytoux, Annu. Rev. Fluid

Mech. 8, 233 (1976).
[20] A. Vorobev, D. Lyubimov, and T. Lyubimova, Phys. Rev. E 95,

022803 (2017).
[21] L. M. Pismen and A. Nir, Phys. Fluids 25, 3 (1982).
[22] D. Jacqmin, J. Fluid Mech. 402, 57 (2000).
[23] J. H. Ferziger and M. Peric, Computational Methods for Fluid

Dynamics (Springer, New York, 2002).
[24] J. L. Guermond, P. Minev, and J. Shen, Comput. Methods Appl.

Mech. Eng. 195, 5857 (2006).
[25] T. Lyubimova, A. Vorobev, and S. Prokopev, Phys. Fluids 31,

014104 (2019).
[26] Y. Sui and D. M. Spelt, Phys. Fluids 23, 122104 (2011).

033113-11

https://doi.org/10.1023/A:1006510106194
https://doi.org/10.1023/A:1006510106194
https://doi.org/10.1023/A:1006510106194
https://doi.org/10.1023/A:1006510106194
https://doi.org/10.1007/s11242-013-0223-1
https://doi.org/10.1007/s11242-013-0223-1
https://doi.org/10.1007/s11242-013-0223-1
https://doi.org/10.1007/s11242-013-0223-1
https://doi.org/10.1098/rspa.1911.0076
https://doi.org/10.1098/rspa.1911.0076
https://doi.org/10.1098/rspa.1911.0076
https://doi.org/10.1098/rspa.1911.0076
https://doi.org/10.1103/PhysRev.17.273
https://doi.org/10.1103/PhysRev.17.273
https://doi.org/10.1103/PhysRev.17.273
https://doi.org/10.1103/PhysRev.17.273
https://doi.org/10.1017/S0022112082000949
https://doi.org/10.1017/S0022112082000949
https://doi.org/10.1017/S0022112082000949
https://doi.org/10.1017/S0022112082000949
https://doi.org/10.1017/S0022112061000159
https://doi.org/10.1017/S0022112061000159
https://doi.org/10.1017/S0022112061000159
https://doi.org/10.1017/S0022112061000159
https://doi.org/10.1017/S0022112062001081
https://doi.org/10.1017/S0022112062001081
https://doi.org/10.1017/S0022112062001081
https://doi.org/10.1017/S0022112062001081
https://doi.org/10.1017/S0022112009991546
https://doi.org/10.1017/S0022112009991546
https://doi.org/10.1017/S0022112009991546
https://doi.org/10.1017/S0022112009991546
https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.003
https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.003
https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.003
https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.003
https://doi.org/10.1063/1.4928912
https://doi.org/10.1063/1.4928912
https://doi.org/10.1063/1.4928912
https://doi.org/10.1063/1.4928912
https://doi.org/10.1017/S0022112096008233
https://doi.org/10.1017/S0022112096008233
https://doi.org/10.1017/S0022112096008233
https://doi.org/10.1017/S0022112096008233
https://doi.org/10.1017/S0022112096008245
https://doi.org/10.1017/S0022112096008245
https://doi.org/10.1017/S0022112096008245
https://doi.org/10.1017/S0022112096008245
https://doi.org/10.1063/1.1730447
https://doi.org/10.1063/1.1730447
https://doi.org/10.1063/1.1730447
https://doi.org/10.1063/1.1730447
https://doi.org/10.1098/rspa.1998.0273
https://doi.org/10.1098/rspa.1998.0273
https://doi.org/10.1098/rspa.1998.0273
https://doi.org/10.1098/rspa.1998.0273
https://doi.org/10.1006/jcph.1999.6332
https://doi.org/10.1006/jcph.1999.6332
https://doi.org/10.1006/jcph.1999.6332
https://doi.org/10.1006/jcph.1999.6332
https://doi.org/10.1016/j.jcp.2007.06.028
https://doi.org/10.1016/j.jcp.2007.06.028
https://doi.org/10.1016/j.jcp.2007.06.028
https://doi.org/10.1016/j.jcp.2007.06.028
https://doi.org/10.1017/jfm.2014.133
https://doi.org/10.1017/jfm.2014.133
https://doi.org/10.1017/jfm.2014.133
https://doi.org/10.1017/jfm.2014.133
https://doi.org/10.1103/PhysRevE.82.056312
https://doi.org/10.1103/PhysRevE.82.056312
https://doi.org/10.1103/PhysRevE.82.056312
https://doi.org/10.1103/PhysRevE.82.056312
https://doi.org/10.1146/annurev.fl.08.010176.001313
https://doi.org/10.1146/annurev.fl.08.010176.001313
https://doi.org/10.1146/annurev.fl.08.010176.001313
https://doi.org/10.1146/annurev.fl.08.010176.001313
https://doi.org/10.1103/PhysRevE.95.022803
https://doi.org/10.1103/PhysRevE.95.022803
https://doi.org/10.1103/PhysRevE.95.022803
https://doi.org/10.1103/PhysRevE.95.022803
https://doi.org/10.1063/1.863626
https://doi.org/10.1063/1.863626
https://doi.org/10.1063/1.863626
https://doi.org/10.1063/1.863626
https://doi.org/10.1017/S0022112099006874
https://doi.org/10.1017/S0022112099006874
https://doi.org/10.1017/S0022112099006874
https://doi.org/10.1017/S0022112099006874
https://doi.org/10.1016/j.cma.2005.08.016
https://doi.org/10.1016/j.cma.2005.08.016
https://doi.org/10.1016/j.cma.2005.08.016
https://doi.org/10.1016/j.cma.2005.08.016
https://doi.org/10.1063/1.5064547
https://doi.org/10.1063/1.5064547
https://doi.org/10.1063/1.5064547
https://doi.org/10.1063/1.5064547
https://doi.org/10.1063/1.3670010
https://doi.org/10.1063/1.3670010
https://doi.org/10.1063/1.3670010
https://doi.org/10.1063/1.3670010

