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Onset of double-diffusive convection in near-critical gas mixtures
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Near the thermodynamic critical point, the physical properties of binary fluids exhibit large variations in
response to small temperature and concentration differences, whose effects on the onset of double-diffusive
convection are reported here. The vertical symmetry is broken, irregular penetrative instability occurs, and
cat’s eye patterns are identified in the fingering regime and oscillatory regime, respectively. A new pa-
rameter � is defined which indicates how the variations of physical properties influence flow fields. It is
seen through numerical simulations that the Boussinesq approximation with constant physical properties has
limited applicability, and that the Boussinesq equations with variable properties and density will describe
all features seen. This conclusion is based on comparisons with the fully compressible, variable-property
system.
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I. INTRODUCTION

A supercritical fluid is any substance at a temperature and
pressure above its liquid-vapor critical point. A near-critical
fluid refers to a supercritical fluid with a state slightly above
the critical point. It is well-known that close to a critical
point, strong anomalies are present in thermodynamic and
transport properties of pure fluids [1]. Buoyant convection in
near-critical pure fluids has attracted much attention [2], in
which the (one-component) Rayleigh-Bénard (RB) problem
is a subset. Theoretically, Carlès and Ugurtas [3], as a valida-
tion of the pioneering work of Giterman and Shteinberg [4],
pointed out that a modified Rayleigh number which includes
the influence of adiabatic temperature gradient (ATG) should
be used to predict the onset of convection [5]. Experimental
investigations of RB convection [6–8] reveal the development
of the convection, the role of ATG, and some heat transfer
characteristics. A series of numerical simulations has been
done [9–12], to understand the hydrodynamic behavior of RB
convection. The most intriguing phenomenon is that owing to
the piston effect [13,14], the convection is triggered from both
the lower and the upper boundaries when the fluid is heated
from below while the top wall keeps its initial temperature.

Like heat transfer, mass transfer in a near-critical fluid also
goes with some intriguing phenomena. In our recent work,
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the onset of natural convection in a near-critical binary gas
mixture driven by convection gradient is studied. Due to the
ATG, the convection is actually a limiting case of fingering
double-diffusive convection (DDC) [15]. The criterion for
convection onset has been reported there for fingering cases
with constant physical properties. This fact inspires us to
conduct a comprehensive survey about the onset of DDC in
near-critical gases. The highly compressible nature of a near-
critical binary gas is anticipated to bring about new features
and dynamics. This idea is also prompted by the growing
applications of supercritical fluids in chemical extractions, en-
ergy technology, and biological synthesis, where near-critical
multicomponent systems always exist. Therefore, studying
DDC in the critical region is fundamental to understand such
applications.

DDC is a buoyant instability phenomenon driven by the
interaction between two fluid components that diffuse at
different rates. The most striking feature of DDC is that
convection can be triggered even in a statically stable fluid,
namely a fluid that is heavier at bottom. This phenomenon
was first discovered by Stern [16] in an oceanographic ap-
plication, where temperature and salt concentration are the
two competing components. DDC plays an important role in
oceanic mixing, and it has also been studied extensively in
other applications such as crystal growth, magma dynamics,
and planetary interiors [17]. Depending on the relationship
between the diffusivities and gradients of the two components,
there are two forms of DDC: fingering and oscillatory. Fin-
gering convection occurs when the slow diffuser is unstably
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stratified and the fast one is stabilizing. Oscillatory DDC oc-
curs when the fast diffuser is unstably distributed and the slow
one is stabilizing. The onset of DDC has been studied through
linear stability analysis (LSA) for a horizontal fluid layer
subject to vertical temperature and concentration gradients,
and stability diagrams have been established for both forms
(see, for instance, Refs. [18–20]).

Depending on the source of the concentration gradient,
there are two kinds of problems. In the first kind of prob-
lem, the concentration gradient is originated from external
factors and is introduced into the model through the boundary
conditions. It corresponds to various applications where the
supercritical fluids are used as solvents, such as extraction,
crystal growth [21], and adsorption [22]. Because the Dirich-
let boundary condition for concentration is simple, facilitates
theoretical studies, and helps to extract all phenomena, it
has been commonly used by previous studies concerning
DDC in other systems, such as Refs. [23–25]. In the second
kind of problem, the concentration gradient is established in
response to temperature gradient by the cross-diffusion effects
(Soret and Dufour effects), where the boundaries are usually
considered as impermeable. For near-critical binary fluids, the
examples are Refs. [26,27].

At present, we consider the onset of DDC in a highly
compressible near-critical binary gas as the first kind of
problem. In particular, we investigate the onset of DDC in a
near-critical binary gas layer bounded by two horizontal rigid
walls and subject to vertical temperature and concentration
gradients under Dirichlet boundary conditions. The cross-
diffusion effects are omitted. In general, it has been customary
to use the Boussinesq approximation (BA) in previous studies
of DDC, which brings huge simplifications to the governing
equations, and makes it possible to obtain analytical criteria
for the onset of convection [28]. For example, in the pioneer-
ing work of Shteinberg [29], the onset of DDC in near-critical
gases is studied based on the Boussinesq equations. However,
the applicability of the BA for DDC in near-critical gases
is questionable. Here, the applicability of the BA and the
influence of variable physical properties on the stability are
main concerns, which have not been covered by Ref. [29].
Through a numerical LSA, it is shown here that for large
enough concentration Rayleigh number, the BA breaks down.
The errors can be avoided by modifying the BA by including
the variable properties and density.

This paper is organized as follows. The problem under
consideration is described in Sec. II. The formulation of LSA
is derived in Sec. III. Sections IV and V are dedicated to
reporting results and discussing the mechanism for the fin-
gering regime and oscillatory regime, respectively. A further
discussion on the parameter proposed in the previous two
sections is presented in Sec. VI. The paper is concluded in
Sec. VII.

II. PROBLEM DESCRIPTION

Figure 1 shows a two-dimensional horizontal layer with
thickness d of a binary gas composed of, say, CO2 and
C2H6 close to and above its critical point. The concentration
(mass fraction) of C2H6 is denoted by c. Horizontal and
vertical directions, are denoted by x and z, respectively. The

d

x
z

g u = w = 0 c = c2 T = T2

u = w = 0 c = c1 T = T1

FIG. 1. Physical model for LSA.

two horizontal boundaries are rigid, with Dirichlet boundary
conditions applied for both temperature and concentration.
These are given by

T = T1, c = c1, u = w = 0, on z = 0,
(1)

T = T2, c = c2, u = w = 0, on z = d,

where T is the temperature, and u, w are the horizontal and
vertical components of velocity, respectively. The Dirichlet
boundary condition for concentration is difficult to attain in
experiments. However, in the present theoretical study, it is
considered because it is simpler and facilitates to extract all
the phenomena.

In the critical region, thermodynamic and transport prop-
erties of the gases are very sensitive to the variations of
temperature and concentration. Define an average reference
state of the gas mixture:

Tr = T1 + T2

2
, cr = c1 + c2

2
, ρr = ρc|c=cr , (2a, b, c)

where the subscript r denotes reference properties, and ρc

is the critical density (a function of c). Accordingly, the
reference reduced temperature is given by

Tr − Tc|c=cr

Tc|c=cr

= εr � 1, (3)

where Tc is the critical temperature (a function of c). In this
study, cr = 0.67 is taken, because the physical properties
are available from references (see Appendix A for details).
The critical parameters are Tc|c=cr = 297.44 K, ρc|c=cr =
244.94 kg/m3.The mixture considered in this study satisfies
(∂ρ/∂c)p,T > 0, where ρ is the density of the mixture and p
the pressure. The base state density ρ̄ and reference pressure
pr satisfy the condition of static equilibrium with the con-
straint of a mean density equal to ρr , namely,

−d pr

dz
= ρ̄g,

∫ d

0
ρ̄ dz = ρrd, (4a, b)

with g = 9.81 m/s2, the gravitational acceleration.
The governing equations for binary gases developed by

Landau and Lifshitz [30] together with a linearized equa-
tion of state are adopted and modified to describe a Newto-
nian, compressible, viscous and heat-conducting near-critical
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binary gas:

∂ρ

∂t
+ ∇ · (ρu) = 0,

ρ

[
∂u
∂t

+ (u · ∇)u
]

= −∇p + ∇ · (η∇u) + ∇ · [η(∇u)T]

− 2

3
∇(η∇ · u) + (ρ − ρ̄ )g,

ρcp

(
∂T

∂t
+u · ∇T

)
= ∇ · (λ∇T )+ ρrβT

ρ

(
Dp

Dt
−ρ̄gw

)
+	,

ρ

(
∂c

∂t
+ u · ∇c

)
= ∇ · (ρD∇c),

ρ = ρ̄ + ρr[αp − β(T − T̄ ) + κ (c − c̄)],

(5)

where t is the time; velocity u = (u,w); η and g(0,−g)
are, respectively, the dynamic viscosity and the grav-
itational acceleration vector; D is the diffusion coeffi-
cient; cp and λ are the specific heat at constant pres-
sure and the thermal conductivity, respectively; 	 = η[∇u +
(∇u)T ] : ∇u − 2/3η(∇ · u)2 is the viscous heating function;
α = ρ−1

r (∂ρ/∂ p)T,c is the isothermal compressibility; β =
−ρ−1

r (∂ρ/∂T )p,c is the isobaric thermal expansion coeffi-
cient; κ = ρ−1

r (∂ρ/∂c)p,T is the concentration contraction
coefficient. In the derivations of the above equations, the bulk
viscosity is neglected. In addition, a decomposition of total

pressure,

ptotal = pr + p, (6)

along with Eq. (4a) is employed in the derivations of energy
and concentration conservation equations.

