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and a temporally varying velocity field
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We investigate the effects of the Péclet number (Pe) on transport of an inert chemical tracer in heterogeneous
porous media. We simulate fluid flow and transport through two-dimensional pore-scale matrices with varying
structural complexity. With increasing Pe, the anomalous nature of the transport becomes enhanced as the host
domain becomes more heterogeneous, due to the increasingly dominant effects of the complex velocity field.
The sensitivity of (anomalous) transport to Pe is shown to be controlled by the medium structure. We quantify
the effects of Pe by interpreting the numerical simulations within the continuous time random walk method
(CTRW) framework, and incorporating Pe within the underlying tracer transition time distribution. We then
investigate transport behavior subjected to temporal variation in the velocity field magnitude, accounting for
tracer propagation controlled by Pe. Because of the nonlinear influence of Pe on the transport behavior, we show
that temporal variations in the velocity field can lead to an increase in the anomalous nature of the transport.
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I. INTRODUCTION

A detailed understanding of chemical transport in natural
porous media, such as geological formations, is essential for
many technological and environmental processes [1]. How-
ever, due to the irregular structure of such media [2]—which
leads to flow fields displaying complex spatiotemporal orga-
nization [3–5]—predicting transport dynamics within them is
often elusive. The structural complexity of geological porous
media often causes chemical transport to exhibit anomalous
behavior [3], in the sense that the first and second (spatial and
temporal) moments of the chemical plume are either space-
or time-dependent and different from their Gaussian-based
counterparts [6].

The origin of this anomalous behavior stems from the
occurrence of non-Gaussian, multiscale velocity distributions
(as opposed to a Gaussian distribution, as assumed within
the classical advection-dispersion model). Propagation of a
chemical species, whether inert or reactive, in such a domain
often exhibits a temporal behavior that evolves toward an
asymptotic state [7–9].

In this context, the formation of preferential paths and
stagnant zones in natural porous media causes the tracer-
weighted velocity distribution, �p (which is the velocity
field that is sampled by the transported chemical species,
weighted by the actual proportion of tracers that interrogate
each velocity) to deviate strongly from the fluid velocity
distribution, � f [5,10–12]. Therefore, for many situations—
especially when the porous medium is characterized by strong
spatial heterogeneity (as in natural geological formations)—
prior knowledge about the fluid velocity field is insufficient
to enable description of chemical tracer propagation within it.
The convergence (or at least approach) of �p to � f depends
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on the ability of the tracer to sample, spatially, essentially
the entire flow field; note that �p converges precisely to � f

only if the domain is highly homogeneous with a uniform
flow field. In highly heterogeneous domains, fluid flow is
concentrated into a limited number of relatively narrow pref-
erential pathways, so that a tracer can ultimately sample much
of the domain only via molecular diffusion, over relatively
long times [13–16]. Moreover, a recent study of the effect
of inlet boundary conditions (uniform or flux-weighted) on
the evolution of Lagrangian tracer velocities in heterogeneous
fractured networks [17] showed that the different resulting
initial tracer velocity distributions might have a persistent
impact on transport behavior.

The ability of a tracer to sample the fluid velocity through-
out the domain depends mainly on time; as shown experimen-
tally [4], for example, �p approaches � f as the residence time
increases. Thus, porous materials that are characterized by
relatively homogeneous pore space configurations will tend
to enable sampling of the full (spatial) velocity field spectrum
much faster than in heterogeneous porous media [7]. A second
factor, also related to time, is the interplay between the two
main physical processes that control the transport behavior,
advection, and molecular diffusion. In natural formations, the
pattern of advective transport, which is derived directly from
solution of the Navier-Stokes equations at the pore scale,
and from the Darcy equation at larger (continuum) scales,
often exhibits well-defined preferential channels and stagnant
zones, which reduce the spatial sampling capacity of the tracer
and lead to anomalous transport behavior. Conversely, the
random movement of molecular diffusion enhances homog-
enization of the spatial sampling by tracers, by random jumps
between fluid streamlines [18], and thus reduces the degree of
anomalous transport.

The continuous time random walk (CTRW) framework
is attractive for quantifying the evolution of chemical trans-
port in natural porous media [6,19,20], CTRW treats tracer
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motion by considering “particles” undergoing various types
of transitions. These transitions encompass both the displace-
ment due to structure and heterogeneity as well as the time
taken to make the particle movement between, e.g., pores
or fracture intersections [21]. The structural complexity of
natural porous media leads to a wide spectrum of transition
rates [4], which usually leads to a time-dependent transport
regime that can ultimately converge to a Gaussian regime
when the entire spectrum of transitions is sampled [8,20].
The time to reach such asymptotic behavior depends on the
character of the space-time transition distributions [3], which
are derived from analysis of the mechanisms controlling
tracer propagation within the porous medium. Dentz et al. [8]
studied the evolution of Lagrangian velocity in heteroge-
neous flows fields through a CTRW approach. They showed
that the transport evolution (in terms of mean velocity and
dispersion coefficient) toward asymptotic behavior is highly
dependent on (stationary versus nonstationary) flow condi-
tions, which suggests that the transition functions are modified
accordingly.

