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Swimming sheet near a plane surfactant-laden interface
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In this work we analyze the velocity of a swimming sheet near a plane surfactant-laden interface by assuming
the Reynolds number and the sheet’s deformation to be small. We observe a nonmonotonic dependence of
the sheet’s velocity on the Marangoni number (Ma) and the surface Péclet number (Pes ). For a sheet passing
only transverse waves, the swimming velocity increases with an increase in Ma for any fixed Pes. When Pes

is increasing, on the other hand, the swimming velocity of the same sheet either increases (at large Ma) or it
initially increases and then decreases (at small Ma). This dependence of the swimming velocity on Ma and Pes

is altered if the sheet is passing longitudinal waves in addition to the transverse waves along its surface.
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I. INTRODUCTION

Our world is filled with motile microorganisms—
Helicobacter pylori in stomach, Escherichia coli in intestines,
Chlamydomonas in oceans and snow, Paramecium in stagnant
basins and ponds, etc. Understanding the motion of these or-
ganisms in complex flow conditions is essential for addressing
several biophysical questions [1]. One such complex bacterial
motion is concerned with its locomotion near an interface
which has applications in the biofilm formation and biore-
mediation of an oil spill. Researchers working on this topic
have successfully explained (i) how the swimming speed of
an organism gets altered near an interface [2–5], (ii) why these
organisms move in circles near a plane interface [6,7], and (iii)
why they reorient and get attracted toward an interface [8–11].
Recent works have also analyzed the change in the bacterial
dynamics near an interface due to the (i) interface deformation
[12–14], (ii) finite inertia of the swimmer or fluid [15,16], (iii)
non-Newtonian suspending fluid [17–19], and (iv) presence of
surfactants [9–11].

We briefly review the works on locomotion near a surfac-
tant covered interface. Near a plane surfactant-laden interface,
the attraction and reorientation of a swimming microorganism
is similar to its behavior near a plane wall but its circling
direction can be opposite to the one near a clean interface
[9]. Considering the trapping of marine microbes onto drops,
it was reported that the trapping dynamics outside drops is
similar to that outside a rigid sphere, but the surfactant-laden
drops have better trapping characteristics than a rigid sphere
or a clean drop [11]. This is nonintuitive as a surfactant-laden
drop usually has characteristics that are intermediate between
a rigid sphere and a clean drop. Analogous to the interface
deformations, finite inertia of the fluid or the organism and the
non-Newtonian rheology of the fluid, the surfactant redistri-
bution can enable a time-reversible swimming microorganism
near an interface to achieve a net motion [20].

These works on the locomotion near a surfactant-laden
interface assumed the surfactant to be either incompressible
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(valid at large Marangoni numbers Ma, ratio of Marangoni
stresses to the bulk viscous stresses) [21–23] or compressible
[24] but its surface advection being negligible compared to
its surface diffusion (valid at small surface Péclet numbers
Pes, ratio of surface advection to the surface diffusion of
the surfactant). The objective of this work is to analyze the
locomotion near a surfactant-laden interface for all values of
surface Péclet and Marangoni numbers.

To model the surfactant as generally as possible without
losing the analytical tractability, we use a simple model
microorganism. Hence, we model the organism as a two-
dimensional (2D) infinitely long swimming sheet that propels
by propagating waves along its surface. This model was first
proposed by Taylor [25] who considered a sheet passing trans-
verse waves to represent a monoflagellated organism such
as spermatozoon. It was later extended by Blake [26] who
allowed the passage of both longitudinal and transverse waves
along the sheet to represent the almost flat ciliated organisms
such as Paramecium or Opalina. Due to the mathematical
simplicity associated with this model, it has been used to
study the locomotion (i) in a complex fluid [27–34], (ii) in
a gel [35,36], (iii) in a liquid crystal [37], (iv) in a porous
media [38], (v) under confinement [2–4,39–45], (vi) at finite
inertia of the fluid or the organism [2,46–48], and (vii) under
transient effects [49]. The research on the locomotion under
confinement has been restricted to the confinements caused by
a rigid or soft wall [2,3,39–42,45], a plane clean interface [4],
a deforming membrane [43], or a gel [44] with a Newtonian
or a non-Newtonian suspending fluid.

Noting that any interface is inevitably covered with impu-
rities that act as surfactants, it is essential to generalize the
theory of locomotion near a clean interface to accommodate
the effects of surfactant redistribution. Even though the loco-
motion under confinement depends on the swimmer’s shape,
most of the earlier research on the sheet’s motion under con-
finement is devoted to a sheet passing transverse waves along
its surface (or a Taylor swimming sheet [25]). To emphasize
the influence of the swimmer’s shape on locomotion and also
to generalize the results associated with the sheet passing
transverse waves, we analyze the motion of a sheet passing
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both longitudinal and transverse waves near a surfactant-laden
interface.

This paper is organized as follows. We provide the gov-
erning equations and boundary conditions associated with the
motion of a sheet near a plane surfactant-laden interface and
present the perturbation technique and the solution methodol-
ogy in Sec. II. We provide simple expressions for the swim-
ming velocity under various limiting conditions in Sec. III. We
then analyze the influence of surfactant redistribution on the
swimming velocity of a sheet passing only transverse waves
and that passing both longitudinal and transverse waves in
Secs. IV A and IV B, respectively. We finally provide several
concluding remarks in Sec. V and present the expressions for
the flow field and the sheet’s velocity, and validate our results
in the appendices.

