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Mutual-friction-driven turbulent statistics in the hydrodynamic regime of superfluid 3He-B
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It is well known that the turbulence that evolves from the tangles of vortices in quantum fluids at scales larger
than the typical quantized vortex spacing � has a close resemblance with classical turbulence. The temperature-
dependent mutual friction parameter α(T ) drives the turbulent statistics in the hydrodynamic regime of quantum
fluids that involves a self-similar cascade of energy. From a simple theoretical analysis, here we show that
superfluid 3He-B in the presence of mutual damping exhibits a k−5/3 Kolmogorov energy spectrum in the entire
inertial range � < r < L at temperature T � 0.2Tc, while at T � 0.2Tc dissipation begins to dominate larger
eddies exhibiting a k−3 spectrum toward the energy pumping scale L. At T ≈ 0.35Tc, eddies of all size, being
highly affected by damping, exhibit a k−3 spectrum in the entire inertial range. The consistency of this result
with the predictions of recent direct numerical simulations indicates that the present theoretical framework is
applicable in quantifying the hydrodynamic regime of quantum turbulence.
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I. INTRODUCTION

As first envisaged by Feynman [1], superfluids obeying
quantum hydrodynamics exhibit turbulent characteristics due
to a three-dimensional dynamic tangle of reconnecting dis-
crete thin vortex filaments, each carrying a fixed circulation
[2]. The rapid advances in experimental techniques, partic-
ularly Andreev scattering [3] and NMR spectroscopy [4],
have enabled us to visualize quantum vortices, and they have
triggered many current theoretical and experimental develop-
ments [5,6] in the statistical characterization of turbulence in
quantum fluids [2,4,7,8]. The current theoretical understand-
ing of turbulent motions in quantum fluids is mostly based on
Landau’s phenomenological picture of the two-fluid model [9]
where below the critical temperature Tc (Tc = 2.17 K for 4He
and ≈1 mK for 3He-B) the hydrodynamics is described as a
combination of two interpenetrating fluids, namely a viscous
normal fluid (with viscosity νn > 0, velocity un, and density
ρn) and an inviscid superfluid (with viscosity νs = 0, velocity
us, and density ρs) both having a temperature-dependent rela-
tive density and moving with two different velocities. At finite
temperature (T �= 0), the normal and superfluid components
get coupled to each other via thermal excitations, and the
resulting dissipative force is modeled by a mutual friction
term. In 3He-B, the highly viscous normal fluid is effectively
clamped to the walls, and the mutual friction, acting over all
length scales, affects the dynamics of quantized vortices by
damping the energy of Kelvin waves into the normal fluid.
In the zero-temperature limit, the normal fluid is absent and
quantum turbulence becomes entirely a tangle of quantized
vortex lines that move in a fluid without viscosity. From
the viewpoint of this two-fluid model, turbulence in Fermi
superfluid 3He-B is a relatively simpler problem than that of
4He because of the very high viscosity of the normal com-
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ponent. The study of quantum turbulence in superfluid 3He-
B has gained prominence theoretically [10,11], numerically
[12–15], and experimentally [3,8].

Similar to 4He, there are three important length scales in-
volved in superfluid turbulence of 3He-B. The smallest length
scale is the vortex core radius ξ (≈10−8 m at low pressure).
The quantization of circulation κ = h̄/m (m being the mass
of the Cooper pairs) gives rise to an intermediate quantum
length scale � that is the mean separation between vortex lines
(≈10−5 m). The largest scale involved is the size of the largest
eddies L, which is ≈10−2 m. Over the widely separated length
scales � � r � L, nonlinear interaction between vortex fila-
ments leads to the polarization and partial alignment of the
vortex that mimics continuous hydrodynamic eddies, and thus
a Kolmogorov energy cascade with larger eddies breaking
into smaller ones is expected, as observed in numerical sim-
ulations [12] and experimental measurements [8]. At a scale
r ∼ �, the discrete nature of quantized vortex lines becomes
important, and energy is believed to be transferred downscale
by the interacting Kelvin waves (helical perturbations of the
individual vortex lines), where it is radiated away by thermal
quasiparticles (phonons).