The purpose of this study is to quantify the effect of
the Péclet number, Pe, which encompasses the interplay be-
tween advection and molecular diffusion, on transport behav-
ior of conservative (nonreactive) chemical species through
porous media having various heterogeneous structural con-
figurations. Within these domains, we solve for fluid flow
(Navier-Stokes equations) and simulate chemical transport
(streamline-based particle tracking, with molecular diffusion)
at the pore scale. We then interpret the results within the
CTRW framework and incorporate the effects of Pe within the
underlying tracer transition time distribution. Subsequently,
we use these distributions to examine the effects of a tempo-
rally fluctuating velocity field, so that Pe changes with time,
on the spatiotemporal evolution of the propagating chemical
plume.

II. METHODS

To understand the relation between Pe and porous medium
heterogeneity, we generated three types of two-dimensional,
porous media systems. Each system was assembled from a
pore-scale image adapted from a natural rock material [22].
This image formed the basic template (“unit”) for the porous
media we consider; this unit was then modified twice by
scaling (enlarging) the solid phase, uniformly around the
perimeter of each solid grain, to obtain three topologically
similar porous “units” with porosities of 0.32, 0.45, and
0.58 [12]. These units were then used to assemble the
three configurations, where each system was constructed
differently (Fig. 1): (1) statistically homogeneous system
(SHS), constructed from a single unit type (with porosity of
0.45), (2) weak correlation system (WCS), composed using
all three units, with no correlation between the units (i.e., the
system was assembled randomly from the different units),
and (3) strong correlation system (SCS), composed using
all three units, where there is a spatial correlation among
the different units (correlation length of four units, equal
to 1 cm in space). Note that we use the terms “weak” and
“strong” to indicate that the spatial correlation in the WCS
exists within each unit (at the pore level), while in the SCS,

the spatial correlation exists also among the units themselves.
More information on the correlation maps can be found in
Appendix A. While some individual units have a relatively
high porosity (though not unrealistic, for cavities, channels,
and lenses rich in organic material in natural rock formations),
the average porosity of each system was 0.45. Each system
was composed of (32 × 24) 768 units (each unit with
dimensions 0.25 cm × 0.25 cm), with an average porosity of
0.45 and overall dimensions of 8 cm (width) × 6 cm (height).
Below, we refer to the order SHS → WCS → SCS as an
increase in heterogeneity.

Fluid flow through these systems was determined by
solving the Navier-Stokes equations (using COMSOL Mul-
tiphysics) for steady, incompressible flow: ρ(U · ∇U) =
−∇p + μ∇2U; ∇ · U = 0, where U is the pore-scale (local)
fluid velocity, p is the fluid pressure, and ρ is the fluid
density. No-slip conditions were applied at the fluid-solid
interface. A constant velocity was specified in the direction
normal to the inlet boundary (Fig. 1, left side), and a constant
reference pressure was prescribed at the outlet (Fig. 1, right
side). The remaining (horizontal) boundaries were treated as
impermeable. These conditions are representative of many
experimental setups [23,24].

The Reynolds number, Re, in the simulations is defined
as Re = ρdsŪf /μ, where Ūf is the average, pore-scale fluid
velocity and ds is the average diameter (1 mm) of the solid
grains. The fluid velocity field was evaluated in a grid con-
taining 6400 × 4800 (x, y axes) uniform cells, with spatial
dimensions of �x = �y = 1.25 × 10−5 m for each cell. Con-
servative chemical transport was modeled by following an
ensemble of particles that move according to the Langevin
equation, dx(t ) = v[x(t )] dt + ζ

√
2Dm dt , where v[x] is the

Lagrangian velocity vector. The advective displacement was
modeled by a semianalytic streamline-based method [25] that
employs the fluid velocity field, while the diffusive displace-
ment was treated by a random walk method (where ζ is a
N [0, 1] random number, and Dm = 10−9 m2/s is the coeffi-
cient of molecular diffusion). The time step dt was determined
by the time needed for a particle to exit its current cell (on
the numerical grid) and arrive to the adjacent cell (in the
direction of flow). Therefore, dt is varying for each particle
trajectory and among particles [25]. In addition, we restricted
the maximum diffusive displacement allowed to at least one
order magnitude smaller than the grid size [i.e., dt � (0.1�x)2

2Dm
].

Particles (5 × 105) were introduced along the inlet boundary
by a flux-weighted pulse injection for t � 0.1Tf , where Tf is
the final simulation time, which itself was proportional to the
average fluid velocity (Ūf ). The Pe is defined here as Pe ≡
Ūpλ

−1/Dm, where Ūp is the mean particle (transport) velocity
over space and time, and λ−1 is the average displacement
length of particle transitions (as discussed below in Sec. III A).
Note that this definition distinguishes between fluid flow and
tracer transport and employs a velocity (Ūp) that accounts for
the mean tracer propagation; in heterogeneous domains, the
average fluid and particle velocities can differ significantly,
as noted in the Introduction (Sec. I). The range of Pe values
considered here was 100 � Pe � 103 (and flow was within the
laminar regime, Re < 10−3), which is common for transport
in geological materials [1,2].
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FIG. 1. Fluid velocities and tracer migration in the three porous media systems. Upper row: Normalized (U/Ūf ) velocity field for the
different systems (from left to right): homogeneous system (SHS), randomly heterogeneous system (WCS), and structured heterogeneous
system (SCS); the color bar represents relative velocity, with dark blue being lowest. Plume patterns of an inert tracer (blue dots) at Pe = 1
(middle row) and at Pe = 100 (lower row) for the different systems (white color indicates solid phase; black color indicates liquid phase). The
tracer plumes are shown at the end of the injection time, prescribed as 10% of the final time of each simulation. The insets in the first plots of
the middle and lower rows show the pore-scale distributions at tracer; note the more diffuse pattern at Pe = 1.