Based on previous studies, the ATG plays an important role
in the RB convection for near-critical pure gases [3,29]. As
a result, a modified thermal Rayleigh number is used, where
the role of temperature gradient is replaced by its departure
from the adiabatic one [3,5]. These facts suggest defining
the following nondimensional quantities (denoted by the
primes):

(x, z) = (x′, z′) · d, t = t ′ · d2

DT,r
,

u(u,w) = u′(u′,w′) · DT,r

d
,

T = T ′ · (∇T − ∇ad,r )d + Tr, c = c′ · ∇cd + cr,

p = p′ · ηrDT,r

d2
, (ρ, ρ̄ ) = (ρ ′, ρ̄ ′) · ρr,

η = η′ · ηr, λ = λ′ · λr, D = D′ · Dr,

cp = c′
p · cp,r, α = α′ · αr,

β = β ′ · βr, κ = κ ′ · κr, (7)

where DT,r = λr/(ρrcp,r ), ∇T = (T1 − T2)/d , ∇c =
(c1 − c2)/d , ∇ad,r = Trβrg/cp,r (the reference ATG).
By substituting the system (7) into the system (5), the
nondimensional governing equations are obtained as

∂ρ ′

∂t ′ + ∇ · (ρ ′u′) = 0,
ρ ′

Pr

[
∂u′

∂t ′ + (u′ · ∇)u′
]

= −∇p′ + ∇ · (
η′∇u′) + ∇ ·

[
η′(∇u′)T

]
− 2

3
∇(

η′∇ · u′)
+ [χα′ p′ − RaTβ ′(T ′ − T̄ ′) + RaSκ

′(c′ − c̄′)]k,

∂T ′

∂t ′ + u′ · ∇T ′ = 1

ρ ′cp
′

[
∇(λ′∇T ′) + Raad

RaT

β ′

ρ ′

(


Dp′

Dt ′ − ρ̄ ′w′
)]

+ 	′,

∂c′

∂t ′ + u′ · ∇c′ = τ

ρ ′ ∇ · (ρ ′D′∇c′), ρ ′ = ρ̄ ′ + [χα′ p′ − RaTβ ′(T ′ − T̄ ′) + RaSκ
′(c′ − c̄′)]. (8)

The system is governed by seven parameters: thermal
Rayleigh number RaT, concentration Rayleigh number RaS,
adiabatic Rayleigh number Raad, diffusivity ratio τ , Prandtl
number Pr, compressibility factor χ , pressure ratio , which
are defined by

RaT = ρrgβr (∇T − ∇ad,r )d4

ηrDT,r
, RaS = ρrgκr∇cd4

ηrDT,r
,

Raad = ρrgβr∇ad,rd4

ηrDT,r
, (9)

τ = Dr

DT,r
, Pr = ηr

ρrDT,r
, χ = αrρrgd, = ηrDT,r

ρrgd3
.

(10)

Apart from RaT, RaS, Pr, and τ as in DDC for Boussinesq
fluids, three new nondimensional numbers are identified. The

adiabatic Rayleigh number is the Rayleigh number in terms of
ATG. It naturally arises from the modification of the thermal
Rayleigh number, and RaT + Raad yields the classical thermal
Rayleigh number. The compressibility factor, denoted by χ ,
represents the nondimensional density stratification induced
by gravity. The pressure ratio, denoted by , stands for
the relative importance of dynamic pressure and hydrostatic
pressure.

Note that in Eq. (8), the variable adiabatic Rayleigh num-
ber Raad (differentiated by italic) is present, where the refer-
ence ATG, denoted by ∇ad,r , is replaced by the variable one:

∇ad = T βrg

cp,r
. (11)

For the sake of simplicity, the prime symbol (′) for any
nondimensional variable is omitted hereafter.
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FIG. 2. Physical properties and state variables against z for RaS = −1 × 107 and RaT = −1.03 × 108.

III. FORMULATION OF LINEAR STABILITY THEORY

Consider a stationary base state, namely,

ū(ū, w̄) = (0, 0), (12)

where the bar symbol denotes initial values. Eq. (6) gives

p̄ = 0. (13)

Because physical quantities are nonlinear functions of T , c,
and ρ, the classical assumption of constant concentration and
temperature gradients no longer holds. According to Eqs. (4),
(8), and (12), the nondimensional initial fields for T , c, and
ρ obey

χαρ̄ + d ρ̄

dz
+ 

(
RaTβ

dT̄

dz
− RaSκ

dc̄

dz

)
= 0,

λ
d2T̄

dz2
+ dλ

dz

dT̄

dz
= 0,

ρ̄D
d2c̄

dz2
+ d ρ̄D

dz

dc̄

dz
= 0,

∫ 1

0
ρ̄ dz = 1. (14)

The base state is closely coupled with the variations in
physical properties. The above equations are solved by finite
differences to obtain T̄ (z), c̄(z), and ρ̄(z). The numerical
method is presented in our recent work [15]. The modeling
of physical properties is elaborated in Appendix A, together
with a brief review about the critical behavior of physical
properties. Figures 2 and 3 show the profiles of state variables
and physical properties for two typical cases: RaS = −1 ×
107 and RaT = −1.03 × 108, RaS = 3.67 × 108 and RaT =
3.06 × 108, respectively. All physical properties and state
variables vary nonlinearly along z. Besides, it is demonstrated
in these two figures that the variations in D exceed those of
other properties.

Then subject the base state to small disturbances (denoted
by tildes):

u = ū + ũ, T = T̄ + T̃ , c = c̄ + c̃,

p = p̄ + p̃, ρ = ρ̄ + ρ̃. (15)

Substituting Eq. (15) into Eq. (8), omitting high-order nonlin-
ear terms, and letting

[ũ, w̃, p̃, T̃ , c̃, ρ̃] = [û(z), ŵ(z), p̂(z), T̂ (z), ĉ(z), ρ̂(z)]

× exp(ikx + σ t ), (16)

FIG. 3. Physical properties and state variables against z for RaS = 3.67 × 108 and RaT = 3.06 × 108.
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TABLE I. A summary of cases considered in this study.

Case Equation Implication Abbreviation

I Eq. (B1) full equations with constant properties FC
II Eq. (B2) Boussinesq equations with constant properties BC
III Eq. (B4) modified Boussinesq approximation with constant properties BC′

IV Eq. (17) full equations with variable properties FV
V Eq. (B5) modified Boussinesq approximation with variable properties BV′

one arrives at

η

(
D2 − 4

3
k2

)
û + ηzDû + 1

3
ikηDŵ + ikηzŵ − ik p̂ = σ

(
1

Pr
ρ̄û

)
,

1

3
ikηDû − 2

3
ikηzû + η

(
4

3
D2 − k2

)
ŵ + 4

3
ηzDŵ + RaTβT̂ − RaSκ ĉ − (D + αχ ) p̂ = σ

(
1

Pr
ρ̄ŵ

)
,

−
(

T̄z + Raad

RaT

β

ρ̄cp

)
ŵ + λ

ρ̄cp
(D2 − k2)T̂ + λz

ρ̄cp
DT̂ = σ

(
T̂ − β

ρ̄2cp

Raad

RaT
p̂

)
,

−c̄zŵ + τD(D2 − k2)ĉ + τ

ρ̄
(ρ̄D)zDĉ = σ ĉ,

−ikρ̄û − (ρ̄z + ρ̄D)ŵ = σ [(χα p̂ − RaTβT̂ + RaSκ ĉ)], (17)

where σ is the growth rate, k is the horizontal wave number,
the operator D = d/dz, and the subscript z denotes a deriva-
tive with respect to z. The corresponding boundary conditions
are

û = ŵ = T̂ = ĉ = 0, on z = 0, 1. (18)

Due to its complexity, the above system of equations is solved
numerically to obtain the disturbance profiles and σ for a
given k. The numerical method is detailed in our previous
work [15].

To study the applicability of the BA and the influences
of variable properties, four reduced cases of system Eq. (17)
are presented in Appendix B and summarized briefly in
Table I, where FC represents the model of full equations
with constant properties, BC the Boussinesq equations with
constant properties, BC′ the modified Boussinesq equations
with constant properties, FV the full equations with variable
properties, and BV′ the modified Boussinesq equations with
variable properties. These abbreviations are used to refer to
them in later sections.

The current problem is governed by five parameters: RaT,
RaS, k, εr , and d . Since LSA is performed, this study focuses
on neutral stability. For a given RaS, εr , and d , the neutral
stability is defined by the minimum RaT satisfying Re(σ ) = 0
for the most unstable mode of a critical wave number, and
Re(σ ) < 0 for all other wave numbers. Then RaS is changed
and above procedures are repeated to depict the neutral sta-
bility curve. To save CPU time, the golden-section search
technique is employed in the algorithm. In later sections, for
the sake of simplicity, RaT and k particularly represent the
critical RaT and critical k, respectively. And σ denotes the
complex growth rate of the most unstable mode.