In the hydrodynamic regime (� � r � L), the coarse-
grained average superfluid velocity is obtained [11] by av-
eraging over a small volume that is significantly larger than
�3. As the normal fluid is extremely viscous, the description
of the fluid motion in 3He-B can be reduced to the coarse-
grained hydrodynamic Euler equation for the superfluid
velocity u(r, t ) ≡ us(r, t ) as [10,11,14]

∂u
∂t

+ (u · ∇)u + ∇μ(ρ) = −D + f, (1)

where f (r, t ) is the force applied at the outer scale L to
sustain the turbulence, μ(ρ) is the chemical potential, and D is
the dissipative term representing the effective mutual friction
acting at large scales. As suggested by Vinen [16], the simplest
form of mutual friction in the purely hydrodynamic regime
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of superfluid turbulence can be chosen as a linear function
of the superfluid velocity u as D = 	u, where 	 ≡ α(T ) ωT
represents a scale-independent damping frequency. Here α

is the temperature-dependent dimensionless mutual friction
parameter and ωT = ∇ × u is the superfluid vorticity. This
mutual friction causes the superfluid velocity u to decay with
a time constant τd = 1/	 irrespective of the size r of the
eddies. The inertial-range cascade exists as long as τd � τr ,
where τr = r/ur is the characteristic turnover time associated
with the nonlinear transfer of energy from eddies of size r
and characteristic velocity ur . These two timescales define an
effective scale-dependent superfluid Reynolds number [4,6]
R′

e = τd/τr = ur/	r � 1. It can be expressed using Kol-
mogorov scaling for characteristic velocity, ur = (εr)1/3, as
R′

e = ε1/3/	r2/3, indicating that dissipation will be important
in eddies larger than the size given by rd = (ε/	3)1/2. Thus
an inertial-range Kolmogorov cascade characterized by the
k−5/3 spectrum is expected to exist on a length scale less
than rd [10,11,14]. For length scales rd � r � L, theoretical
predictions [10,11] and numerical simulations [14,15] suggest
that the energy flux decays with increasing scales and the en-
ergy density follows a k−3 spectrum. This large-scale regime
exists when the damping due to mutual friction exceeds some
critical value while decreasing dissipation causes this regime
to shrink. An interesting question, which has received much
theoretical attention, is at what temperature range does the
above classical scaling exist?

While the analytical results of L’vov et al. [10] for the
possible energy spectra in superfluid 3He-B are interesting
and suggestive, they are based on an uncontrolled algebraic
approximation for the energy flux. Their predictions, namely
the crossover wave number that separates the small scale k−5/3

and the large scale k−3 scaling regimes, have been verified
through numerical simulations of the shell model [14]. The
shell model is also an uncontrolled simplification of the basic
equations of motion for the superfluid velocity field. Recently,
direct numerical simulations (DNS) have been performed [15]
on a gradually damped version of the coarse-grained Hall-
Vinen-Bekarevich-Khalatnikov (HVBK) model, which is ob-
tained from the standard HVBK model by adding a dissipation
term proportional to the superfluid viscosity, as suggested in
Ref. [17]. They used an integral closure [18] and obtained
different turbulent energy spectra for different temperatures
lying in the range 0 < T < 0.7 Tc. A k−3 spectrum at large
scales and a k−5/3 spectrum at small scales was obtained
at T < 0.37 Tc. Existing theoretical analyses due to L’vov
et al. [10] and Vinen [11] are unable to quantify exactly this
temperature-dependent distribution of the turbulent energy
density.