III. RESULTS

As a starting point, we show in Fig. 1 the effect of structural
heterogeneity on the flow pattern (Fig 1, upper row), and on
the transport propagation (Fig. 1, middle and lower rows). It
can be seen that as the medium heterogeneity increases (left
to right), the flow field becomes more preferentially oriented.
In addition, the effect of different Pe values is also clearly
visible (Fig. 1, middle and lower rows); at lower Pe, the tracers
are spread more “uniformly” along the streamlines. This
highlights the importance of Pe on the mixing and spreading
of chemical species in porous media.

A. From numerical simulations to CTRW formulation

To analyze the effects of Pe on the transport behavior,
considering also the different heterogeneous configurations,
we use the CTRW framework [3,19]. The CTRW generalizes
the random walk process from discrete time to continuous
time with the spatial state description remaining discrete,
R(s, t ) = ∑

s′
∫ t

0 ψ (s − s′, t − t ′)R(s′, t ′) dt ′, where R(s, t ) is
the probability per time for a walker (tracer particle) to just
arrive at site s at time t and ψ (s, t ) is the probability per
time for a displacement s with a difference of arrival times
of t . The probability density function (PDF) ψ (s, t ), the
heart of the CTRW, determines the nature of the transport.
Clearly, to evaluate ψ (s, t ) from the numerical simulations,
the correlation between travel distance (s) and travel time (t)
for each (space-time) particle transition must be accounted for
properly.

The first adaptation of the CTRW formulation [19] to geo-
logical formations was done by Berkowitz and Scher [6], who
examined transport in random fracture networks. The consid-
eration of fractured domains was convenient in the sense that

the space-time transitions are discrete and straightforward to
define; ψ (s, t ) was derived by recording the transitions (s and
t) between the fracture intersections (i.e., between different
fracture segments). To evaluate a solution of the CTRW
equations, these authors invoked independence between the
space and time transitions, based on analysis of the simula-
tions, and employed a decoupled form, ψ (s, t ) = ψ (t )F (s),
where ψ (t ) and F (s) are the time and space transition dis-
tributions, respectively. The distribution F (s) was assessed
from the fracture network geometry—based on the segment
length distribution between the fracture intersections— and
ψ (t ) was derived by solving the velocity field within the
domain and extracting the transition times. Particle tracking
simulations through these networks were shown to exhibit the
same dynamics as the CTRW theory.

Bijeljic et al. [7] simulated tracer transport in three-
dimensional images of various natural rock samples and de-
rived the temporal transition rate, ψ (t ), by considering a fixed
transition length (s = voxel size of the numerical grid). The
use of a fixed spatial transition means that the spatial cor-
relations in the tracer transitions are considered (or assumed
to be) negligible [i.e., F (s) is constant]; this assumption can
be reasonable for relatively homogeneous materials, but it is
not necessarily appropriate when the flow field has strong
spatial correlations in heterogeneous domains. Analysis of
the velocity distribution in a fixed spatial grid demonstrates
obvious, strong correlations from cell to cell along streamlines
(preferential pathways). Such cell-to-cell correlations were
shown in numerical simulations [26], but this information—
known correlations affecting particle transitions—was then
neglected in a particle-tracking algorithm based on CTRW, but
incorrectly called “classical CTRW.” As formulated originally
by Scher and Lax [27] and Scher and Montroll [28], and
adapted subsequently for transport in porous and fractured
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FIG. 2. (a) An example of the normalized probability density
function (� f ) of the normalized fluid velocities (U/Ūf ), divided into
50 equally weighted velocity classes (areas divided by black lines).
(b) An example of ψ (s, t ) derived from the numerical simulations.
Note that these examples were derived from the WCS domain (see
Appendix B for SHS and SCS systems) and that increasing the
number of velocity classes does not change the general pattern of
the results.

media by Berkowitz and Scher [6] and in many papers
thereafter, “classical CTRW” (whether determined in terms
of particle-tracking or partial differential equation solutions)
incorporates these correlations naturally in a properly defined
space-time probability density function describing the particle
transitions. This point is demonstrated clearly by Berkowitz
and Scher [29], who reanalyzed and discussed in depth the
numerical simulations of Le Borgne et al. [26].

It has been shown [30] that if the PDF of displacements is
compact, then the decoupled form of ψ (s, t ), i.e., ψ (t )F (s)
is often sufficient as a good representation of ψ (s, t ). Only
if F (s) has a power-law dependence on s (i.e., is Lévy-like),
does the transport display sensitivity to the high-velocity part
of the spectrum, so that a fully coupled ψ (s, t ) is needed.
The choice of F (s) is much more subtle in a porous medium
with a network of pores, where there is no obvious structural
arrangement as in a random fracture network [31].