A reference reduced temperature εr = 0.001 and a height
d = 10 mm are set throughout this study, which yields Raad =
2.991 × 105, τ = 0.127, Pr = 4.066, χ = 7.405 × 10−5, and

 = 2.378 × 10−10. Besides, due to τ < 1, oscillatory in-
stability occurs when RaS > 0 and RaT > 0, while fingering
instability occurs when RaS < 0 and RaT < 0. The results and
discussions are presented in the following sections. We begin
with the fingering regime.

IV. FINGERING REGIME

A. The applicability of the Boussinesq approximation

The purpose of this section is to investigate the applicabil-
ity of the BA. In this regard, FC, BC, and BC′ are compared
and discussed. All physical properties are constant. On the
neutral curve of fingering regime, σ = 0. These three cases
are compared in terms of RaT and k in Fig. 4. The range of RaS

is [−1 × 107, 0]. In fact, part of this problem is addressed in
our previous work [15], where the applicability of the criterion
obtained from the BA for onset of convection is examined for
several values of RaS. This section complements our previous
work and helps to draw a whole picture under the current
configuration.

First regard the results obtained from BC. It is evident that
in BC, after the BA is applied, the neutral curve is a straight
line [a constant slope in Fig. 4(b)] and k is a constant value
equaling 3.116, which are in good agreement with classical
results [19,31]. Figure 5 shows the profiles of temperature
perturbation T̃ and magnitude of velocity perturbation |ũ|,
along with the flow structure at the onset of fingering insta-
bility obtained from BC. For the sake of clarity, ũ is scaled to
[0,1] and T̃ to [−1, 1]. The physical space in the z direction
is occupied by a single vortex. The temperature perturbation
is controlled by vertically convective transport, with a profile
proportional to w̃.

Comparing FC to BC of Fig. 4, it is important to note
that differences are observed when |RaS| > 1 × 106. The
actual neutral curve in FC is no longer a straight line but

033112-5



HU, DAVIS, AND ZHANG PHYSICAL REVIEW E 99, 033112 (2019)

FIG. 4. Comparisons among FC, BC, and BC′ in the fingering regime. (a) Neutral curves satisfying Re(σ ) = 0, (b) slopes of the neutral
curves, and (c) critical wave numbers, with solid lines for case FC, dashed lines for case BC, and dotted lines for case BC′. The dash-dot line
shown in figure (a) represents the boundary for statically stable, below which the gas is heavy at bottom.

a downward concave, whose slope increases monotonically
with |RaS| [Fig. 4(b)]. However, the critical wave number at
neutral stability is also no longer a constant, but increases with
|RaS|. To visualize the differences described above, Fig. 6
shows the evolution of fields for different RaS along the
neutral curve in FC. In Fig. 6(a) with RaS = −8.16 × 105,
no obvious deviations from Fig. 5 are observed, implying the
BA is still reliable. However, as RaS is further increased, a
layering structure is observed. In the z direction, the previous
single vortex is replaced by several organized vortices; the
physical space is layered. Every layer is filled with vortices
with the same size and intensity, and vortices in two adjacent
layers rotate in opposite directions. The convective transport
in the top layer is strongest, and both the size and intensity
of the vortices decrease downward. Besides, the layering is
enhanced as |RaS| is increased. As presented by Figs. 6(b)–
6(d), when RaS varies from −3.88 × 106 to −1 × 107, the
number of layers increases from 2 to 4.

In fact, the layering introduced above is an example of
“penetrative instability,” which happens when an unstable

FIG. 5. Contours of magnitude of velocity perturbation |ũ| =√
ũ2 + w̃2 and temperature perturbation T̃ at the onset of fingering

convection calculated from BC, in which |ũ| is scaled to [0,1], and
T̃ to [−1, 1]. Flow structure is shown by streamlines, with arrows
denoting the direction of flow. The range of x presented is [0,1].

region is bounded by stable regions [32]. Here, the top layer
defines the unstable region, and the convective motion in
it penetrates into the neighboring stable region through the
shearing force.

Our previous arguments in Ref. [15] suggest that it is
the omitting of base-state density stratification that leads to
the failure of the BA. To confirm this reasoning, consider a
modification to the BA by including the base-state density
stratification. Final equations are denoted as BC′ given by
Eq. (B4). The corresponding results have been shown in Fig. 4
(dotted curves). After the base-state density stratification is
included, the BA is greatly improved. On the one hand, the
bending of the neutral curve is reproduced, and its slope
is predicted accurately [Fig. 4(b)]. On the other hand, the
monotonic increase of wave number is also obtained, although
there are still obvious differences compared to FC.

To understand the mechanism, the actual dimensional ther-
mal diffusivity is a key property [15],

D∗
T (z) = 1

ρ̄

λr

ρrcp,r
= 1

ρ̄
DT,r . (19)

Figure 4(a) suggests that convection is triggered in a stati-
cally stable state, namely, ρ̄z < 0. Since DT,r is a constant,
D∗

T increases upward due to the reciprocal of ρ̄. A thought
experiment presented in Fig. 7 helps elaborate the mechanism.
Consider two parcels of fluid initially at z = z1 and z2, with
z1 < z2, the distribution of D∗

T gives D∗
T 1 < D∗

T 2. Perturb both
of them downward by an infinitesimal distance ζ . Then, at
the new positions, both of them are hotter and have a higher
concentrations than their surroundings. Due to τ � 1, they
adjust their temperatures quickly through thermal diffusion
but their concentrations remain almost unchanged. As a re-
sult, they are heavier than their surroundings and will keep
dropping. For the upper fluid parcel, because of D∗

T 1 < D∗
T 2, it

loses more heat than the lower one. As a result, it drops faster,
as illustrated in Fig. 7. The above reasoning implies when DT ∗
increases with z, the region close to z = 1 is more capable
of amplifying small perturbations, or equivalently, the region
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FIG. 6. See the caption of Fig. 5 for the description of contours and streamlines. The presented results are obtained from FC with (a) RaS =
−8.16 × 105, (b) RaS = −3.88 × 106, (c) RaS = −7.96 × 106, and (d) RaS = −1 × 107. τ ∗ is the actual thermal diffusivity given by Eq. (20).
〈τ ∗−1〉 = τ ∗−1/τ ∗−1

m , with τ ∗−1
m denoting its mean value. To make the vertical nonuniformity of 〈τ ∗−1〉 clear, additional dashed lines representing

the minimum value of 〈τ ∗−1〉 are plotted.

close to z = 1 is neutrally stable, whereas the other region is
stable.

Define an actual diffusivity ratio τ ∗ as [15]

τ ∗(z) = Dr

D∗
T

= ρ̄τ. (20)

The distributions of τ ∗−1 are plotted against z in Figs. 6. It is
highlighted that τ ∗−1 is a good indicator for the penetrative
instability. The unstable region near the top wall is always
the region with large τ ∗−1, and the number of layers is
proportional to the nonuniformity of τ ∗−1.

z = z1 z = z2

ζ
heat heat

ζ

FIG. 7. Illustration of the effect of base-state density stratifica-
tion in the fingering regime.

The penetrative instability introduced above happens when
all physical properties are constant. As seen later, it is con-
cealed by the effects of variable properties. However, this is
still useful. Indeed, a possibility for the breakdown of BA
is confirmed and a method to improve it is thus developed.
Besides, as a limiting case for the problem studied in the next
section (all physical properties will be z-dependent), some
conclusions in this section will be useful later.

B. The effects of variable properties

As discussed in Sec. IV A, physical properties of near-
critical gases are very sensitive to the change of state vari-
ables. Therefore, inhomogeneities in concentration and tem-
perature should have profound influences on DDC, which is
the main topic of this section. To this end, FC, FV, and BV′

are involved and discussed. FV and BV′ are the counterparts
of FC and BC′ with variable properties, respectively.

Figure 8 plots RaT, dRaT/dRaS and k for FC, FV, and BV′

at neutral stability in the fingering regime. First examine the
influences of variable properties through comparing FC and
FV. It is evident that the variable properties have significant
effects on the stability. As |RaS| is increased and larger
than 2 × 105, the variable properties make the neutral curve
bend downward. The stability is actually weakened since the
stable region is reduced in size [Figs. 8(a)]. Besides, it can
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FIG. 8. Comparisons among FC, FV, and BV′ in the fingering regime. (a) Neutral curves satisfying Re(σ ) = 0, (b) slopes of the neutral
curves, and (c) critical wave numbers, with solid lines for FC, dashed lines for FV, and dotted lines for BV′. The dash-dot line shown in figure
(a) represents the boundary for statically stable, below which the gas is heavy at bottom.

be seen in Fig. 8(c), the wave number grows more quickly
than that under constant properties. Figure 9 shows the
profiles of velocity and temperature perturbations, along with
flow structure, obtained from FV for different RaS chosen
according to Fig. 6. It is shown that the physical space is
layered by counter-rotating vortices, and the flow is dominated
by a specific layer, that is attributed to penetrative instability.
However, the flow patterns in Fig. 9 are different from those
in Fig. 6. First, the unstable layer changes from the top one to

the bottom one, since the intensity of flow is dominated by the
bottom layer. Second, some irregular variations are detected
along the penetrative depth. In the penetrative instability
illustrated in Fig. 6, the size and intensity of vortices decrease
gradually along the penetrative direction (downward). But
when variable properties are present, the variations in vortices
along the penetrative direction (upward) become irregular.
Some unexpected complex flow patterns occur near the top
wall when the |RaS| is large enough [see Figs. 9(c) and 9(d)].