Here we obtain a theoretical insight into the problem
by employing the direct interaction picture of Kraichnan.
The (Eulerian) direct interaction approximation (DIA), orig-
inally introduced and applied to incompressible homoge-
neous isotropic turbulence by Kraichnan [19], was the first
“microscopic” theory of (three-dimensional) turbulence [20]
that resembles the Dyson-Schwinger formulation of quantum
field theory. In fact, it was the first detailed field-theoretic
approach to the theory of turbulence based on the underlying
Navier-Stokes dynamics of fluid motion. However, the Eu-
lerian framework is unable to capture the correct timescales
associated with the cascade from the timescales of sweeping

of smaller eddies by the larger ones, and thereby it fails to
extract the small effect of Kolmogorov cascade among the
small eddies from the large effect of their being swept around.
As a result, it incorrectly yields a k−3/2 spectrum instead of
the well-known Kolmogorov k−5/3 spectrum. This failure was
identified by Edwards [21] as a consequence of the divergence
in the response integral due to the contributions coming from
the large scales of motion (low wave numbers). To systemat-
ically eliminate this spurious effect of sweeping, Kraichnan
reformulated the theory in a Lagrangian framework [22]. The
Lagrangian version of the DIA gives excellent predictions for
various statistical quantities such as Kolmogorov’s universal
form of the energy spectrum function and the skewness of the
velocity gradient.

In superfluid turbulence, the two independent phenomena
of vortex reconnection and mutual friction are the sources
of dissipation. Vortex reconnection is particularly important
at extremely low temperatures that generate Kelvin waves. It
was confirmed experimentally that the turbulent dissipation at
extremely low temperature is excited by vortex reconnection
[23]. The dissipation rate at which the energy is fed into the
Kelvin waves is given by ε = Gκ3l−4 = Gκ3L2, where κ is
the quantum of circulation and L is the vortex line density. The
product Gκ can be interpreted as effective kinematic viscosity
ν0 so that ε = ν0κ

2L2 [24]. To apply Kraichnan’s DIA, we
introduce in the governing dynamical equation [Eq. (1)] a
dissipative term ν0∇2u. Such a term has been incorporated
in recent numerical simulations [15,17,25]. Thus, we write
Eq. (1) as

∂u
∂t

+ (u · ∇)u = ν0∇2u − ∇μ − 	u + f, (2)

and we apply Kraichnan’s DIA to obtain analytic expressions
for the perturbative corrections to the velocity-velocity corre-
lation. A crossover wave number kcr appears that, depend-
ing on the mutual damping frequency, dictates two differ-
ent scaling regimes: an isotropic inertial-range Kolmogorov
k−5/3 regime at small scales (k � kcr), and a k−3 regime at
large scales (k � kcr) with wave-number-dependent energy
flux. Using available experimental data for the temperature-
dependent mutual friction parameter [30], we show that the
k−5/3 spectrum occupies the entire inertial range � < r < L at
temperature T � 0.2Tc, while at T � 0.2Tc dissipation begins
to dominate larger eddies exhibiting a k−3 spectrum. At T ≈
0.35Tc, eddies of all sizes are highly affected by damping,
giving the k−3 spectrum in the entire inertial range.

II. DIA TREATMENT

To bring into play the physics associated with the re-
sponse of the turbulent system to small perturbations, the DIA
makes essential and intimate use of the response function
Gi j (x, x′, t, t ′) = 〈δui(x, t )/δ f j (x′, t ′)〉, where the deviation
δui(x, t ) in the velocity field is due to the infinitesimal dis-
turbance δ f j (x′, t ′) in the force field. Thus it captures the way
in which the dynamical equation responds to perturbation. We
write Eq. (2) in Fourier space as(

∂

∂t
+ ν0k2

)
ui(k, t ) + i

2
Pi jl (k)

∑
p+q=k

u j (p, t )ul (q, t )

= Fi(k, t ), (3)
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with Fi(k, t ) = fi(k, t ) − 	ui(k, t ), Pi jl (k) = k jPil (k) +
klPi j (k) with Pi j (k) = δi j − kik j/k2, and the summation
sign represents integrations on p and q with triad relation
p + q = k. Following Kraichnan’s method, we introduce
the full response function Gi j (k; t, s) corresponding to
the velocity field as ui(k, t ) = ∫ t

−∞ ds Gi j (k; t, s)Fj (k, s).