II. MATHEMATICAL MODEL

Consider a 2D infinitely long sheet near a surfactant-
laden interface (see Fig. 1 for schematic). We formulate this
problem in a frame of reference moving with the swimming
velocity of the sheet. The sheet deforms in such a manner that
point (x, 0) on its undeformed surface is located at (x0, y0) at
time t , where x0 and y0 are given by

x0 = x + a cos k(x + ct ) + d sin k(x + ct ),
(1)

y0 = b sin k(x + ct ).

Here a and d (b) are the amplitudes of longitudinal (trans-
verse) waves while c and k are the wave speed and wave
number, respectively.

For analytical tractability, we make the following assump-
tions. We assume the interface is plane and nondeforming;

FIG. 1. A schematic showing a swimming sheet located near a
plane surfactant-laden interface. The sheet propels by passing waves
along its surface. The distance between the midplane of the sheet
and the interface is h. We denote the fluid in which the swimmer
is suspended as “Fluid 1” while the fluid above the interface is
denoted as “Fluid 2.” In the frame moving with the swimming
velocity of the sheet, a uniform streaming flow exists in fluid 2 far
away from the sheet with the velocity that is negative of the sheet’s
swimming velocity. The origin of the coordinate system is located at
the midplane of the sheet.

such a nondeforming interface assumption is valid at small
Capillary numbers (ratio of bulk viscous stresses to the cap-
illary stresses). We assume the sheet is located symmetrically
between two surfactant-laden interfaces which can occur for
locomotion in a film [50–52]. Hence, we only solve for the
fluid flow above the sheet. We assume the amplitude of the
sheet’s deformation is much smaller than the wavelength, i.e.,
ak � 1, bk � 1, and dk � 1. Hence, we can write ak = εã,
bk = εb̃, and dk = εd̃ , where ε � 1 while the magnitudes of
ã, b̃, and d̃ can be at most O(1). We denote the distance be-
tween the mid plane of the sheet and the interface by h, which
is at least as large as the wavelength, i.e., hk � O(1). The
surfactant is insoluble and we neglect any kind of interfacial
rheology imparted by the surfactant to the interface. Insoluble
surfactant limit is valid when the interfacial transport of the
surfactant is much faster than the bulk transport and the
adsorption-desorption between the bulk fluid and the inter-
face. Hence in this limit, the bulk surfactant does not influence
the interfacial surfactant transport. Also, assuming the local
surfactant concentration on the interface (�) is much smaller
than the maximum possible surfactant concentration on the
interface (�∞), we use a linear constitutive equation to relate
the interfacial tension (γ ) to the surfactant concentration [53],
i.e., γ = γs − �RT . Here γs is the interfacial tension of the
clean interface, R is the ideal gas constant, and T is the
absolute temperature.

We use the following characteristic parameters to scale
all variables to dimensionless variables: a reference length
lref = 1/k, reference velocity uref = c, reference time tref =
1/(ck), reference pressure (p( j)

ref ), and stress (T ( j)
ref ) in the jth

fluid p( j)
ref = T ( j)

ref = μ jck, where μ j is the dynamic viscosity
of the jth fluid. As the problem is two dimensional, we use
the stream function (ψ ) to solve it. We nondimensionalize the
stream function and surfactant concentration via ψref = c/k
and �ref = �eq, respectively, where �eq is the equilibrium
surfactant concentration. We hereby formulate the problem
of a sheet near a surfactant-laden interface in dimensionless
variables.

As the inertia of the flow due to the swimming microorgan-
ism is typically negligible, the flow field is governed by the
Stokes equations and the incompressibility condition. Using
the relation between velocity components and the stream
function, Eq. (2), the governing equations are simply the
biharmonic equations for the stream functions, Eq. (3),

u( j) = ∂ψ ( j)

∂y
; v( j) = −∂ψ ( j)

∂x
, where j = 1, 2, (2)

∇4ψ ( j) = 0, (3)

where u( j) and v( j) indicate the x and y components of the
velocity of the jth fluid while ψ ( j) denotes the stream function
concerning the jth fluid. Point (x, 0) on the undeformed sheet
is located at (x0, y0) on the sheet’s surface at time t , where
(x0, y0) is given by

x0 = x + ε[ã cos(x + t ) + d̃ sin(x + t )],

y0 = εb̃ sin(x + t ). (4)
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As the flow field in phase 1 should satisfy the no-slip and no-
penetration boundary conditions on the sheet, we have

∂ψ (1)

∂y

∣∣∣∣
(x0,y0 )

= ∂x0

∂t
= ε[−ã sin(x + t ) + d̃ cos(x + t )],

(5)
∂ψ (1)

∂x

∣∣∣∣
(x0,y0 )

= −∂y0

∂t
= −εb̃ cos(x + t ).

Either neglecting gravity or by assuming the density of the
sheet is the same as the density of the fluid in which it is
suspended, we find that the external force on the sheet is
zero. Consequently, due to negligible inertia of the sheet,
the net hydrodynamic force on the sheet must be zero, i.e.,∫

Sheet n · T(1)|SheetdS = 0, which simplifies to∫ 2π

0
{−εb̃ cos(x + t )i + [1 − εã sin(x + t )

+ εd̃ cos(x + t )]j} · T(1)|(x0,y0 )dx = 0, (6)

where i and j denote the unit vectors along x and y directions,
respectively. Also, n is the normal to the sheet pointing into
fluid 1 while T( j) is the stress tensor for the jth fluid. Using
the Newtonian fluid constitutive equation, T( j) can be written
in terms of pressure (p( j) ) and velocity fields (v( j) ) of the jth
fluid as T( j) = −p( j)I + [∇v( j) + (∇v( j) )†], where † stands
for the transpose and I is an identity tensor. Far away from the
sheet, the velocity of fluid 2 should approach the negative of
the sheet’s swimming velocity (U = U i). In terms of stream
function, this condition simplifies to

as y → ∞, ψ (2) ∼ −Uy. (7)