FIG. 9. The description is the same with Fig. 6, where the role of FC is replaced by FV, and τ ∗−1 by � f . � f is defined by Eq. (23).
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FIG. 10. Comparisons among FC, BC, and BC′ in the oscillatory regime. (a) Neutral curves satisfying Re(σ ) = 0, (b) slopes of the neutral
curves, (c) critical wave numbers, and (d) angular frequencies, with solid lines for FC, dashed lines for BC, and dotted lines for BC′. The
dash-dot line shown in figure (a) represents the boundary for statically stable, below which the gas is heavy at bottom.

Now the question is how to link the variations in physical
properties with the penetrative instability. As an example,
the physical properties and state variables as functions of z
for RaS = −1 × 107 and RaT = −1.03 × 108 (on the stabil-
ity boundary) has been shown in Fig. 2. Since all physical
properties and state variables vary nonlinearly with z, it is
necessary to develop a comprehensive parameter based on
the underlying mechanism, instead of using a single physical
property, to interpret the irregular penetrative instability.

The energy sustaining the growth of small perturbations
comes from the potential energy stored in the component
that is unstably distributed [33]. But the stably distributed
component hinders the release of potential energy. In the
fingering regime, concentration is the unstable component
while temperature is the stable component. This suggests
using the ratio of potential energy as an indicator for the
penetrative instability, leading to

R f
ρ (z) = κr∇c

βr (∇T − ∇ad,r )

κcz

βTz
= RaS

RaT

κ c̄z

βT̄z
, (21)

which is actually the reciprocal of the density ratio widely
used in the unbounded DDC [17]. Equation (21) can also
be understood with the help of Fig. 7. Assuming D, DT and
κ c̄z are constant, if βT̄z is increased, after perturbing a fluid
parcel downward by ζ , it will take a longer time to eliminate
the stabling effect of temperature. Meanwhile, the ongoing
concentration diffusion decreases its density difference with

surroundings. As a result, the amplification of small pertur-
bation is weakened. It is equivalent to reducing κ c̄z while
maintaining βT̄z. Above descriptions give a clear picture for
the mechanism behind Eq. (21).

Moreover, the last section showed that it has been con-
cluded that the intensity of flow is also inversely proportional
to the actual diffusivity ratio, defined as

τ ∗(z) = τ
D

DT
, (22)

where DT = λ/(ρ̄cp) is the nondimensional thermal diffusiv-
ity. Combining Eqs. (21) and (22) yields a comprehensive
parameter � f given by

� f (z) = R f
ρ

τ ∗ = RaS

τRaT

DT κ c̄z

DβT̄z
. (23)

The vertical distributions of � f are plotted in Fig. 9. Results
show � f is a good indicator for the penetrative instability.
The unstable bottom layer is always a region with large � f .
The nonuniformity of � f measures the degree of layering,
which is evidenced by the fact that in Figs. 9(a)–9(d), the
nonuniformity of � f and the number of layers increase
gradually and simultaneously. In addition, when all physical
properties are constant, R f

ρ = RaT/RaS and � f = R f
ρ/τ ∗ ∝

τ ∗−1. � f degenerates to the indicator proposed in the last
section multiplied by a z-independent coefficient.
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FIG. 11. See the caption of Fig. 5 for the description of contours and streamlines, with (a) and (b) RaS = 1.84 × 109, (c) and (d) RaS =
3.88 × 109, and (e) and (f) RaS = 5.92 × 109. (a), (c), and (e) are obtained from FC. (b), (d), and (f) are obtained from BC. The range of x
presented is [0,0.3]. τ ∗ is the actual thermal diffusivity given by Eq. (20). 〈τ ∗−1〉 = τ ∗−1/τ ∗−1

m , with τ ∗−1
m denoting its mean value. To make the

vertical nonuniformity of 〈τ ∗−1〉 clear, additional dashed lines representing the minimum value of 〈τ ∗−1〉 are plotted.

Besides, it is confirmed by Fig. 8 that the results from BV′
are in good agreement with FV, implying the modified BA
captures the underlying mechanism of instability and can be
used to simplify the original equations.

It is shown in this section that in the fingering regime, when
|RaS| is large enough, the base-state density stratification and
variations in physical properties become important, and the
former makes the BA break down. The fluid close to the lower
boundary is more unstable leading to a penetrative instability.
The modified BA incorporating variable properties can be
used to simplify the original equations with good accuracy.
Besides, a comprehensive parameter � f is developed to mea-
sure the nonuniformity in physical properties.

In fact, there are some previous studies concerning DDC
with variable properties or nonlinear state variables. For
example, Walton [34] and Balmforth et al. [35] study the
onset of DDC with nonlinear concentration distributions.
Tanny and Gotlib [36] investigate influences of temperature-
dependent viscosity and diffusivity on the onset of DDC. To
our knowledge, the onset of DDC with variations in all phys-
ical properties, plus nonlinear state variables, is investigated
here for the first time. Equation (23) provides a simple but
effective way to measure these nonuniformities and nonlinear-
ities. To give more insights into �, the relationship between
� and qualitative deviations of BC from FV is studied in
Sec. VI.

033112-10



ONSET OF DOUBLE-DIFFUSIVE CONVECTION IN … PHYSICAL REVIEW E 99, 033112 (2019)

0
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z
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π/(2ω) 3π/(2ω) 5π/(2ω) 7π/(2ω)

FIG. 12. Illustration of the effect of base-state density stratifica-
tion in the oscillatory regime.

V. OSCILLATORY REGIME

A. The applicability of the Boussinesq approximation

As in the previous chapter, FC, BC, and BC′ are discussed
here. At neutral stability in the oscillatory regime (RaT > 0,
RaS > 0), the growth rate is a pure imaginary. The imaginary
part of the growth rate ω = Im(σ ), is the angular frequency,
which also depends on RaS. In Fig. 10, to study the applica-
bility of the BA, the thermal Rayleigh number, the horizontal
wave number k, and the angular frequency ω are plotted as
functions of RaS for FC, BC, and BC′. The range of RaS

shown here is [0, 1 × 1010].
As shown in Fig. 10(a), the oscillatory instability is trig-

gered under a bottom-heavy configuration. The relative dif-
ferences among the three curves are too small to separate.
Figure 10(b) shows dRaT/dRaS and as RaS is increased, the
deviations resulting from the BA appear here for RaS ≈ 6 ×
108. The BA cannot reproduce the nonmonotonic variations
of RaT and k and ω are underestimated. The differences in
k and ω are not significant until RaS ≈ 1.5 × 109 and RaS ≈
3 × 109, respectively [see Figs. 10(c) and 10(d)]. Figure 11
shows the contours of velocity and temperature perturba-
tions, along with flow structure obtained from FC and BC
for RaS = 1.84 × 109, RaS = 3.88 × 109, and RaS = 5.92 ×
109. In contrast to the fingering regime, interesting off-center
structures are observed. For all figures in BC, the vortices are
always centered on z = 0.5. However, the centers of vortices
in FC move upward as RaS is increased. As a result, the
flow in the upper part is stronger than that in the lower part.
The upward shift of vortices’ centers increases with RaS. For
Figs. 11(a), 11(c), and 11(e), the centers are approximately
located on z = 0.68, 0.78, and 0.85, respectively. Besides, an
increase in k for FC is indicated by Fig. 10(c).

According to the discussions in Sec. IV A, the off-center
structure should be caused by the base-state density stratifi-
cation. This interpretation is confirmed by Fig. 10, where the
results from BC′ are in good agreement with those from FC.
Now the question is why does the upward-decreasing base-
state density causes the off-center structure? To answer this
question, consider the actual dimensional thermal diffusivity
defined by Eq. (19), which increases upward due to the recip-
rocal of ρ̄. Figure 12, based on the classical illustration of os-
cillatory DDC [17,37], represents a thought experiment help-
ing one to understand the mechanism. Consider two parcels
of fluid, located at z1 and z2, with z1 < z2. Perturb them by
displacing downward the same distance at t = π/(2ω). At

new positions, they are cooler with lower concentration than
their surroundings. Since τ < 1, they adjust their tempera-
ture quickly but not their concentration. Then, they become
lighter than their surroundings, and move upward driven by
buoyancy. However, the upper fluid parcel, with a large D∗

T ,
adjusts its temperature more efficiently than the lower one,
hence driven by a stronger buoyancy. As a result, the upper
fluid parcel overshoots its original equilibrium position more
greatly than the lower one [see Fig. 12 at t = 3π/(2ω)].
Above their original positions, they again become heavier than
their surroundings due to heat loss, and the gravity drives them
back. Based on aforementioned mechanism, the downward
driving force for the upper fluid parcel is larger than the lower
one. The upper fluid parcel again overshoots more greatly than
the lower one [see Fig. 12 at t = 5π/(2ω)]. Above process
repeats and eventually, the perturbation of the upper parcel
amplifies more greatly than the lower one.