We define the isotropic background field as u(0)
i (k, t ) =∫ t

−∞ ds G(0)
i j (k; t, s) f j (k, s), and we follow Leslie’s [20]

suggestion of replacing the full response by the isotropic
response, so that the full velocity field is

ui(k, t ) = u(0)
i (k, t ) − 	

∫ t

−∞
ds G(0)

i j (k; t, s)ui(k, s). (4)

In the full (exact) velocity correlation tensor Qi j (k, t, t ′),
defined as 〈ui(k, t )u j (k′, t ′)〉 = Qi j (k; t, t ′)(2π )3δ3(k + k′),

we substitute Eq. (4) iteratively and obtain the expansion
Qi j = Q(0)

i j + Q(1)
i j + Q(2)

i j + · · · , where the superscripts de-
note the order in powers of 	. The zeroth-order isotropic cor-
relation function is given by (2π )3δ3(k + k′)Q(0)

i j (k; t, t ′) =
〈u(0)

i (k, t )u(0)
j (k′, t ′)〉. Using the properties of the isotropic

correlation as well as response tensors, namely Q(0)
i j (k; t ; t ′) =

Q(0)(k; t, t ′)Pi j (k) and G(0)
i j (k; t ; t ′) = G(0)(k; t, t ′)Pi j (k), we

find the corrections to the correlation function up to O(	2)
as

Q(1)
i j (k; t, t ′) = −2	Pi j (k)

∫ t

−∞
ds G(0)(k; t, s)Q(0)(k; t ′, s)

(5)

and

Q(2)
i j (k; t, t ′) = 	2Pi j (k)

[
2

∫ t

−∞
ds

∫ s

−∞
ds′G(0)(k; t, s)G(0)(k; s, s′)Q(0)(k; t ′, s′)

+
∫ t

−∞
ds

∫ t ′

−∞
ds′G(0)(k; t, s)G(0)(k; t ′, s′)Q(0)(k; s, s′)

]
(6)

We evaluate the above time integrals by assuming an
exponential decay of the response and correlation functions
[21], namely

G(0)(k; t, t ′) = θ (t − t ′)e−η(k)(t−t ′ ) and Q(0)(k; t, t ′)

= Q(0)(k)e−η(k)|t−t ′ |,

where θ (t − t ′) is the Heaviside step function and η(k) is the
eddy damping factor. The equal-time correlations are obtained
by setting t = t ′ in Eqs. (5) and (6) and by choosing the proper
region in s-s′ space, as shown in Fig. 1. This yields

Q(1)
i j (k; t, t ) = −	Pi j (k)Q(0)(k)/η(k) (7)

and

Q(2)
i j (k; t, t ) = 	2Pi j (k)Q(0)(k)/η(k)2. (8)

Now using the well-known isotropic Kolmogorov-Obukhov
scaling [26] for the turbulent energy density, namely E (k) =

1
(2π )3 4πk2Q(0)(k) = Cε2/3k−5/3, and the eddy damping rate

st
(b)(a)

tt

st

S
s=s

S
s=s

FIG. 1. The region of integration for the time integrals in s-s′

space. (a) In the region s > s′, s varies from −∞ to t while s′ varies
from −∞ to s; (b) in the region s < s′, s varies from −∞ to t while
s′ varies from s to t .

η(k) = a ε1/3k2/3, we obtain

E (k) = Cε2/3k−5/3

[
1 − 	

a
ε−1/3k−2/3 + 	2

a2
ε−2/3k−4/3

]
.

(9)

III. MUTUAL-FRICTION-DEPENDENT SCALING REGIME

To see how mutual friction leads to different energy spectra
in different length scales, we express Eq. (9) in terms of
a dimensionless mutual friction parameter γ = 	/(ε1/3k2/3

0 ),
where k0 is the wave number corresponding to the outer scale
L. Thus defining a crossover wave number

kcr = γ 3/2k0/a3/2 = (	3/a3ε)1/2, (10)

we can write Eq. (9) as

E (k)

ε2/3k−5/3
= C

[
1 −

(
kcr
k

)2/3

+
(

kcr
k

)4/3
]
. (11)

Expressing Eq. (11) as E (k) = C[ε(k)]2/3k−5/3, we obtain the
wave-number-dependent energy flux as

ε(k)

ε
=

[
1 −

(
kcr
k

)2/3

+
(

kcr
k

)4/3
]3/2

. (12)

Thus we see that for wave numbers higher than kcr (k � kcr),
the spectrum returns to the classical Kolmogorov spectrum
E (k) = C ε2/3 k−5/3, while at small wave numbers (k � kcr)
it gives

E (k)

ε2/3k−5/3
= C

(
kcr
k

)4/3

, (13)

with ε(k) = ε(kcr/k)2.