To evaluate the CTRW functions in natural porous media,
we divide � f into equally weighted velocity classes, N [see
Fig. 2(a) as an example for the WCS domain]. When a particle
makes a transition between different velocity classes, the
time (t) and distance (s) required to complete this transition
are recorded. Doing this for all particles gives the essential
information needed to evaluate ψ (s, t ) of each system [see
Fig. 2(b) as an example for the WCS; the SHS and SCS
results show similar behavior and can be found in Sec. B 1
of the appendices). From the results (see Sec. B 1 in the
appendices), we note that the number of velocity classes does
not affect the general pattern of ψ (s, t ); hence the method
of characterization employed here is seen to be relatively
robust. Note that in Fig. 2, the time and length transitions

are normalized by the grid length space (�x) and the particle
mean velocity (Up); hence s = s/�x and t = t/(�x/Up).

From the numerical simulations, ψ (s, t ) is characterized
by a pattern of multiple peaks. This is an artifact of the
particle-tracking algorithm (which records jumps from cell to
cell) together with the concept of velocity classes (wherein
a transition can be recorded only when a particle moves
between cells). There is thus a preference for a particle to
change velocity classes on the numerical grid itself; and hence
there is higher probability to make a transition on the grid.
Plotting Fig. 2 in normalized form shows that the higher
probability for transitions occurs at integer values (i.e., �x,
2�x, 3�x).

As noted above, ψ (s, t ) can be well approximated by a
decoupled form ψ (s, t ) = ψ (t )F (s) as long as the spatial
increment, F (s), has a compact distribution. As can be seen
in Fig. 2(b), analysis of the numerical simulations here, using
this velocity-weighted class method of characterization, con-
firms that the spatial increment (y axis) has a relatively narrow
distribution compared to the temporal increment distribution
(x axis), which spans several orders of magnitude. Henceforth,
we make a use of the uncoupled form ψ (s, t ) = ψ (t )F (s).

Figures 3(a) and 3(b) show the PDFs for the temporal and
spatial transitions, respectively [i.e., ψ (τ ) and F (	)], in the
WCS system for different Pe, where τ ≡ tŪp/�x, and 	 ≡
s/�x are characteristic time and length, respectively (note
that the results for the SHS and SCS systems exhibit similar
behavior; see Sec. B 2 in the appendices). It is seen that the
spatial increment, F (	), is not affected by Pe [Fig. 3(b)],
so that the spatial particle transition depends directly on the
configuration of the velocity field (obtained by solving the
Navier-Stokes equations) in each specific porous medium
domain. Because the flow is laminar (Re � 10−3), the changes
in the velocity field are linear (inertial forces are negligible:
U · ∇U → 0) [12], so that the partition of velocity classes
is constant with respect to Pe. We find that F (	) can be
well approximated by an exponential distribution, F (	) =
λ exp(−λ	), with mean transition length λ−1; note that the
value of λ−1, in this case, is normalized by the characteris-
tic length scale �x. Analysis of the simulations shows that
(λSHS

−1 = 2.56, λWCS
−1 = 3.12, λSCS

−1 = 3.61), as expected
from the increasing spatial correlations of the different config-
urations. Because λ−1 represents the mean transition length
between different velocity classes, we expect that the number
of velocity classes (N) will affect its value. As the number
of velocity classes used to characterize transport increases
(i.e., as � f is divided into more regions), the probability
of a particle to jump between different classes increases,
simply due to the finer resolution of the number of classes.
In Fig. 4(a) we show the sensitivity of λ−1 (in normalized
form) to N for the different porous systems. We plot the mean
value of λ−1 over different Pe, together with the standard
deviations with respect to Pe. It is seen that the number of
velocity classes increases as λ−1 decreases. In addition, as
the number of velocity classes increases, λ−1 approaches 1,
indicating that the mean transition length is equal to the grid
resolution. Hence, due to its asymptotic behavior, the relation
between λ−1 and N shows a power-law dependence [Fig. 4(a),
dashed line]. Note that as N increases (i.e., λ−1 decreases),
ψ (s, t ) narrows, so that the probabilities of extreme transitions
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FIG. 3. (a) The probability ψ (τ ) of a transition between two velocity classes, with different Pe. (b) The probability F (	) of a displacement
distance between two velocity classes, with different Pe. (c) The mean spatial displacement (	̄) of each velocity class (vc). (d) ψ (τ ) power-law
exponent, β, as a function of Pe. In the inset we show the results in semilog scale (x axis); the numerical simulations results are by the diamond
symbols, and the dashed-black line indicates the power-law fit. Note that the results are shown for the WCS.

become smaller. However, this narrowing does not affect the
general pattern of ψ (s, t ) (see Fig. 8 in the appendices).

On the other hand, ψ (τ ) shows significant dependency
on Pe [Fig. 3(a)]. We find that ψ (τ ) has a unique pattern
(for all values of Pe) starting with an exponential increase
accompanied by a power-law decline. We approximate this
with a curved power-law function [32] (i.e., an inverse gamma
distribution), ψ (τ ) = C exp(−t1/τ )τ−1−β , where t1 controls
the exponential increase, β accounts for the power-law region,
and C ≡ t1β

�(β ) is the PDF normalization factor with � the
Gamma function. The peak of ψ (τ ) can be evaluated from
the derivative of the function: ψ (τ ∗)t ≡ 0, which leads to
τ ∗ = t1

1+β
, so that t1 = (1 + β )τ ∗. Inserting the expression for

t1 into ψ (τ ) yields

ψ (τ ) =
exp

[
− (1+β )τ ∗

τ

][
(1+β )τ ∗

τ

]β

τ�(β )
. (1)

Figure 3(c) shows the mean spatial displacement (	̄) of
each velocity class (vc). The results demonstrate the ability
of tracer particles in the higher classes (higher velocities) to
remain in their class (velocity), as compared to tracer particles
in the slow-velocity regions. For the low-velocity classes,
the mean spatial particle displacement (	̄) increases with Pe
because the role of molecular diffusion is weaker.