Ratio given by Eq. (20) is still considered as the actual dif-
fusivity ratio. Plot τ ∗−1 against z in Fig. 11. It is demonstrated
that the amplitude of perturbation is proportional to τ ∗−1. And
the upward shift of vortex center increases with the gradient
of τ ∗−1.

B. The effects of variable properties

Figure 13 plots RaT, k, and ω for FC, FV, and BV′

in the oscillatory regime. The range of RaS shown here is
[0, 4.5 × 108]. First discuss the influences of variable prop-
erties through comparing FC and FV. After the variations
in physical properties are considered, the convection is still
triggered under a bottom-heavy configuration [see Fig. 13(a)].
However, as RaS is increased, the variations in physical
properties become more significant, the differences between
FC and FV increase gradually and become obvious when
RaS � 2.0 × 107 [see Figs. 13(b), 13(c), and 13(d)]. Besides,
the influence of variable properties is not monotonic, and
noticeable variations are observed.

As for the accuracy of BV′, Fig. 13 demonstrates that the
dashed curves in FV and the dotted curves in BV′ coincide, ex-
cept for the unavoidable numerical differences. We conclude
that in the oscillatory regime when variable properties are in-
troduced, BV′ is accurate and can be used as an approximation
of FV.

Figure 14 presents the perturbation fields and flow structure
for different RaS when the role of variable properties becomes
important. Instead of penetrative instability, the vertical vortex
tilts and internally breaks up into several corotating vortices.
Such an intriguing flow field is called the cat’s eye pattern,
which is illustrated in Fig. 15. The cat’s eye pattern comprises
a rotating frame, a core region and a recirculation region
between the two. The core region comprises an array of coro-
tating vortices, around which the fluid in recirculation region
travels [38]. In addition, the number of corotating vortices is
proportional to RaS. And the size and intensity of the vortices
decrease upward. Since the onset of DDC in a near-critical
gas is studied for the first time, the above phenomenon has
not been reported before.

As an example, the physical properties and state variables
as functions of z for RaS = 3.67 × 108 and RaT = 3.06 × 108

(on the stability boundary) has been shown and discussed
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FIG. 13. Comparisons among FC, FV, and BV′ to present the influence of variable properties on neutral stability in the oscillatory regime.
(a) Neutral curves satisfying Re(σ ) = 0, (b) slopes of the neutral curves, (c) critical wave numbers, and (d) angular frequencies, with solid
lines for FC, dashed lines for FV, and dotted lines for BV′. The dash-dot line shown in figure (a) represents the boundary for statically stable,
below which the gas is heavy at bottom.

eailier (see Fig. 3). In Sec. IV B, combining Eqs. (21) and
(22), a comprehensive parameter R f

ρ given by Eq. (23) is
proposed to interpret the influence of the variations in physical
properties based on an energy storage and release mechanism.
However, in the oscillatory regime, the energy sustaining the
amplification of small perturbation is provided by temperature
and hindered by concentration. Therefore, Rρ in the oscilla-
tory regime, denoted by Ro

ρ , is given by

Ro
ρ (z) = 1

R f
ρ (z)

= RaT

RaS

βT̄z

κ c̄z
. (24)

The mechanism behind this equation can also be interpreted
through the thought experiment shown in Fig. 12. We assume
D and DT are constant and consider the process of a fluid
parcel downward leaving its original equilibrium position
and return. During the whole process, its temperature and
concentration will increase. Then at its initial position, the
buoyancy force governing its amplification, is provided by
temperature but compensated by concentration. In Eq. (24), if
βTz is increased while κcz remains unchanged, then the buoy-
ancy will increase. On the contrary, if κcz is increased while
βTz remains unchanged, then the buoyancy will decrease. In
summary, Eq. (24) reflects the competition between the two
factors governing the amplification of small perturbation.

Based on the arguments in Sec. IV B, combine Eqs. (24)
and (22) to obtain a comprehensive parameter �o:

�o(z) = Ro
ρ

τ ∗ = RaT

τRaS

DT βT̄z

Dκ c̄z
. (25)

The vertical distributions of �o are plotted in Fig. 14. Results
show �o is a good indicator for the cat’s eye pattern. First,
�o is proportional to the size and intensity of the vortices.
Second, the nonuniformity of �o measures the number of
inner vortices, which is evidenced by the fact that in Fig. 14
from (a) to (d), the nonuniformity of �o and the number of
vortices in every singe frame increase simultaneously. Thirdly,
when all physical properties are constant, Ro

ρ = RaT/RaS and
�o = Ro

ρ/τ
∗ ∝ τ ∗−1. �o actually degenerates to the indicator

proposed in Sec. V A multiplied by a z-independent coeffi-
cient.

This section suggests the base-state density stratification
and variable properties also have significant effects on the
onset of convection in the oscillatory regime. The omitting
of base-state density stratification leads to the break-down
of the BA. The modified BA still works well here. The
onset of convection features a cat’s eye pattern caused by
the nonlinearly distributed physical properties, instead of the
penetrative instability detected in the fingering regime. The
modified BA as proposed in the last section still holds in
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FIG. 14. See the caption of Fig. 5 for the description of contours and streamlines, with (a) RaS = 1.22 × 108, (b) RaS = 1.84 × 108,
(c) RaS = 2.65 × 108, and (d) RaS = 3.67 × 108. The range of x presented is [0,0.5]. �o is given by Eq. (25) and 〈�o〉 = �o/�o

m, with �o
m

denoting its mean value. To make the vertical distribution of 〈�o〉 clear, additional dashed lines representing the minimum value of 〈�o〉 are
plotted.

the oscillatory regime. The comprehensive parameter, �o, is
also derived in the oscillatory regime based on the previous
arguments.

VI. FURTHER DISCUSSIONS OF �

So far, a comprehensive parameter � has been defined,
whose nonuniformity is proportional to effects of variable
properties. In this section, a quantitative analysis of the influ-
ence of its nonuniformity on the DDC is performed based on
BC and FV. Afterward, the relative contributions of the two
controlling factors in the nonuniformity of � are discussed.
Because only two cases are involved, we use � to denote �

in FV, and �BC to � in BC.
A question naturally arises is how to quantify the nonuni-

formity of �. This requires one to define a reference, accord-

Core region Recirculation regionRotating frame

FIG. 15. Illustration of the cat’s eye pattern in Fig. 14.

ing to which the nonuniformity is measured. In this study, it
is natural to use �BC as a reference state. Mathematically, the
nonuniformity of �, denoted by A�, can be expressed by

A� = d
∫ 1

0
|� − �BC|dz. (26)

The calculations for A� were performed for both the fingering
regime and the oscillatory regime, and the results are denoted
by A f

� and Ao
�, respectively.

First focus on the fingering regime. Presented in Fig. 16
is the variations of absolute differences in thermal Rayleigh
numbers and wave numbers at neutral states obtained from
BC and FV. The differences are defined by (RaT

BC − RaT
FV)

and (kFV − kBC), respectively, to produce positive values. As
mentioned earlier, the deviations of FV from BC are propor-
tional to the variations in physical properties. This conclusion
is clearly shown in Fig. 16, where both (RaT

BC − RaT
FV) and

(kFV − kBC) increase along with A f
θ . Remarkably, four power

laws are identified by fitting (represented by solid lines). For
(RaT

BC − RaT
FV), in the high A f

θ region, the data follows a
2.08 power law, whereas in the low A f

θ region, the data follows
a 6.55 power law. As to (kFV − kBC), a 0.55 power law and
a 7.50 one are identified in the high A f

θ region and the low
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FIG. 16. (Log-log plot) The variations of absolute differences in (a) thermal Rayleigh numbers and (b) wave numbers at neutral states
obtained from BC and FV, versus Af

θ . The four power laws are represented by the solid lines. The absolute value of RaS, denoted by |RaS|,
increases along the direction represented by the arrow.