033111-3



KISHORE DUTTA PHYSICAL REVIEW E 99, 033111 (2019)

 1.2lo
g 2

 [E
(k

)k
5/

3 ]

 0.5

 1

0.25 1 4 16 64 256

lo
g 2

[ε
(κ

)/ε
]

log2 k

FIG. 2. Log-log plots of the energy density (top panel) and the
energy flux (bottom panel) vs wave number for different values of
γ . At small wave numbers and for increasing values of γ , the top
panel shows the significant deviations of the energy density from
k−5/3 scaling (thick horizontal line) and approaches a k−3 scaling
(thin line). At very large wave numbers, the bottom panel shows
the almost constant energy flux, while with increasing values of γ ,
the energy flux decays and approaches a k−2 scaling (thin line). The
values of γ for the deviated graphs (from green to cyan in color) are
γ = 0.05, 0.2, 0.4, 0.6, 0.8, and 1.0 in both panels.

The above expressions involve two nondimensional con-
stants C and a, which can be determined self-consistently
from the dynamical equation using the Heisenberg approxi-
mation [27]. In the Heisenberg-type approximation, the self-
consistent equation based on the DIA energy integral is ob-
tained for the eddy-damping rate η(k) so that it is dynamically
determined without having to make a choice for it. This is
in marked contrast to the approaches based on eddy-damped
quasinormal Markovian closures (EDQNM) [28], where the
eddy-damping rate is introduced by hand. By assuming a
Kolmogorov-type scaling law for E (k) and η(k) so that the
unphysical k−3/2 DIA spectrum does not get accommodated
in the calculations, the ratio a2/C can be determined self-
consistently in the Heisenberg approximation, as explicitly
shown in Ref. [27]. Within the same scheme, the flux integral
for energy can also be evaluated self-consistently, giving a
ratio a/C2. From these two amplitude ratios, the universal
numbers C and a are dynamically determined, without hav-
ing to set the numerical value of any constant by hand.
Thus, taking the values of C and a from the theoretical
estimates obtained via the Heisenberg approximation [27],
namely a2/C = 7/60, a = 0.4269, and C = 1.5618, we plot
in Fig. 2 the left-hand sides of Eqs. (11) and (12) against a
wide range of wave numbers k for different values of γ . Thus,
as obtained by L’vov et al. [10], our calculations indicate that
with increasing scales (decreasing k), the energy flux ε(k)
varies as k−2 and the energy density follows a k−3 spectrum,
while at small scales (large k) the energy flux remains constant
and the energy density follows the classical Kolmogorov k−5/3

spectrum. Below we shall discuss a few important points that
can be drawn from our above analytical results.

(i) The scale-dependent Reynolds number described at the
outset can be expressed as [4] R′

e = ε1/3k2/3/	 = 1/α, where

TABLE I. Values of the critical temperature Tc against the mutual
friction parameter α, extracted from the graphical plots of Ref. [30].

1/α 0.3 0.8 3 7 11 15 42 350 ∞
T/Tc 0.72 0.59 0.39 0.37 0.35 0.32 0.27 0.2 0

we set 	 ≡ α ωT. Thus, the condition R′
e � 1 corresponds

to α � 1. The role of parameter α as the inverse superfluid
Reynolds number was demonstrated in the experiments de-
scribed in Ref. [4], where it was shown that the turbulence
develops only when α < 1. From the expression for kcr, we
see that γ = a = 0.4269 corresponds to kcr = k0 (rd = L) so
that the classical Kolmogorov cascade is realized in the entire
inertial range � < r < L. As the value of γ increases from
γ = 0.4269, kcr is shifted to higher values and, eventually,
the k−5/3 energy range is restricted in the high wave number
k > kcr while a k−3 spectrum begins to develop at low wave
numbers k < kcr. This is because the mutual damping begins
to play a dominating role causing a decay of energy flux in the
region of small k.