Within the CTRW framework (see Appendix C for more
information), the mean particle velocity, vψ , and the general-
ized particle dispersion, Dψ , are the first and the second spatial
moments of F (s)/t̄ , where t̄ denotes the mean time transition,
defined as

vψ =
∫ ∞

0 F (s)s ds∫ ∞
0 ψ (t )t dt

and Dψ = 1

2

∫ ∞
0 F (s)s2 ds∫ ∞
0 ψ (t )t dt

. (2)

We stress here that vψ in the CTRW is identical to the mean
particle velocity Ūp employed in the numerical analysis up to

this point. For 1 < β < 2, which is the common case when
modeling transport in natural geological formations [24], we
can derive an analytical solution for Eq. (2) with the expres-
sions for F (s) (exponential distribution) and ψ (t ) (curved
power-law distribution). For one-dimensional problems, we
obtain

vψ = β − 1

(β + 1)λτ ∗ and Dψ = β − 1

(β + 1)λ2τ ∗ . (3)

Thus the mean asymptotic particle velocity (vψ ) is propor-
tional to the generalized particle dispersion (Dψ ) multiplied
by the medium length scale (λ). Because Pe is defined here as

Pe = vψλ−1

Dm
(note again that vψ replaces Ūp), there is a linear

relation between Dψ and Pe, for the range of Pe that was
considered here (100 � Pe � 103). Significantly, this linear
behavior is consistent with many experimental and numerical
studies that delineate the relationship between dispersion and
Pe [31,33–35].

We now focus on the key relationship between Pe and the
exponent β [Eq. (1)]. Because β denotes the slope of the
power law that characterizes the nature of the (anomalous)
transport, we argue that the two parameters must be linked
to each other. We show that ψ (τ ) is modified according to
Pe, so that higher Pe values lead to a decrease in the power
slope (i.e., β decreases), which in the context of transport
indicates an increase in the anomalous behavior. The relation
between β and Pe is shown in Fig. 3(d); for all systems a
power-law dependence is exhibited, β ∝ Pe−ξ (with ξSHS =
0.064, ξWCS = 0.081, ξSCS = 0.084 for the three systems
examined here). As expected, higher spatial heterogeneity
leads to larger ξ , which means that the sensitivity to Pe
increases with heterogeneity. The fact that lower Pe shows less
anomalous behavior is because displacements by molecular
diffusion can reduce the residence time of the chemical tracers
in stagnant zones within the flow field. In Fig. 4(b), we
examine the effects of N on the general behavior of ψ (t ),
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FIG. 4. (a) Mean transition length (λ−1) as a function of the
number of velocity classes (N), for the three porous systems: SHS
(hexagrams), WCS (diamonds), and SCS (circles). This relation is
well approximated by a power-law function (dashed line). Vertical
black lines (on the symbols) represent the standard deviation among
different Pe. (b) The average value of ξ (black circles) of the
three porous systems (SHS, WCS, and SCS), for different numbers
of velocity classes (N). Standard deviation among the systems is
represented by vertical black lines.

with respect to Pe, through the value ξ . We plot the mean
value of ξ (black circle) over the different porous materials;
the standard deviation for each velocity class, between the
different systems, is shown by a black vertical line. It is
seen that the value of ξ does not change monotonically
with respect to N , and that its value lies within the standard
division for all cases. We conclude from these analyses that
the shape of ψ (t ) is not sensitive to the number of velocity
classes.

Because β ∝ Pe−ξ and τ ∗ = (β−1)λ−1

(β+1)vψ
[from Eq. (3)], we

can quantify tracer transport behavior for different Pe via three
parameters: vψ , λ, and ξ . For most problems, the first two
parameters can be constrained (e.g., vψ by the Darcy velocity
and λ by the pore throat and grain diameters), while ξ can by
considered as a fitting parameter.

We point out here that while a truncated power law is often
chosen as the form of ψ (t ) at continuum scales [3,20,24,36],

FIG. 5. Comparison between the numerical simulations (sym-
bols) and the proposed CTRW model (lines).

as well as at the pore scale [7,31], a curved power law was
chosen to match the numerical results presented here. From
a physical point of view, the curved power law specifically
quantifies the peak of ψ (t ) [recall Fig. 3(a)] and full character
of the transition time distribution. Application of the truncated
power law to continuum-scale problems, which does not
display such a peak, can be justified because the short-time
transitions often have little effect, in relative terms, on the
overall transport dynamics [3]. In the context of truncated
power-law analyses, too, it is noted that β can be constant over
at least an order of magnitude variation in the macroscopic
flow rate, at the continuum scale [24]. At the pore scale, it
has been shown [7,31] that the truncated power law is very
sensitive to Pe.