Since the interface is nondeforming, the fluid velocity (in both
phases) at the interface but normal to the interface must be
zero,

at y = h :
∂ψ (1)

∂x
= 0;

∂ψ (2)

∂x
= 0. (8)

The fluid velocity at the interface but tangential to the inter-
face must be continuous across the interface:

at y = h :
∂ψ (1)

∂y
= ∂ψ (2)

∂y
. (9)

Also, the jump in the tangential stresses across the interface
should be balanced by the Marangoni stresses, which using
the relationship between interfacial tension and the surfactant
concentration simplifies to

at y = h : λT (2)
yx − T (1)

yx = Ma
∂�

∂x
; Ma = RT �eq

μ1c
, (10)

where T ( j)
yx denotes the yx component of the stress tensor

in the jth fluid and the viscosity ratio λ = μ2/μ1. Finally,
the transport of an insoluble surfactant on a nondeforming
interface is governed by

Pes

[
∂�

∂t
+ ∂

∂x
(�u|y=h)

]
= ∂2�

∂x2
; Pes = c

kDs
, (11)

where Ds is the surface or interface diffusivity of the surfactant
and the slip of an interface is written as u|y=h = ∂ψ (1)

∂y |y=h =
∂ψ (2)

∂y |y=h.

We compare our formulation with those of Taylor [25] and
Katz [3], where Taylor considered a sheet in an unbounded
fluid while Katz analyzed the motion of sheet located asym-
metrically between two walls. In these two works, the inertia
of the flow was negligible due to which the stream function
was governed by the biharmonic equation. The shape of sheet
in Katz’s work is same as that considered by us but Taylor’s
sheet passes only transverse waves along positive x-direction
[x0 = x, y0 = ε b̃ sin(x − t )]. Katz worked in a frame moving
with velocity (U − 1)i unlike the frame moving with the
velocity U i considered by us and Taylor. Due to the different
sheet’s shape (respectively, frame of reference) considered
by Taylor (respectively, by Katz), the boundary condition on
the sheet given in these two works is different from that
reported here [Eq. (5)]. The force-free condition is identically
satisfied for the Taylor’s sheet in an unbounded fluid. As Katz
considered a sheet asymmetrically located between two walls,
the sum of hydrodynamic forces acting on the top and bottom
surfaces of the sheet must be zero and this force-free condition
of Katz reduces to Eq. (6) for a sheet symmetrically located
between two walls. A far-field condition similar to Eq. (7) ex-
ists for a fluid in which the sheet is immersed in Taylor’s work,
but no such condition exists for a sheet bounded by walls as
considered by Katz. To ensure the fluid does not penetrate
the walls, Katz applied a condition similar to Eq. (8) at the
walls. Instead of the continuous tangential velocity condition
[Eq. (9)], shear stress balance condition [Eq. (10)], and the
surfactant transport equation [Eq. (11)] at the interface, there
is a no-slip boundary condition at the wall in Katz’s work.

We need to solve Eqs. (3)–(11) to determine the swimming
velocity of the sheet, U i. As the surfactant transport equation
is nonlinear, it is not possible to solve these equations ana-
lytically for an arbitrary value of ε. However, for ε � 1, we
can use the following traditional technique to find the lead-
ing order approximation of the sheet’s swimming velocity:
(i) express the boundary condition on the sheet’s surface as
a series of boundary conditions applied at the mid plane of
the sheet by doing a Taylor series expansion of any function
f (x0, y0) about (x, 0) and (ii) expand all the variables as a
power series in ε:

{v( j), T( j), p( j),U, ψ ( j), u|y=h}

=
∞∑

n=1

εn
{
v( j)

n , T( j)
n , p( j)

n ,Un, ψ
( j)
n , un

∣∣
y=h

}
,

� = 1 +
∞∑

n=1

εn�n. (12)

The resulting perturbed equations are linear and have the
following general solution for the stream function and the
surfactant concentration at O(εn):

ψ (1)
n =

∞∑
m=1

{[(
A(1)

n,m + E (1)
n,my

)
cos m(x + t )

+ (
B(1)

n,m + F (1)
n,my

)
sin m(x + t )

]
cosh my

+ [(
C(1)

n,m + G(1)
n,my

)
cos m(x + t )

+ (
D(1)

n,m + H (1)
n,my

)
sin m(x + t )

]
sinh my

}
+ αny + βny2 + γny3, (13)
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ψ (2)
n = −Uny +

∞∑
m=1

[(
A(2)

n,m + E (2)
n,my

)
cos m(x + t )

+ (
B(2)

n,m + F (2)
n,my

)
sin m(x + t )

]
e−my, (14)

�n =
∞∑

m=1

[Jn,m cos m(x + t ) + Ln,m sin m(x + t )], (15)

where A(1)
n,m, B(1)

n,m, C(1)
n,m, D(1)

n,m, E (1)
n,m, F (1)

n,m, G(1)
n,m, H (1)

n,m, A(2)
n,m,

B(2)
n,m, E (2)

n,m, F (2)
n,m, αn, βn, γn, Jn,m, and Ln,m are unknown

constants that need to be determined while satisfying the per-
turbed boundary conditions. The expressions of the constants
that determine the O(ε) and O(ε2) flow fields along with the
expression of the leading order swimming velocity U2 are
provided in Appendix A. We also verify our calculation by
comparing the leading order swimming velocity of the sheet
U2 with that reported in the literature in various limits. This
validation is presented in Appendix B.