A f
θ region, respectively. Mathematically, the power laws are

given by

(
RaT

BC − RaT
FV

) ∼
{(

A f
θ

)6.55
, A f

θ < 4.0 × 10−5,(
A f

θ

)2.08
, A f

θ > 1.5 × 10−4,
(27)

(kFV − kBC) ∼
{(

A f
θ

)7.50
, A f

θ < 4.0 × 10−5,(
A f

θ

)0.55
, A f

θ > 1.5 × 10−4.
(28)

The range 4.0 × 10−5 < A f
θ < 1.5 × 10−4 defines a transition

between the two power laws.
For the oscillatory regime, Fig. 17 presents absolute differ-

ences in thermal Rayleigh numbers (RaT
FV − RaT

BC), wave
numbers (kFV − kBC) or (kBC − kFV), and angular frequencies
(ωBC − ωFV) against Ao

θ . These absolute differences are de-
fined to produce positives values. Obvious fluctuations are
shown in Figs. 17(b) and 17(c) when Ao

θ > 2 × 10−4, as
introduced in Fig. 13. These fluctuations bring difficulties in
studying quantitative relationships between Ao

θ and absolute
differences. Therefore, mean values in each fluctuation are
calculated and used in fitting. Several power laws are identi-
fied and represented by solid lines in Fig. 17. In the monotonic
region, namely Ao

θ < 2.0 × 10−4, these power laws hold:(
RaT

FV − RaT
BC

) ∼ (
Ao

θ

)1.71
,(

kBC − kFV) ∼ (
Ao

θ

)1.12
,(

ωBC − ωFV
) ∼ (

Ao
θ

)1.20
. (29)

In the fluctuation region, namely, Ao
θ > 2.0 × 10−4, the power

laws for mean value are given by(
RaT

FV − RaT
BC

)
m ∼ (

Ao
θ

)0.99
, Ao

θ > 4.0 × 10−4,(
kFV − kBC

)
m ∼ (

Ao
θ

)0.54
, Ao

θ > 4.0 × 10−4, (30)(
ωBC − ωFV

)
m ∼ (

Ao
θ

)1.27
, Ao

θ > 4.0 × 10−4,

with the subscript m denoting a mean value. The range
2.0 × 10−4 < Ao

θ < 4.0 × 10−4, in which the first fluctuation
occurs, defines a transition between the two power laws. In
addition, it is interesting to find that the (kFV − kBC) in each

fluctuation obey a −1.75 power law, namely,

(kFV − kBC) ∼ (
Ao

θ

)−1.75
, (31)

which has been shown in Fig. 17(b) by dotted lines.

VII. CONCLUSIONS

The physical model considered in this study is a layer
of near-critical binary gas with infinite extends bounded by
two horizontal rigid walls, with Dirichlet boundary conditions
for both temperature and concentration. The onset of DDC
in it due to vertical temperature and concentration gradients
is numerically investigated. The nondimensional governing
system contains seven parameters, in which the definition
of thermal Rayleigh number is modified based on previous
studies on near-critical RB problem. A numerical LSA is
performed, and equations for small perturbations are solved
based on a finite-difference discretization. Two problems
arise: the applicability of the BA, and the influences of the
variations in physical properties on DDC. To this end, five
cases of mathematical models are shown based on different
degrees of simplification.

The applicability of the BA is first studied. It is revealed
that due to strong base-state density stratification, the thermal
diffusivity in the upper region is magnified. As a result,
regular penetrative instability (Fig. 6) and off-center struc-
tures (Fig. 11) are identified in the fingering regime and the
oscillatory regime, respectively. However, since the base-state
density stratification is omitted in the BA, the flows are always
featured by a vertical single vortex centered on the middle
(Figs. 5 and 11). Besides, a modified BA is proposed adding
the effect of base-state density stratification. In the fingering
regime, the modification brings big improvements. And the
accuracy of the modified BA is excellent in the oscillatory
regime.

The variations in physical properties have significant ef-
fects on DDC. Irregular penetrative instability (Fig. 9) and
cat’s eye pattern (Figs. 14 and 15) are thus identified in the
fingering and oscillatory regime, respectively. For the CO2 −
C2H6 mixture at the reference state, these effects become
obvious when RaS < −2 × 105 in the fingering regime and
RaS > 2 × 107 in the oscillatory regime. A comprehensive
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FIG. 17. (Log-log plot) The variations of absolute differences in (a) thermal Rayleigh numbers, (b) wave numbers, and (c) angular
frequencies at neutral states obtained from BC and FV, versus Ao

θ . Several power laws are identified and represented by solid and dotted
lines. RaS increases along the direction represented by the arrow.

parameter � based on an energy storage and release mech-
anism is proposed in Eqs. (23) and (25) to represent the
variations in physical properties. Then a quantitative analysis
between the nonuniformity of �, denoted by Aθ and given
by Eq. (26), and the deviations from Boussinesq results are
performed, resulting in a series of power laws given by
Eqs. (27)–(31). Besides, when the variable properties are
included, the modified BA is reliable in both regimes, as
the results calculated from it are in good agreement with
those from full equations. It is believed that the modified
BA incorporating variable physical properties is a simple
but efficient model to describe double-diffusive convection in
near-critical gases.

From a practical point of view, it is suggested that the vari-
able properties are an important factor which should be taken
into consideration in future studies and industrial applications.
However, the availability of precise physical properties is very
limited, especially for mixtures. The approximation for gov-
erning equations of near-critical gases should be made care-
fully. Besides, this work demonstrates that classical dynamic
phenomena may exhibit new features in the critical region,
implying that there are many potential research subjects to be
explored.
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APPENDIX A: MODELING OF PHYSICAL PROPERTIES

Near a critical point, a fluid or a fluid mixture exhibits
large fluctuations of the order parameter associated with the
critical-point phase transition. The range of the fluctuations
can be characterized by a correlation length ξ . When the
critical temperature Tc is approached in the one-phase region
at the critical density ρ = ρc, the correlation length diverges
as [39]

ξ = ξ0ε
−0.63, (A1)

where ε = (T − Tc)/Tc is the reduced temperature, and ξ0

is the amplitude (of the order of a molecular size). The
divergence of correlation length posts a threat to the validity
of Navier-Stokes equations. As noted by Zappoli [40], the
limit of validity of the Navier-Stokes model is reached when
the smallest macroscopic length introduced by the description
is equal or smaller than the correlation length. The limit is
estimated to be ε = 10−6 for pure CO2. Since the molecular
sizes of CO2 and C2H6 are similar, a dynamic limit of ε =
10−6 is assumed in this study.

The critical fluctuations have strong effects on the ther-
modynamic properties of pure fluids and fluid mixtures.
Asymptotically close to a critical point, the thermodynamic
properties of pure fluids and fluid mixtures exhibit scaling
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FIG. 18. (Log-log plot) Several (a) thermodynamic and (b) transport properties of CO2-C2H6 mixture (cr = 0.67) along the critical isochore
ρ = ρc, plotted against ε from two sources: Crossover model (see Table II, note that β = √

ρα(cp − cv )/T ) and REFPROP [45]. The units of
these properties are cp: [kJ/(kg · K)], α: [MPa−1], β: [K−1], η: [Pa · s], and λ: [kW/(m · K)].

laws with universal critical exponents. However, the scaling
laws are valid in a limited range close to the critical point.
A crossover model, connecting this and classical behavior
far away from the critical point, has thus been developed to
represent the properties in the critical region [41,42]. For a
binary fluid, its thermodynamic properties exhibit a crossover
from one-component-like behavior to mixture-like asymptotic
critical behavior. However, the mixturelike asymptotic scaling
laws are not valid only until extremely close to a critical point
(ε � 10−8 − 10−12) [43], which will not be encountered in
this study due to the dynamic limit introduced earlier.

The divergence of correlation length also has profound
effects on transport properties (η, λ, D). Far away from
the critical point, transport properties are nonsingular and
generally slowly varying functions of temperature and density.
Near the critical point, the divergence of correction length
leads to a critical enhancement of transport properties. The
asymptotic critical region, where simple power laws hold for
transport properties, are much smaller than the region with
the critical enhancement. Crossover models based on dynamic
renormalization-group theory or mode-couping theory have
been employed to model transport properties [44].

In this study, two approaches are considered to obtain the
physical properties: the crossover model and a database called
REFPROP [45].

For the mixture considered in this study, available physical
properties from crossover model are summarized in Table II.
In these references, the models have been tested against exper-
imental data, and the properties are given as functions of ε at

TABLE II. References for part of thermodynamic and transport
properties.

Property References

cp Luettmer-Strathmann and Sengers [44]
cv Jin et al. [42]
α Abbaci [41]
η Luettmer-Strathmann and Sengers [44]
λ Luettmer-Strathmann and Sengers [44]
D Luettmer-Strathmann and Sengers [44]

c = cr and ρ = ρc. β can be determined through the relation
β = √

ρα(cp − cv )/T . Besides, the critical parameters, Tc and
ρc, can be calculated from the relations developed by Sengers
and Jin [46]. However, the data provided by the references
is not sufficient. On the one hand, κ is not available. On the
other hand, only physical properties under ρ = ρc and c = cr

are available, while actually they are functions of T , ρ and c.
This is why REFPROP is considered.

For the CO2-C2H6 mixture, all thermodynamic and trans-
port properties except for D can be calculated approximately
by REFPROP through specifying T , ρ and c. Figure 18 shows
and compares physical properties obtained from these two
approaches. It is demonstrated that REFPROP can give good
approximations for thermodynamic properties, where the be-
havior as the critical point is approached is the same: first
experiencing a one-component-like strong divergence, and
then remaining constant in a large crossover region [43]. The
mixturelike asymptotic critical region is not shown because
it is extremely close to the critical point. The critical region
involved in this study can still be modeled by a classical
equation of state (EOS) and a mixing law. The quantitative
deviations between these two approaches are reasonable since
different EOSs and mixing laws are embedded. However,
for transport properties, since critical enhancement is not
included in their modeling, REFPROP is reliable when the
critical point is not closely approached.