Figure 5 shows a validation of the current CTRW for-
mulation against the numerical simulations. For each value
of Pe, and for each porous medium system, we record the
particle breakthrough curve at the system outlet. We then
use the CTRW parameters (i.e., β, t1, and λ−1) that were fit
by a curved power-law function to the numerical simulation
outputs [Figs. 3(a) and 3(b)]. Figure 5 compares the particle
breakthrough curves (plotted as 1 − Np to emphasize their
tails) of the numerical simulations against the CTRW model
[Eq. (3)], for different Pe (note that the results presented
here are for the WCS; similar behavior was found for all
systems). The results highlight the effect of Pe on the degree
of anomalous transport, where higher values of Pe lead to
longer residence times (longer tails), and thus increase the
degree of anomalous transport behavior. The inset in Fig. 5
shows the results on a log-log scale, to highlight the power-
law scaling τ−β that is expected from the ψ (τ ) distribution,
Eq. (1); the dashed line shown in the inset shows τ−β , for
β = 1.5 as seen in Fig. 3(d).

B. Effects of a fluctuating velocity field on transport dynamics

The nonlinear scaling of β with Pe may lead to unusual
transport behavior when the flow fluid fluctuates over time
(i.e., under a time-dependent velocity field) [37]. Rather than
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FIG. 6. Time-dependent, Monte Carlo simulations with 105 particles that propagate according to the CTRW method, for two systems that
differ in terms of their sensitivity (ξ ) to Pe. In each system, the effects of fluctuations (A) in velocity magnitude on (inert tracer) transport
behavior are examined. Particle dispersion over time for (a) ξ = 0.009 and (b) ξ = 0.09, respectively; insets show the particle velocity over
time. Reverse particle cumulative breakthrough curves over time for (c) ξ = 0.009 and (d) ξ = 0.09, respectively; vertical black lines indicate
the end of the time-dependent period. The dashed line in panel (c) shows the power law T −β with β = 1.75, which characterizes the long-time
slope of the BTCs.

velocity and tracer concentration fluctuations being averaged
out, so that the system converges (over time) to mean behavior
(i.e., characterized in terms of a mean velocity and disper-
sion), the nonlinear behavior might result in perturbation of
the system to a different dynamical state.

To examine the effect of a time-dependent velocity field,
we simulate tracer transport via a CTRW Monte Carlo
particle-tracking algorithm, with a temporally varying inlet
boundary condition for fluid velocity [37]. The algorithm
samples particle transitions using an implementation of the
temporal] ψ (t ), curved power-law distribution] and spatial
(F (s), exponential distribution) PDFs to determine the trans-
port patterns of particles; in each case, 105 particles are
injected as a pulse, at t = 0, along the left boundary of
the domain. We explore particle propagation in two sys-
tems that differ in terms of their sensitivity to Pe. Re-
calling that 0.064 � ξ � 0.084 in Sec. III A, we choose
here systems with ξ = 0.09 and ξ = 0.009, the latter be-
ing a benchmark representing a highly homogeneous porous
medium.

In each simulation, the mean particle velocity (vψ ) is
time-dependent [i.e., vψ (t )], and changes every time step
(�t) according to vψ = v̄ψ [1 + A sin ( 2πt

Bv̄ψ
)] where v̄ψ = 10−3

m/s is the mean transport velocity over the simulation time
(constant for all cases), A is the amplitude, and B = dt × v̄ψ

is the wavelength in the time dimension (constant for all
cases). The time-dependent regime was limited to the first
30% of the simulations, after which a constant vψ was pre-
scribed, and four different amplitudes (A = 0, 0.25, 0.5, 0.75)
were considered. The value of Pe (Pe ≡ vψλ−1/Dm; with
λ−1 = 10−5 m and Dm = 10−9 m2/s constant for all cases)
changes proportionally with changes in vψ ; thus, β also
varies nonlinearly. We write β = β0 × Pe−ξ and choose

β0 = 1.75 as a representative value for transport in natu-
ral porous materials [3]. Throughout the simulations, the
variation in β—as a result of variation in vψ—did not
exceed 18%.

The insets in Figs. 6(a) and 6(b) show the normalized cen-
ter of mass velocity, ṽψ ≡ vψ/v̄ψ for the cases ξ = 0.009 and
ξ = 0.09. The particle velocities fluctuate around the mean up
to T = 0.3 (where T is the simulation time normalized by its
final value), at which point the fluctuation regime is halted and
vψ is set to its mean value; this enables convenient comparison
between the different magnitudes.