III. LIMITING CASES

We note that the swimming velocity depends in a complex
fashion on Ma and Pes as can be seen in Eq. (A15) derived for
a sheet passing transverse waves near an air-water interface.
So, to understand the surfactants influence on the swimming
velocity U , we need to numerically evaluate U for various
Ma and Pes. Before doing this, in this section we report some
simple expressions for the swimming velocity in the limits
of small or large Ma or Pes. Through such expressions, one
can easily find out how the surfactant redistribution affects the
swimming velocity. We report these limiting forms for a sheet
near an air-water interface (λ = 0) by noting that the leading
order swimming occurs at O(ε2), i.e., U = ε2U2 + O(ε4).

At small Ma, we get

U2 = U2,clean + PesMa(
Pe2

s + 1
)
[sinh(2h) − 2h]2

× [(h2 cosh(2h) − 2h sinh(2h) + h2 + cosh(2h) − 1)

× b̃(ã − Pesd̃ ) + [h sinh(2h) − cosh(2h) + 1]b̃2h]

+ O(Ma2). (16)

Here U2,clean is the swimming velocity near a plane clean
interface whose expression for ã = d̃ = 0 is given in
Eq. (B3). We see that the correction due to surfactant re-
distribution depends nonlinearly on Pes. As long as d̃ =
0, we see that the surfactant redistribution increases the
sheet’s velocity because [h sinh(2h) − cosh(2h) + 1] > 0 and
[h2 cosh(2h) − 2h sinh(2h) + h2 + cosh(2h) − 1] > 0 for all
h. When ã = 0, the surfactant redistribution can increase or
even decrease the sheet’s velocity depending on whether the
following ratio is respectively greater than or less than 1.

[h sinh(2h) − cosh(2h) + 1]h

[h2 cosh(2h) − 2h sinh(2h) + h2 + cosh(2h) − 1]Pes

b̃

d̃
.

(17)

In the more general case when ã �= 0, d̃ �= 0, and b̃ �= 0, the
surfactant redistribution can increase or decrease the swim-

mer’s velocity depending on Pes, h, and relative order of
magnitude of the wave amplitudes.

At small Pes, we get

U2 = U2,clean + PesMa × b̃

[sinh(2h) − 2h]2 [ã[h2 cosh(2h)

− 2h sinh(2h) + h2 + cosh(2h) − 1]

+ b̃h[h sinh(2h) − cosh(2h) + 1]] + O
(
Pe2

s

)
. (18)

From this expression, we see that the swimming
velocity does not depend on “d” modes. Also as
[h2 cosh(2h) − 2h sinh(2h) + h2 + cosh(2h) − 1] > 0 and
[h sinh(2h) − cosh(2h) + 1] > 0, we see that the surfactant
redistribution always increases the swimming velocity at
small Pes. This is in contrast with the observation that the
surfactant redistribution can increase or even decrease
the velocity of a swimming microorganism inside a
surfactant-laden drop at small Pes [20]. These different
influences of the surfactant on the swimming velocity,
reported in Ref. [20] and this work, is due to different shapes
of the swimmer and the interface used in these two works.

At large Ma, we get

U2 = U2,wall − 4b̃

PesMa[2h2 − cosh(2h) + 1]2

× [(h2 cosh(2h) − 2h sinh(2h) + h2 + cosh(2h) − 1)

× (ã + d̃ × Pes) + [h sinh(2h)

− cosh(2h) + 1]b̃h] + O(Ma−2). (19)

Here U2,wall is the swimming velocity near a plane
wall whose expression is given in Eq. (B2). Again
as [h2 cosh(2h) − 2h sinh(2h) + h2 + cosh(2h) − 1] > 0 and
[h sinh(2h) − cosh(2h) + 1] > 0, we see that the swimming
velocity near a surfactant-laden interface at large Ma is always
less than that near a plane wall.

IV. RESULTS

In this section, we examine the influence of surfactant
redistribution on the swimming velocity of the sheet near a
surfactant-laden interface.

It was reported that the swimming velocity of a sheet,
propagating longitudinal waves, near a plane wall is the
same as its velocity in an unbounded fluid [3], i.e., U =
− ε2

2 (ã2 + d̃2) + O(ε4). Our analysis suggests the presence
of a surfactant-laden interface instead of a wall near such a
sheet, does not modify its velocity, i.e., the velocity of a sheet
propagating longitudinal waves near a plane surfactant-laden
interface is the same as its velocity in an unbounded fluid.

As we have analyzed the velocity of a sheet propagating
longitudinal waves near a plane surfactant-laden interface,
we then proceed to examine the velocity of a sheet (near
a surfactant-laden interface) passing only transverse waves
and that passing both longitudinal and transverse waves in
the following two subsections. Even though the expressions
for the leading order swimming velocity are derived for
any arbitrary viscosity ratio λ, we only report the influence
of surfactant redistribution on this velocity for an air-water
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FIG. 2. The variation of the swimming velocity with the distance
between the interface and (the mid plane of) the sheet for a sheet
passing only transverse waves (blue solid line) and that passing
both longitudinal and transverse waves (red dashed line). Here the
swimming velocity is normalized with the swimming velocity of a
sheet passing only transverse waves in an unbounded fluid (U2T ∞).
The viscosity ratio λ = 0, Marangoni number Ma = 1, and the
surface Péclet number Pes = 1.

interface (λ = 0) as experiments on locomotion in films are
mainly performed for an air-water interface [50–52].

For a fixed Ma and Pes, we found that the swimming
velocity increases as h decreases (see Fig. 2). A similar trend
with decreasing h was reported for confinements caused by
a rigid plane wall [3], a plane clean interface [4], or a gel
[44]. Also, the variation of the swimming velocity with Ma

and Pes is qualitatively the same for any fixed value of h. For
this reason, we report and analyze this variation with Ma and
Pes for a typical value of h = 1.