(ii) Equation (13) yields E (k) = (C/a2)	2k−3 =
8.5714 	2 k−3. The critical value of α for which this k−3

energy spectrum is realized for any k can be obtained by
substituting this E (k) into the expression

ω2
T ≡ 〈|ω|2〉 ≈ 2

∫ k�

k0

k2 E (k)dk, (14)

giving αcr 
 a/
√

2C ln(k�/k0). The value k�/k0 ∼ 103 can be
inferred from the experimental work of Walmsley et al. [29],
where the mean intervortex distance � ∼ 0.03 mm and the
largest scale is L = 4.5 cm. In fact, the value k�/k0 ∼ 103 was
effectively used by Boué et al. [14] to obtain αcr. This is also
evident from the numerical simulation of a shell model carried
out by Wacks and Barenghi [25] where a forcing wave number
k0 = 2−4 was chosen and kl ≈ 103 was obtained. Thus for
k�/k0 
 103, we obtain αcr 
 0.0919. Corresponding to α =
αcr, there is a value of γ that can be obtained by setting kcr =
k� in the definition of kcr. Thus, for k�/k0 ≈ 103 [14] we find
γ ≈ 42.69. For α � αcr, the dissipation is negligible and the
Kolmogorov k−5/3 spectrum can be substituted for E (k) in
Eq. (14). This yields a relation between the coefficients γ

and α as γ 
 153.0588 α for small α, where we set k�/k0 ≈
103. This gives α 
 0.0028 for γ = 0.4269 at which the
Kolmogorov spectrum is realized in the entire inertial range.

(iii) For our estimated value of αcr ≈ 0.0919, the temper-
ature data can be obtained from the graph for the temperature
dependence of the mutual friction parameter, given in the
experimental work of Bevan et al. [30]. From their experimen-
tal graph, we extracted some temperature data and displayed
them in Table I. We see that 1/αcr ≈ 10.88 corresponds
to T ≈ 0.35Tc. Further, α 
 0.0028 corresponds to 1/α ≈
358, giving T ≈ 0.2Tc. Thus, the k−5/3 Kolmogorov energy
spectrum is realized in the entire inertial range � < r < L
at temperature T � 0.2Tc, while at T � 0.2Tc dissipation
begins to dominate larger eddies exhibiting a k−3 spectrum
toward large scales. At T ≈ 0.35Tc, eddies of all sizes are
highly affected by damping, giving the k−3 spectrum in the
entire inertial range. For 0.2Tc � T � 0.35Tc, there appear
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two different scaling regimes at different length scales, given
by E (k) ∼ k−x with x = 5/3 at small scales and x = 3 at
large scales. This is in remarkably good agreement with the
prediction from the recent DNS performed by Biferale et al.
[15] where such scaling was observed at T < 0.37Tc.

IV. CONCLUDING REMARKS

To summarize, we obtain a crossover wave number kcr
that shifted toward higher values for increasing strength of
mutual damping frequency 	, and it separates two regimes
corresponding to the scaling of turbulent energy density: a
classical Kolmogorov spectrum E (k) ∼ k−5/3 for k � kcr and
a k−3 spectrum for k � kcr. Our expression for the crossover
wave number [Eq. (10)] differs from that of Ref. [14] where
kcr = k0|γ − γcr|−2/3 and, accordingly, kcr diverges there at
γ = γcr. In fact, their expression for kcr was obtained by
employing Leith differential closure [31] for the energy flux
in a suitable form proposed by Nazarenko [32], and thereby
they arrived at the subcritical and supercritical energy spectra.
In our case, kcr corresponds to rd ≡ (ε/	3)1/2 (obtained from
dimensional analysis), as defined in Sec. I. The value of kcr
changes gradually with the mutual friction parameter γ : with
increasing temperature (i.e., with increasing value of γ ), kcr
shifted toward a higher value (kcr = k0 at γ = 0.4269). Thus
it distinguishes two different scaling regimes for turbulent
energy density.