Based on above discussions, the thermodynamic properties
and the critical parameters are obtained from REFPROP.
The transport properties, assumed as functions of ε, are de-
termined through interpolating from data calculated by the
crossover model [44]. Note that since Tc is a function of c,
ε is also a function of c. That is to say, only the dependence of
density is not included in the modeling of transport properties.
Figure 19 plots all physical properties against ε at ρ = ρc.
Since the differences in rates of diffusion of heat and mass
are crucial in DDC, the thermal diffusivity, defined as DT =
λ/(ρcp), is also calculated and shown in Fig. 19(b). For
transport properties, it is striking to find that D tends to zero
quickly as the critical point is approached, while DT develops
a plateau. In addition, comparing to λ and D, the variation of
η is small (less than one order).
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FIG. 19. (Log-log plot) (a) Thermodynamic and (b) transport properties of CO2-C2H6 mixture (cr = 0.67) along the critical isochore
ρ = ρr , plotted against ε. DT = λ/(ρcp) is the thermal diffusivity. The units of these properties are cp: [kJ/(kg · K)], α: [MPa−1], β: [K−1], κ:
[−], η: [Pa · s], λ: [kW/(m · K)], D: [mm2/s], and DT : [mm2/s].

APPENDIX B: SEVERAL REDUCED CASES

1. Case I: FC

In FC, all physical properties are treated as constant values. As a result, Eq. (17) is simplified into

(
D2 − 4

3
k2

)
û + 1

3
ikDŵ − ik p̂ = σ

(
1

Pr
ρ̄û

)
,

1

3
ikDû +

(
4

3
D2 − k2

)
ŵ + RaTT̂ − RaSĉ − (D + χ ) p̂ = σ

(
1

Pr
ρ̄ŵ

)
,

[
1 + Raad

RaT

(
1 − 1

ρ̄

)]
ŵ + 1

ρ̄
(D2 − k2)T̂ = σ

(
T̂ − 1

ρ̄2

Raad

RaT
p̂

)
,

ŵ + τ (D2 − k2)ĉ + τ

ρ̄
ρ̄zDĉ = σ ĉ,

−ikρ̄û − (ρ̄z + ρ̄D)ŵ = σ [(χ p̂ − RaTT̂ + RaSĉ)]. (B1)

The boundary condition is given by Eq. (18).

2. Case II: BC

In BC, the BA is applied, and all physical properties are treated as constant values. We define a stream function

ũ = ∂ψ̃

∂z
, w̃ = −∂ψ̃

∂x
,

along with the normal mode expansion,

ψ̃ = ψ̂ (z) exp(ikx + σ t ).

The equations for perturbations after normal mode expansion are given by

(D4−2k2D2+k4)ψ̂ − ikRaTT̂ +ikRaSĉ=σ

[
1

Pr
(D2−k2)ψ̂

]
, −ikψ̂ + (D2 − k2)T̂ = σ T̂ , −ikψ̂ + τ (D2 − k2)ĉ = σ ĉ.

(B2)

In the derivation of Eq. (B2), the incompressible continuity equation and two momentum equations have been combined and
simplified into one single equation of w. The corresponding boundary condition is

ψ̂ = Dψ̂ = T̂ = ĉ = 0, on z = 0, 1. (B3)
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3. Case III: BC′

Based on BC, BC′ introduces the base-state density into the equation. The continuity equation ux + wz = 0 suggests ρ̄z = 0,
which is employed in the derivation. This can be seen as a modified BA, given by

(D4 − 2k2D2 + k4)ψ̂ − ikRaTT̂ + ikRaSĉ = σ

[
ρ̄

Pr
(D2 − k2)ψ̂

]
,

−ik

[
1 + Raad

RaT

(
1 − 1

ρ̄

)]
ψ̂ + 1

ρ̄
(D2 − k2)T̂ = σ T̂ , −ikψ̂ + τ (D2 − k2)ĉ = σ ĉ. (B4)

The boundary condition is given by Eq. (B3).

4. Case V: FV′

Based on BC′, BV′ takes the variable physical properties into consideration, which leads to the following equations:

η(D4 − 2k2D2 + k4)ψ̂ + 2ηz(D3 − k2D)ψ̂ + ηzz(D2 + k2)ψ̂ − ikRaTβT̂ + ikRaSκ ĉ = σ

[
ρ̄

Pr
(D2 − k2)ψ̂

]
,

ik

(
T̄z + Raad

RaT

β

ρ̄cp

)
ψ̂ + λ

ρ̄cp
(D2 − k2)T̂ + λz

ρ̄cp
DT̂ = σ T̂ ,

ikc̄zψ̂ + τD(D2 − k2)ĉ + τ

ρ̄
(ρ̄D)zDĉ = σ ĉ. (B5)

The boundary condition is given by Eq. (B3).

[1] P. Carlès, J. Supercrit. Fluid 53, 2 (2010).
[2] B. Zappoli, D. Beysens, and Y. Garrabos, Heat Transfers

and Related Effects in Supercritical Fluids (Springer, Berlin,
2016).

[3] P. Carlès and B. Ugurtas, Physica D. 126, 69 (1999).
[4] M. S. Giterman and V. Shteinberg, High Temp. 8, 754

(1970).
[5] E. A. Spiegel, Annu. Rev. Astron. Astrophys. 9, 323 (1971).
[6] M. Assenheimer and V. Steinberg, Phys. Rev. Lett. 70, 3888

(1993).
[7] A. B. Kogan, D. Murphy, and H. Meyer, Phys. Rev. Lett. 82,

4635 (1999).
[8] H. Meyer and A. B. Kogan, Phys. Rev. E 66, 056310 (2002).
[9] Y. Chiwata and A. Onuki, Phys. Rev. Lett. 87, 144301 (2001).

[10] S. Amiroudine, P. Bontoux, P. Larroudé, B. Gilly, and B.
Zappoli, J. Fluid Mech. 442, 119 (2001).

[11] G. Accary, P. Bontoux, and B. Zappoli, J. Fluid Mech. 619, 127
(2009).

[12] B. Shen and P. Zhang, Int. J. Heat Mass Transfer 55, 7151
(2012).

[13] H. Boukari, J. N. Shaumeyer, M. E. Briggs, and R. W. Gammon,
Phys. Rev. A 41, 2260 (1990).

[14] Z.-C. Hu and X.-R. Zhang, Int. J. Therm. Sci. 107, 131
(2016).

[15] Z.-C. Hu and X.-R. Zhang, J. Fluid Mech. 848, 1098 (2018).
[16] M. E. Stern, Tellus 12, 172 (1960).
[17] T. Radko, Double-Diffusive Convection (Cambridge University

Press, Cambridge, 2013).
[18] G. Walin, Tellus 16, 389 (1964).
[19] D. A. Nield, J. Fluid Mech. 29, 545 (1967).
[20] P. G. Baines and A. E. Gill, J. Fluid Mech. 37, 289 (1969).
[21] I. Raspo, S. Meradji, and B. Zappoli, Chem. Eng. Sci. 62, 4182

(2007).

[22] M. Wannassi and I. Raspo, J. Supercrit. Fluid 117, 203 (2016).
[23] H. E. Huppert and D. R. Moore, J. Fluid Mech. 78, 821

(1976).
[24] B. Goyeau, J.-P. Songbe, and D. Gobin, Int. J. Heat Mass

Transfer 39, 1363 (1996).
[25] H. Han and T. H. Kuehn, Int. J. Heat Mass Transfer 34, 461

(1991).
[26] A. Nakano, Int. J. Heat Mass Transfer 50, 4678 (2007).
[27] Z. Long, P. Zhang, B. Shen, and T. Li, Int. J. Heat Mass Transfer

90, 922 (2015).
[28] J. S. Turner, Buoyancy Effects in Fluids, Cambridge Mono-

graphs on Mechanics (Cambridge University Press, Cambridge,
1973).

[29] V. Shteinberg, J. Appl. Math. Mech. 35, 335 (1971).
[30] L. Landau and E. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon

Press, Oxford, 1987).
[31] W. H. Reid and D. L. Harris, Phys. Fluids 1, 102 (1958).
[32] L. Rintel, Phys. Fluids 10, 848 (1967).
[33] H. E. Huppert and J. S. Turner, J. Fluid Mech. 106, 299

(1981).
[34] I. C. Walton, J. Fluid Mech. 125, 123 (1982).
[35] N. J. Balmforth, A. R. R. Casti, and K. A. Julien, Phys. Fluids

10, 819 (1998).
[36] J. Tanny and V. A. Gotlib, Int. J. Heat Mass Transfer 38, 1683

(1995).
[37] P. Garaud, Annu. Rev. Fluid Mech. 50, 275 (2018).
[38] T. Leweke, S. Le Dizès, and C. H. Williamson, Annu. Rev. Fluid

Mech. 48, 507 (2016).
[39] J. V. Sengers, Int. J. Thermophys. 6, 203 (1985).
[40] B. Zappoli, C. R. Mécanique 331, 713 (2003).
[41] A. Abbaci, Global Thermodynamic Behavior of Fluids and

Fluid Mixtures in the Critical Region, Ph.D. thesis, University
of Maryland College Park (1991).