We report here the typical values of Ma and Pes. For the tail
of a spermatozoan [54], the wave speed c ∼ (200–1200) ×
10−6 m/s and the wave number k ∼ (1.14–4.18) × 105 m−1.
The maximum possible surfactant concentration at an air-
water interface [55,56] �∞ ∼ 10−6–10−4 mol/m2. Assum-
ing that the equilibrium surfactant concentration �eq ∼
(10−3–10−1)�∞, we get �eq ∼ (10−9–10−5) mol/m2. The
surface diffusivity of the surfactant [57] Ds ∼ (1–10) ×
10−9 m2/s. Using the definitions of Ma, Pes, along with the
viscosity of water (μ1) and the temperature of T = 298 K, we
get Ma ∼ O(1)–O(105) and Pes ∼ 0.05–O(10).

A. Sheet passing only transverse wave along its surface

When a sheet passing only transverse waves is located
near a plane surfactant-laden interface, the dependence of its
swimming velocity on Ma (for a fixed Pes) and on Pes (for a
fixed Ma) is given in Fig. 3. We observe the following from
this figure. As the minimum velocity occurs at Ma = 0 or
Pes → 0 and since Ma = 0 or Pes → 0 represents a clean in-
terface, we conclude that the swimming velocity near a plane
surfactant-laden interface is always more than that near a
plane clean interface. Near a plane surfactant-laden interface,
(a) the swimming velocity increases with an increase in Ma
for any fixed Pes, (b) it increases with an increase in Pes for
any fixed but large Ma, i.e., Ma � O(10), and (c) it initially
increases and then decreases with an increase in Pes for any
fixed but small Ma, i.e., Ma � O(1).

B. Sheet passing both longitudinal
and transverse waves along its surface

In this section, we discuss how the effect of surfactant
redistribution on the swimming velocity gets modified, in

10-2 10-1 100 101 102
3

3.5

4

4.5

5

5.5

6

6.5(b)

clean interface

rigid wall

0 20 40 60 80 100
3

3.5

4

4.5

5

5.5

6

6.5
rigid wall

clean interface

(a)

FIG. 3. For a sheet passing transverse waves near a plane surfactant-laden interface, the variation of the leading order swimming velocity
with (a) Ma for Pes = 1 and (b) Pes for Ma = 1, 10, and 100. Here the swimming velocity is normalized with the swimming velocity of the
same sheet in an unbounded fluid (U2T ∞). The distance between the midplane of the sheet and the interface is h = 1, the viscosity ratio λ = 0,
and the amplitudes of the longitudinal waves a = d = 0.
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FIG. 4. For a sheet passing both longitudinal and transverse waves near a plane surfactant-laden interface, the variation of the leading order
swimming velocity with (a) Ma for Pes = 0.1, 1, 10, 100 and with (b) Pes for Ma = 1, 10, 100. Here the swimming velocity is normalized
with the swimming velocity of a sheet passing transverse waves in an unbounded fluid (U2T ∞). The distance between the midplane of the sheet
and the interface is h = 1, the viscosity ratio λ = 0, and the amplitudes of the waves a = 0, and d/b = 2.

comparison to this effect presented in the earlier section, if a
sheet is passing both longitudinal and transverse waves along
its surface. For this purpose, we plot the variation of the swim-
ming velocity with Ma (for a fixed Pes) and Pes (for a fixed
Ma) in Fig. 4. From this figure, we observe the following. The
swimming velocity for a sheet near a plane surfactant-laden
interface can be more or even less than that for a sheet near
a plane clean interface (Ma → 0 or Pes → 0). Unlike the
case of a sheet passing only transverse waves, the swimming
velocity near a surfactant-laden interface might not lie in
between the swimming velocity near a plane clean interface
and that near a plane wall. Desai et al. [11] reported a
similar observation by noting that the critical trapping radius
of a surfactant-laden drop is less than those of a clean drop
and a rigid sphere where a particle or a drop would trap
a nearby swimming microorganism if their radius is more
than the critical trapping radius. When a sheet is in the
vicinity of a surfactant-laden interface, (a) the swimming
velocity increases with an increase in Ma for a fixed but
small Pes [�O(1)], (b) it initially decreases and then increases
with an increase in Ma for a fixed but large Pes [�O(10)],
(c) it increases with an increase in Pes for a fixed yet large
Ma [�O(10)], and (d) it initially increases and then decreases
with an increase in Pes for a fixed but small Ma [�O(1)].

It seems nonintuitive for the swimming velocity near a
surfactant-laden interface to lie outside the range correspond-
ing to the one near a clean interface and a rigid wall. If we
had a rigid particle moving near a surfactant-laden interface
due to some fixed force acting on it, its velocity always lies
in between its velocities near a clean interface and a plane
wall [58]. So, the motion of organisms is defying the intuition
built on the basis of particle motion. This is not the first time
that such phenomenon is reported. Considering the motion
of particles or organisms in complex fluids, we find that the
particle experiencing a fixed force moves faster in a shear-
thinning fluid than that in a Newtonian fluid but the velocity

of a swimming microorganism in a shear-thinning fluid can be
more or even less than that in a Newtonian fluid [59]. A similar
observation has been made for the velocity of a swimming
microorganism in a viscoelastic fluid [33].