In Figs. 6(a) and 6(b) we examine the dispersive behavior
resulting from the velocity fluctuations in the two systems,
defining dispersion in terms of the temporal derivative of the
particle variance, σ 2

t , normalized by the molecular diffusion
(Dm = 10−9 m2/s). For the less sensitive (ξ = 0.009) domain,
the particle variance converges to the same value—for all
amplitudes—and the temporal fluctuation effects cannot be
observed after the system stabilizes (T > 0.3). On the other
hand, when the medium is more sensitive to Pe (ξ = 0.09),
the particle variance does not converge after the velocity
fluctuations end (T = 0.3), and we observe a gradual increase
with the fluctuation magnitude (A). This latter case leads to
different transport behaviors, where the degree of anomalous
transport increases with the fluctuation amplitude [as can be
seen by the breakthrough curve tails in Fig. 6(d)]. Figures 6(c)
and 6(d) display the cumulative particle breakthrough curves
(plotted as 1 − Np to emphasize their tails), normalized by
the total number of particles [Np(T )]. For the ξ = 0.009
domain, the breakthrough curves are identical for all cases
(T > 0.3), while for the ξ = 0.09 domain, the breakthrough
curves show more anomalous behavior—in terms of early-
time arrivals and late-time tails—as the fluctuation amplitude

033108-7



ALON NISSAN AND BRIAN BERKOWITZ PHYSICAL REVIEW E 99, 033108 (2019)

increases. Note that the oscillations in the curves [Figs. 6(c)
and 6(d)] are due to the undulating behavior of vψ (for
T < 0.3), and they show a systematic increase and decrease
as A increases and decreases. Note that after the period of
temporal fluctuation ends (T > 0.3), all simulations (i.e., with
different A) have the same transport parameters; and yet, there
is a significant difference in breakthrough curves [Fig. 6(d)]
among the different velocity amplitudes. This difference lies
within the CTRW framework, which accounts for particle
memory due to temporal correlations [3], which change with
Pe [Figs. 3(a) and 3(d)]. Thus, each fluctuation amplitude
(A) exhibits a different dispersion regime due to the role of
memory.

IV. SUMMARY

We first illustrate (Fig. 1) that variation in Pe can lead to
a modification in the transport behavior, and that the tracer
spreading tends to become more homogeneous along fluid
streamlines as Pe decreases. We quantify this effect via the
CTRW framework, incorporating Pe into the underlying tracer
transition time distribution (through β).

To evaluate the CTRW PDFs from the numerical simula-
tions, we divide each fluid velocity distribution into different
velocity classes, weighted uniformly along the velocity spec-
trum [Fig. 2(a)]. This provides the essential information to
obtain the key CTRW PDF, ψ (s, t ) [Fig. 2(b)], quantifying
the evolution of a propagating tracer plume. Because ψ (s, t )
is often characterized by a relatively compact distribution
of spatial increments, compared to the temporal increments,
we employ the decoupled form ψ (s, t ) = ψ (t )F (s). From
analysis of the numerical simulations, we obtain the shape
of F (s) [exponential distribution, Fig. 3(b)] and ψ (t ) [curved
power-law distribution, Fig. 3(a)]. In this context, we show
that the shape of the F (s) is constant with respect to Pe and
depends on the solution of the velocity field (i.e., the flow
problem rather than the transport one). In addition we confirm
through the numerical analysis—for the first time—that F (s)
has a compact distribution in representative natural porous
media.

In contrast to the displacement transitions, the temporal
transition function ψ (t ) is found to be sensitive to Pe, with
higher Pe causing a decrease in the power-law exponent (β)
of ψ (t ). This leads to an increase in the anomalous behavior
of tracer transport. We find that the relation between β and
Pe can be well approximated by a power dependence, with
β ∝ Pe−ξ . The sensitivity of the porous medium to Pe is char-
acterized by the value of ξ , which increase with medium het-
erogeneity. Therefore, in natural environments, where spatial
heterogeneity is significant, we expect that transport dynamics
will be sensitive to Pe.

Furthermore, we examine the effects of different Pe on
anomalous transport in scenarios that involve time-dependent
velocity field conditions. We show (Fig. 6) that as a function
of Pe and ξ , a time-dependent velocity field causes increased
anomalous transport behavior, with increasing magnitudes of
fluctuation amplifying these effects.

The findings here are significant in terms of understanding
fundamental transport behavior of inert chemicals in geologi-
cal porous media, under natural conditions, where the porous

media are often characterized by strong spatial complexity
and time-dependent flow fields.
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APPENDIX A: GENERATING CORRELATION
MAPS—AT THE PORE SCALE

To generate the system configurations (Sec. II) we used a
basic code to produce two-dimension Gaussian fields (MAT-
LAB files exchange). The generated fields consist of 768
cells (32 × 24), and their spatial dimensions are 8 × 6 cm
(x, y). Figure 7(a) shows an arbitrary example of this kind
of field; note that the color gradient is blue to yellow, and
represents different scalar values. To produce the correlated
fields [Fig. 7(a)], two variables are needed: the variance of the
Gaussian distribution (σ ) and a correlation length (	). In this
specific example, σ = 1 and 	 = 1.

To examine flow and transport in uniform distributed fields,
as shown in the main text, the Gaussian fields generated
here were converted to uniform fields. This was done by
dividing each Gaussian distribution into equally weighted re-
gions [Fig. 7(b)]. Note that because the Gaussian distribution
is symmetric there is no meaning to the of the Gaussian
distribution following division into weighted regions. Each
region was then relabeled with a single value (e.g., 1, 2,
3,. . .), resulting in the Gaussian two-dimensional correlated
map [Fig. 7(a)] being modified to a uniform correlated map
[Fig. 7(c)] that consists of a limited number of units (regions).
Note that there is an equal number of cells in each region.

In this study, three different units were used, which differ
in terms of their porosity; the Gaussian distribution was thus
divided into three regions [Fig. 7(d)] In addition, to increase
the degree of heterogeneity, each pore-scale image (unit) was
rotated randomly (i.e., 0◦, 90◦, 180◦, or 270◦).