We have shown that the Kolmogorov k−5/3 regime occu-
pies the entire inertial-range l � r � L when γ = 0.4269,
which corresponds to T ≈ 0.2Tc. For γ > 0.4269 (T �
0.2Tc), the energy flux ε(k) decays with decreasing k, giving a
k−3 regime at low wave numbers. As pointed out in Ref. [10],
at some critical value of the mutual friction (α = αcr)
there exists the self-similar balance between the energy flux
and the mutual-friction energy dissipation, leading to the
scale-invariant energy spectrum E (k) ∼ k−3. As such, we
have obtained an expression for αcr from Eq. (14), giving
αcr = 0.0919, which corresponds to T ≈ 0.35 Tc. Our most
remarkable finding that the two different scaling regimes exist
for T � 0.35 Tc is in excellent agreement with the recent DNS
results (T � 0.37 Tc) [15]. The numerical value αcr 
 0.34
predicted via the simulation of the shell model [14] corre-
sponds to T 
 0.42Tc and deviates from the DNS result [15].

To contrast with the previous parametrization, it may be
noted that in Refs. [10,14], the formulations were based on the
differential closure for the energy flux [31], which, although
it gives the scaling exponent for energy spectra, does not

accurately control the numerical prefactors. Without using
such an uncontrolled algebraic expression for differential
closure, we have derived the expression for turbulent energy
density from the governing dynamical equation. As such,
we have assumed the universal Kolmogorov scaling for the
energy spectra, namely E (k) = Cε2/3k−5/3, corresponding to
the isotropic background velocity field together with the uni-
versal scaling law for the eddy damping rate η(k) = aε1/3k2/3.
As a result, the numerical prefactors in the corresponding
expression for energy spectra involve the universal numbers
C and a. Further, the values of γ and α are also determined by
these two universal numbers. Thus the value of the transition
temperature would vary for different sets of C and a values.
We have taken self-consistently calculated values of C and
a based on the Heisenberg approximation. If one takes the
EDQNM results [33], namely C = 1.6 and a = 0.28, the
value of αcr becomes αcr = 0.0595, which corresponds to
T 
 0.31Tc.

While comparing with the DNS results of Biferale et al.
[15], we find that our estimate T ≈ 0.35Tc deviates from their
numerical prediction T ≈ 0.37Tc by 5.4%. In Ref. [14], the
value 1/αcr = 2.9411 gives T ≈ 0.42Tc and thus the errors
in the estimation of the temperature is 13.5% in comparison
to the results of Biferale et al. [15]. Further, if one uses
the EDQNM results (quoted above), 1/αcr = 16.8067, giving
T 
 0.31Tc; the corresponding error is 16.2%.

In Kraichnan’s DIA that we have adopted here, both the
velocity field and the response functions have to be evaluated
perturbatively and recursively at each order of the perturbative
scheme. Such perturbative evaluation of the velocity field and
the response function Gi j at higher order is a difficult task. To
simplify the calculations, we made use of Leslie’s suggestion
[20] of replacing the full response by the isotropic response.
Although it is a crude approximation, this makes the problem
analytically tractable. From the theoretical point of view, it
would be really interesting to see how the present results will
get modified while relaxing such a crude approximation. An
idea of tackling the full response function was proposed by
Leslie himself in his book [20]. The idea is to construct the
DIA equations for the response and energy transport rate start-
ing from the governing dynamical equation (2) and then to
treat them via a suitable approximation for eddy viscosity such
as the Heisenberg approximation. In spite of this drawback,
the present approach offers a theoretical framework to char-
acterize the statistical behavior of superfluid turbulence in the
hydrodynamic regime directly from the governing equation
of motion that may potentially be used to attack much wider
problems of superfluid turbulence.
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