Even though most of the observations in Figs. 3 and 4
can be qualitatively explained by analyzing the influence of
surfactant redistribution on the amplitude of leading order
interface slip (see Appendix C), such reasoning is not useful
to understand the swimming velocity near a surfactant-laden
interface if this velocity lies outside the range bounded by

10-2 10-1 100 101 102
10-4

10-2

100

102

104

FIG. 5. The variation of apparent viscosity ratio with Pes at
Ma = 1 (blue solid line), 10 (red dashed line), and 100 (yellow
dash-dotted line). Here, the sheet is passing only transverse waves,
hence a = d = 0. The actual viscosity ratio of the surfactant-laden
interface λ = 0 while h = 1.
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FIG. 6. For a sheet passing transverse waves near a plane clean interface, the variation of the (a) leading order interface slip and (b) leading
order swimming velocity with the viscosity ratio λ. Here the swimming velocity is normalized with the swimming velocity of the same sheet
in an unbounded fluid (U2T ∞). The values of the other parameters h, a, and d are kept the same as those of Fig. 3.

the velocities near a clean interface and a plane wall. Con-
sequently, the amplitude of leading order interface slip is not
determinative of the swimming velocity changes. Hence to
get a proper understanding of the variation of the swimming
velocity with all values of Ma and Pes, we need to correlate
the surfactant induced changes in either (i) the amplitude and
phase of the leading order slip (not just the amplitude) or
(ii) the second-order slip (instead of first-order slip) with the
swimming velocity which are not done in this work.

C. Apparent viscosity ratio

As the expression for the swimming velocity of a sheet near
a surfactant-laden interface is quite lengthy, we represent the

surfactant-laden interface as a clean interface with a modified
or apparent viscosity ratio (λapp) to convey the effects of
surfactant redistribution in a succinct manner. The expression
for λapp is simpler than the expression for the swimming
velocity. Using this expression for λapp and the dependence
of the sheet’s velocity on the viscosity ratio for a sheet near a
clean interface [4], we can evaluate the sheet’s velocity at this
apparent viscosity ratio to find its velocity near a surfactant-
laden interface. To determine the apparent viscosity ratio,
we simply equate the sheet’s velocity near a surfactant-laden
interface with zero viscosity ratio to its velocity near a clean
interface with a viscosity ratio that is equal to the apparent
viscosity ratio. We then solve this equation for the apparent
viscosity ratio to obtain

λapp =

Ma Pes

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[(−Ma Pes ã − 2 b̃)h − 2 d̃ Pes + 2 ã][cosh (h)]3

− 2 {[(1/2 Ma b̃ − d̃ )Pes + ã]h − 1/2 Ma Pes ã} sinh(h)[cosh(h)]2

+
(

Ma Pes ãh3 + (−2 d̃ Pes + 2 ã)h2

+ (Ma Pes ã + 2 b̃)h + 2 d̃ Pes − 2 ã

)
cosh(h)

−
(−Ma Pes b̃h3 + (Ma Pes ã − 2 b̃)h2

+ [(−Ma b̃ − 2 d̃ )Pes + 2 ã]h + Ma Pes ã

)
sinh(h)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

{[(−2 Ma d̃ − 4 b̃)Pe2
s − 2 Ma Pes ã − 4 b̃]h + 4 Pe2

s ã + 4 ã}[cosh(h)]3

− 4 [(Pe2
s ã + 1/2 b̃ Ma Pes + ã)h − 1/2 Ma Pes (d̃ Pes + ã)] sinh(h)[cosh(h)]2

+
(

2 Ma Pes (d̃ Pes + ã)h3 + (4 Pe2
s ã + 4 ã)h2

+ [(2 Ma d̃ + 4 b̃)Pe2
s + 2 Ma Pes ã + 4 b̃]h − 4 Pe2

s ã − 4 ã

)
cosh(h)

−2

(−Ma Pes b̃h3 + [(Ma d̃ − 2 b̃)Pe2
s + Ma Pes ã − 2 b̃]h2

+ (−b̃ Ma Pes + 2 Pe2
s ã + 2 ã)h + Ma Pes (d̃ Pes + ã)

)
sinh(h)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

which simplifies for a sheet passing only transverse waves to

lim
ã→0,d̃→0

λapp = 2 MaPes[− sinh(2h) − 1/2 MaPes cosh(2h) + Ma(h2 + 1/2)Pes + 2h](−4 Pe2
s − 4

)
sinh(2h) − 2 MaPes cosh(2h) + 8 Pe2

s h + (4h2 + 2)MaPes + 8h
. (21)
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In the limit Ma → 0 or Pes → 0, the surfactant-laden in-
terface behaves like a clean interface due to which λapp

approaches the actual viscosity ratio that is zero. Hence,
λapp → 0 as Ma → 0 or Pes → 0. In the limit Ma → ∞, the
surfactant becomes incompressible [10,58] and the surfactant-
laden interface behaves like a rigid wall (see Appendix
B for discussion on the incompressible surfactant). Hence,
λapp → ∞ as Ma → ∞. As Pes → ∞, λapp approaches a
constant value given by

lim
Pes→∞,ã→0,d̃→0

λapp = Ma2{[cosh(h)]2 − h2 − 1}
4 sinh(h) cosh(h) − 4h

, (22)

for a sheet passing only transverse waves.
For a sheet passing transverse waves near a surfactant-

laden interface, typical variation of λapp with Pes for various
Ma is shown in Fig. 5. From this figure, we observe that λapp

increases with an increase in Pes at large Ma [�O(10)] while
it initially increases and then decreases with an increase in Pes

at small Ma [�O(1)]. Combining this dependence of λapp on
Ma, Pes with the dependence of U2 on λ for a sheet near a
clean interface [Fig. 6(b)], we expect the velocity of a sheet
near a surfactant-laden interface to increase monotonically
(respectively, vary nonmonotonically) with an increase in Pes

at large Ma (respectively, at small Ma), consistent with the
observations of Fig. 3(b).