FIG. 7. (a) A two-dimensional, correlated field with a Gaussian
distribution. (b) The Gaussian distribution of the correlated field,
divided into three equally weighted regions (vertical black lines).
(c) Modification of panel (a), where each region was labeled with a
single value, and thus the two-dimensional field becomes a uniform
correlated field. (d) Transformation from a field shown in panel
(c) into a porous domain consisting of three different basic units.
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FIG. 8. Comparison between the effects of the number of velocity classes N on the shape of ψ (s, t ). Sensitivities are shown for N = 50
(first row), 100 (second row), and 200 (third row), 400 (fourth row), and 800 (fifth row), for the three types of porous systems (i.e., SCS, WCS,
and SHS).

APPENDIX B: VELOCITY CLASSES

In this section, the sensitivity of the number of velocity
classes (N) to the shape of ψ (s, t ) is examined.

1. Coupled ψ(s, t ) case

In Sec. III A the coupled of ψ (s, t ) is evaluated from
the numerical results, using the concept of velocity classes.
Figure 8 shows the sensitivity of the number of velocity
classes (N) to the shape of ψ (s, t ), using N = 50, 100, 200,
400, and 800 velocity classes, for the three porous systems
(SCS, WCS, and SHS).

Clearly, the shape ψ (s, t ) is not affected significantly by
the number of velocity classes and demonstrates the robust-
ness of this method of characterization. However, it is seen
that the outer edges of ψ (t ) converge inwards velocity classes
increases (from top to bottom in the figure). This is due to

the fact that the probability to complete transitions for longer
distances decreases as N increases (Figs. 3 and 4).

2. Decoupled ψ(s, t ) = ψ(t )F(s) case

As discussed in the main text, ψ (s, t ) can be simplified,
in many cases, to a decoupled form ψ (s, t ) = ψ (t )F (s), so
that the space and time transitions are independent. Figure 9
shows that the decoupled form, as for the coupled case, is not
particularly sensitive to the number of velocity classes.

It is clear from the results that the PDF of the displacement
transitions is sensitive to the number of velocity classes; the
PDF shows a smaller range as the number of velocity classes
increases. This behavior was discussed in detail in the main
text [Sec. III A and Fig. 4(a)]. In contrast, ψ (t ) does not show
any significant change with N , which is supported by the
results in Fig. 4(b).
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FIG. 9. Comparison between the effects of the number of velocity classes N on the shape of ψ (t ) and F (s). Sensitivities are shown for
N = 50 (first row), 100 (second row), and 200 (third row), 400 (fourth row), and 800 (fifth row), for the three types of porous systems (i.e.,
SCS, WCS, and SHS).

APPENDIX C: CTRW FRAMEWORK

In the CTRW-PT, the movement of each particle is gov-
erned by the equation of motion:

s(N+1) = s(N ) + ς (N ), t (N+1) = t (N ) + τ (N ), (C1)

where a random spatial increment ς (N ) and a random temporal
increment τ (N ) are assigned to each particle transition. For
each N step, a velocity v can be derived by ς (N )/τ (N ). It
is emphasized that a wide range of space-time couplings
and/or correlations can be accounted for with this simulation
methodology, by appropriate definition of the increments ς (N )

and τ (N ).
In the discussion here, a decoupled form of (C1) is em-

ployed; the space-time particle transition probability density

function (PDF) ψ (s, t ) can be written as

ψ (s, t )=F (s)ψ (t ), (C2)

where ς (N ) and τ (N ) are chosen from distinct and independent
PDFs for space and time, F (s) and ψ (t ), respectively.

In this formulation, the mean particle velocity, vψ , and the
generalized particle dispersion, Dψ , are defined as the first
and second spatial moments of F (s)/t , respectively [3]. Here
t denotes the mean time and s represents the mean step size
(displacement length). We thus write for vψ and Dψ in the
direction of the flow:

vψ = s

t
=

∫ ∞
0 F (s)s ds∫ ∞
0 ψ (t )t dt

(C3)
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and

Dψ = 1

2

s2

t
= 1

2

∫ ∞
0 F (s)s2 ds∫ ∞
0 ψ (t )t dt

. (C4)

It is clear that the choice of PDFs F (s) and ψ (t ) essentially
determines the nature of the transport.

Following the direct numerical simulations, we use a
curved power-law distribution for ψ (t ) and exponential dis-
tribution for F (s);

ψ (t ) = exp
[ − (1+β )τ ∗

t

][ (1+β )t∗
t

]β

t�(β )
(C5)

and

F (s) = λ exp(−λs); (C6)

see Sec. III A for more information.

To obtain the relation between the mean particle veloc-
ity (C3) and the generalized longitudinal dispersion (C4)
to the curved power-law parameters and the exponential
distribution parameters, the integrals

∫ ∞
0 ψ (t )t dt = t and∫ ∞

0 F (s)s ds = s must be defined. Inserting (C5) and (C6)
into (C3) and (C4) yields

vψ = β − 1

(β + 1)λt∗ (C7)

and

Dψ = β − 1

(β + 1)λ2t∗ . (C8)

Thus t̄ = (β+1)t∗
(β−1) , s̄ = λ−1, and s2 = 2λ−2.
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