033112-18

https://doi.org/10.1016/j.supflu.2010.02.017
https://doi.org/10.1016/j.supflu.2010.02.017
https://doi.org/10.1016/j.supflu.2010.02.017
https://doi.org/10.1016/j.supflu.2010.02.017
https://doi.org/10.1016/S0167-2789(98)00261-9
https://doi.org/10.1016/S0167-2789(98)00261-9
https://doi.org/10.1016/S0167-2789(98)00261-9
https://doi.org/10.1016/S0167-2789(98)00261-9
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tvt&paperid=7745&option_lang=eng
https://doi.org/10.1146/annurev.aa.09.090171.001543
https://doi.org/10.1146/annurev.aa.09.090171.001543
https://doi.org/10.1146/annurev.aa.09.090171.001543
https://doi.org/10.1146/annurev.aa.09.090171.001543
https://doi.org/10.1103/PhysRevLett.70.3888
https://doi.org/10.1103/PhysRevLett.70.3888
https://doi.org/10.1103/PhysRevLett.70.3888
https://doi.org/10.1103/PhysRevLett.70.3888
https://doi.org/10.1103/PhysRevLett.82.4635
https://doi.org/10.1103/PhysRevLett.82.4635
https://doi.org/10.1103/PhysRevLett.82.4635
https://doi.org/10.1103/PhysRevLett.82.4635
https://doi.org/10.1103/PhysRevE.66.056310
https://doi.org/10.1103/PhysRevE.66.056310
https://doi.org/10.1103/PhysRevE.66.056310
https://doi.org/10.1103/PhysRevE.66.056310
https://doi.org/10.1103/PhysRevLett.87.144301
https://doi.org/10.1103/PhysRevLett.87.144301
https://doi.org/10.1103/PhysRevLett.87.144301
https://doi.org/10.1103/PhysRevLett.87.144301
https://doi.org/10.1017/S0022112001004967
https://doi.org/10.1017/S0022112001004967
https://doi.org/10.1017/S0022112001004967
https://doi.org/10.1017/S0022112001004967
https://doi.org/10.1017/S0022112008004175
https://doi.org/10.1017/S0022112008004175
https://doi.org/10.1017/S0022112008004175
https://doi.org/10.1017/S0022112008004175
https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.031
https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.031
https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.031
https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.031
https://doi.org/10.1103/PhysRevA.41.2260
https://doi.org/10.1103/PhysRevA.41.2260
https://doi.org/10.1103/PhysRevA.41.2260
https://doi.org/10.1103/PhysRevA.41.2260
https://doi.org/10.1016/j.ijthermalsci.2016.03.019
https://doi.org/10.1016/j.ijthermalsci.2016.03.019
https://doi.org/10.1016/j.ijthermalsci.2016.03.019
https://doi.org/10.1016/j.ijthermalsci.2016.03.019
https://doi.org/10.1017/jfm.2018.397
https://doi.org/10.1017/jfm.2018.397
https://doi.org/10.1017/jfm.2018.397
https://doi.org/10.1017/jfm.2018.397
https://doi.org/10.3402/tellusa.v12i2.9378
https://doi.org/10.3402/tellusa.v12i2.9378
https://doi.org/10.3402/tellusa.v12i2.9378
https://doi.org/10.3402/tellusa.v12i2.9378
https://doi.org/10.3402/tellusa.v16i3.8930
https://doi.org/10.3402/tellusa.v16i3.8930
https://doi.org/10.3402/tellusa.v16i3.8930
https://doi.org/10.3402/tellusa.v16i3.8930
https://doi.org/10.1017/S0022112067001028
https://doi.org/10.1017/S0022112067001028
https://doi.org/10.1017/S0022112067001028
https://doi.org/10.1017/S0022112067001028
https://doi.org/10.1017/S0022112069000553
https://doi.org/10.1017/S0022112069000553
https://doi.org/10.1017/S0022112069000553
https://doi.org/10.1017/S0022112069000553
https://doi.org/10.1016/j.ces.2007.04.027
https://doi.org/10.1016/j.ces.2007.04.027
https://doi.org/10.1016/j.ces.2007.04.027
https://doi.org/10.1016/j.ces.2007.04.027
https://doi.org/10.1016/j.supflu.2016.06.020
https://doi.org/10.1016/j.supflu.2016.06.020
https://doi.org/10.1016/j.supflu.2016.06.020
https://doi.org/10.1016/j.supflu.2016.06.020
https://doi.org/10.1017/S0022112076002759
https://doi.org/10.1017/S0022112076002759
https://doi.org/10.1017/S0022112076002759
https://doi.org/10.1017/S0022112076002759
https://doi.org/10.1016/0017-9310(95)00225-1
https://doi.org/10.1016/0017-9310(95)00225-1
https://doi.org/10.1016/0017-9310(95)00225-1
https://doi.org/10.1016/0017-9310(95)00225-1
https://doi.org/10.1016/0017-9310(91)90265-G
https://doi.org/10.1016/0017-9310(91)90265-G
https://doi.org/10.1016/0017-9310(91)90265-G
https://doi.org/10.1016/0017-9310(91)90265-G
https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.014
https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.014
https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.014
https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.014
https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.019
https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.019
https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.019
https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.019
https://doi.org/10.1016/0021-8928(71)90043-8
https://doi.org/10.1016/0021-8928(71)90043-8
https://doi.org/10.1016/0021-8928(71)90043-8
https://doi.org/10.1016/0021-8928(71)90043-8
https://doi.org/10.1063/1.1705871
https://doi.org/10.1063/1.1705871
https://doi.org/10.1063/1.1705871
https://doi.org/10.1063/1.1705871
https://doi.org/10.1063/1.1762199
https://doi.org/10.1063/1.1762199
https://doi.org/10.1063/1.1762199
https://doi.org/10.1063/1.1762199
https://doi.org/10.1017/S0022112081001614
https://doi.org/10.1017/S0022112081001614
https://doi.org/10.1017/S0022112081001614
https://doi.org/10.1017/S0022112081001614
https://doi.org/10.1017/S0022112082003280
https://doi.org/10.1017/S0022112082003280
https://doi.org/10.1017/S0022112082003280
https://doi.org/10.1017/S0022112082003280
https://doi.org/10.1063/1.869605
https://doi.org/10.1063/1.869605
https://doi.org/10.1063/1.869605
https://doi.org/10.1063/1.869605
https://doi.org/10.1016/0017-9310(94)00288-7
https://doi.org/10.1016/0017-9310(94)00288-7
https://doi.org/10.1016/0017-9310(94)00288-7
https://doi.org/10.1016/0017-9310(94)00288-7
https://doi.org/10.1146/annurev-fluid-122316-045234
https://doi.org/10.1146/annurev-fluid-122316-045234
https://doi.org/10.1146/annurev-fluid-122316-045234
https://doi.org/10.1146/annurev-fluid-122316-045234
https://doi.org/10.1146/annurev-fluid-122414-034558
https://doi.org/10.1146/annurev-fluid-122414-034558
https://doi.org/10.1146/annurev-fluid-122414-034558
https://doi.org/10.1146/annurev-fluid-122414-034558
https://doi.org/10.1007/BF00522145
https://doi.org/10.1007/BF00522145
https://doi.org/10.1007/BF00522145
https://doi.org/10.1007/BF00522145
https://doi.org/10.1016/j.crme.2003.05.001
https://doi.org/10.1016/j.crme.2003.05.001
https://doi.org/10.1016/j.crme.2003.05.001
https://doi.org/10.1016/j.crme.2003.05.001


ONSET OF DOUBLE-DIFFUSIVE CONVECTION IN … PHYSICAL REVIEW E 99, 033112 (2019)

[42] G. X. Jin, S. Tang, and J. V. Sengers, Phys. Rev. E 47, 388
(1993).

[43] S. Kiselev and D. Friend, Fluid Ph. Equilibria 162, 51
(1999).

[44] J. Luettmer-Strathmann and J. V. Sengers, J. Chem. Phys. 104,
3026 (1996).

[45] E. W. Lemmon, M. L. Huber, and M. O. McLinden, NIST Stan-
dard Reference Database 23: Reference Fluid Thermodynamic
and Transport Properties-REFPROP, Version 9.1, National
Institute of Standards and Technology (2013).

[46] J. V. Sengers and G. X. Jin, Int. J. Thermophys. 28, 1181
(2007).

033112-19

https://doi.org/10.1103/PhysRevE.47.388
https://doi.org/10.1103/PhysRevE.47.388
https://doi.org/10.1103/PhysRevE.47.388
https://doi.org/10.1103/PhysRevE.47.388
https://doi.org/10.1016/S0378-3812(99)00182-X
https://doi.org/10.1016/S0378-3812(99)00182-X
https://doi.org/10.1016/S0378-3812(99)00182-X
https://doi.org/10.1016/S0378-3812(99)00182-X
https://doi.org/10.1063/1.471070
https://doi.org/10.1063/1.471070
https://doi.org/10.1063/1.471070
https://doi.org/10.1063/1.471070
https://doi.org/10.1007/s10765-007-0263-2
https://doi.org/10.1007/s10765-007-0263-2
https://doi.org/10.1007/s10765-007-0263-2
https://doi.org/10.1007/s10765-007-0263-2