V. CONCLUSIONS

We aimed to understand the dependence of a microorgan-
ism’s swimming velocity on the Marangoni number (Ma) and
the surface Péclet number (Pes) when it is near a surfactant
covered interface. For this purpose, we derived the velocity of
a 2D infinitely long swimming sheet near a surfactant-laden
interface under the assumptions of zero Reynolds number,

zero interface deformation, and small sheet’s deformation. We
observed that the swimming velocity near a surfactant-laden
interface can be more or even less than that near a clean
interface and this velocity varies nonmonotonically with Ma
and Pes, these observations being highly sensitive to the type
of wave passing through the sheet. Unlike the rigid particles
near a surfactant-laden interface, we found that the swimming
microorganisms near such an interface can have a velocity
that does not lie in between their velocities near a clean
interface and a rigid wall. To succinctly express the effects of
surfactant redistribution, we represented the surfactant-laden
interface as a clean interface with a viscosity ratio equal
to an apparent viscosity ratio whose expression is found by
equating the swimming velocities near a clean and surfactant-
laden interface.
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APPENDIX A: EXPRESSIONS FOR CONSTANTS THAT
APPEAR IN STREAM FUNCTION AND SURFACTANT

CONCENTRATION

In this section, we provide expressions for the constants
appearing in Eqs. (13)–(15) that enable us to determine the
stream function and the surfactant concentration at various
orders of ε. Even though we derived these expressions for any
arbitrary viscosity ratio λ and for nonzero wave amplitudes
ã �= 0, b̃ �= 0, and d̃ �= 0, as these expressions are lengthy,
we provide these expressions only for the special case of an
air-water interface (λ = 0) and a sheet passing only transverse
waves (ã = 0, d̃ = 0).

1. Expressions for constants appearing in O(ε) stream function and surfactant concentration

Here, we present the expressions for constants appearing in ψ
(1)
1 , ψ

(2)
1 , and �1.

A(1)
1,1 = 0, (A1)

B(1)
1,1 = −b̃, (A2)

−C(1)
1,1 = E (1)

1,1 = 2[sinh(h)]2Pe2
s Mab̃h2

D
, (A3)

−D(1)
1,1 = F (1)

1,1 =

⎛
⎝−4Ma[cosh(h)]4Pes − [

(Ma2 + 4)Pe2
s + 4

]
sinh(h)[cosh(h)]3

+ [(− Ma2h + 4h)Pe2
s + (2h2 + 4)MaPes + 4h][cosh(h)]2

+ Ma2Pe2
s sinh(h)(h2 + 1) cosh(h) + h PesMa[Ma(h2 + 1)Pes + 2h]

⎞
⎠b̃

D
, (A4)

G(1)
1,1 = −2 Pe2

s h Mab̃ sinh(h)[cosh(h)h − sinh(h)]

D
, (A5)

H (1)
1,1 =

− sinh(h)b̃

⎛
⎜⎝

−4 MaPes[cosh(h)]3 − [
(Ma2 + 4)Pe2

s + 4
]

sinh(h)[cosh(h)]2

+ (4Pe2
s h + (2h2 + 4)MaPes + 4h) cosh(h)

+ Pes sinh(h)Ma[Ma(h2 + 1)Pes + 2h]

⎞
⎟⎠

D
, (A6)

A(2)
1,1 = −2h2ehMa sinh(h)Pe2

s b̃{[cosh(h)]2 − h2 − 1}
D

, (A7)
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B(2)
1,1 = 2h2b̃

(−Ma[cosh(h)]2Pes + (−2Pe2
s − 2

)
sinh(h) cosh(h) + 2Pe2

s h + Ma(h2 + 1)Pes + 2h
)

sinh(h)eh

D
, (A8)

E (2)
1,1 = 2ehMa sinh(h)Pe2

s b̃h{[cosh(h)]2 − h2 − 1}
D

, (A9)

F (2)
1,1 = −2hb̃

(−Ma[cosh(h)]2Pes + (−2Pe2
s − 2

)
sinh(h) cosh(h) + 2Pe2

s h + Ma(h2 + 1)Pes + 2h
)

sinh(h)eh

D
, (A10)

J1,1 = 2h Pes sinh(h)b̃{−Ma[cosh(h)]2Pes − 2 cosh(h) sinh(h) + Ma(h2 + 1)Pes + 2h}
D

, (A11)

L1,1 = 4Pe2
s b̃h sinh(h)[− cosh(h) sinh(h) + h]

D
, (A12)

where

D = [
(Ma2 + 4)Pe2

s + 4
]
[cosh(h)]4 + 4 Ma[cosh(h)]3 sinh(h)Pes + {−4 + [−4 + (−2h2 − 2)Ma2]

× Pe2
s − 4 MaPesh

}
[cosh(h)]2 − 4

[
2Pe2

s h + Ma(h2 + 1)Pes + 2h
]

sinh(h) cosh(h)

+ [(h2 + 1)
2
Ma2 + 4h2]Pe2

s + 4h Ma(h2 + 1)Pes + 4h2,

U1 = α1 = β1 = γ1 = 0. (A13)

2. Expressions for constants appearing in O(ε2 ) stream function

Here, we present the expressions for constants appearing in ψ
(1)
2 and ψ

(2)
2 .

β2 = γ2 = 0, (A14)

U2 = −α2 =
−

⎛
⎝

[−4 + (− Ma2 − 4)Pe2
s

]
[cosh(h)]4 − 4 sinh(h)[cosh(h)]3Ma Pes

+ [
4 + (2 Ma2 + 4)Pe2

s

]
[cosh(h)]2 + 4 sinh(h) cosh(h)Ma Pes

+ [(h4 − 1)Ma2 + 4 h2]Pe2
s + 4 Ma Pes h3 + 4 h2

⎞
⎠b̃2

⎡
⎢⎢⎢⎣

[(2 Ma2 + 8)Pe2
s + 8][cosh(h)]4 + 8 sinh(h)[cosh(h)]3Ma Pes

+ {−8 + [−8 + (−4 h2 − 4)Ma2]Pe2
s − 8 Ma Pes h

}
[cosh(h)]2

− 8
[
2 Pe2

s h + Ma (h2 + 1)Pes + 2 h
]

sinh(h) cosh(h)

+ [2 (h2 + 1)2Ma2 + 8 h2]Pe2
s + 8 h Ma (h2 + 1)Pes + 8 h2

⎤
⎥⎥⎥⎦

. (A15)

APPENDIX B: VALIDATION OF RESULTS

In this section, we verify the expression for the velocity of a sheet near a surfactant-laden interface by comparing it with
similar expressions derived in the literature for several special cases. For instance, when a sheet is far away from the interface,
its velocity should be the same as the sheet’s velocity in an unbounded fluid [26]:

lim
h→∞

U2 = 1
2 (−ã2 − d̃2 + b̃2 + 2ãb̃). (B1)

As λ → ∞ or Ma → ∞, the sheet’s velocity should approach the velocity of a sheet placed symmetrically between two plane
walls [3].

lim
λ→∞

U2 = lim
Ma→∞

U2

= ((ã2 − b̃2 + d̃2)[cosh(h)]2 − 2 cosh(h) sinh(h)ãb̃ + (−h2 − 1)ã2 + 2ãb̃h + (−h2 + 1)b̃2 − d̃2(h2 + 1))

2h2 − 2[cosh(h)]2 + 2
. (B2)

It is obvious that a surfactant-laden interface behaves as a
rigid wall in the limit λ → ∞ but such a behavior in the
limit Ma → ∞ requires some explanation. As Ma → ∞, the
surfactant becomes incompressible [10,58], i.e., O(1) changes
in interfacial tension are caused by infinitesimal changes in the
surfactant concentration. So, treating � as constant, the surfac-
tant transport equation simplifies to ∂

∂x (u|y=h) = 0. The only

solution of this equation that enables the velocity of fluid 2 to
approach the negative of the sheet’s velocity, far away from
the interface, is u|y=h = −U . The sheet near an interface with
such interface boundary conditions (u|y=h = −U, v|y=h = 0)
is essentially equivalent to a sheet near a plane wall.

In the limit Ma → 0 or Pes → 0, the sheet’s velocity
should approach its velocity near a plane clean interface. This
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FIG. 7. Comparison of interface slip of a clean interface (blue
solid line) with that of a surfactant-laden interface (blue dotted line).
Also plotted is the surfactant concentration on the surfactant-laden
interface (red dash-dotted line). The vertical dashed lines are just
for reference. The blue (upper) and red (lower) arrows denote,
respectively, the vector field of clean interface slip and the direction
of Marangoni induced slip. The axis for the interface slip is on the left
while that for surfactant concentration is on the right. Here, Ma = 10
and Pes = 1 for the surfactant-laden interface. Also, ε = 0.1 is used
to calculate � while the values of the other parameters h, λ, a, and d
are kept the same as those of Fig. 3.

velocity was derived for a sheet passing transverse waves in
the positive x direction (Taylor’s sheet) [4]. As we considered
the sheet passing transverse waves in the negative x direction,
its velocity near a plane surfactant-laden interface in the limits
Ma → 0 or Pes → 0 should approach the negative of Taylor’s

swimming sheet velocity near a plane clean interface.

lim
Ma,ã,d̃→0

U2

= lim
Pes,ã,d̃→0

U2

= b̃2

2
− b̃2h(hλ + 1)

h2λ − [cosh(h)]2λ − sinh(h) cosh(h) + h + λ
.

(B3)

APPENDIX C: EFFECT OF SURFACTANT
REDISTRIBUTION ON THE INTERFACE SLIP

In this section, we analyze the influence of surfactant
redistribution on the leading order interface slip when a sheet
passing transverse waves is located near an interface. Let us
first discuss how the viscosity ratio of an interface affects
the interface slip and the swimming velocity for a sheet
near a plane clean interface. We plot these features for a
sheet passing transverse waves near a plane clean interface in
Fig. 6. We observe that the interface slip decreases while the
swimming velocity increases with an increase in the viscosity
ratio of a clean interface. As an increase in the viscosity ratio
corresponds to an increase in the viscosity of fluid above the
interface (for a fixed viscosity of fluid below the interface),
such high viscosity fluid above the interface hinders the
interface slip.

When a sheet is near a clean interface, the interface slip
varies in a sinusoidal fashion with the x coordinate, i.e.,
u1|y=h = A sin(x + t + φ), where A and φ are the amplitude
and phase of the slip, respectively [see blue solid line in
Fig. 7; vector field of the interface slip is shown by blue
(upper) arrows in this figure]. When we compare slip (such
as slip of clean and surfactant-laden interface or slip of a
surfactant-laden interface at various values of Ma or Pes),
we are essentially comparing the amplitude of the sinusoidal
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FIG. 8. The variation of (a) the Marangoni stress and (b) the leading order interface slip with the Marangoni number Ma for a fixed surface
Péclet number Pes = 1. Here ε = 0.1 is used to calculate the Marangoni stresses while the values of the other parameters λ, h, a, and d are
kept the same as those of Fig. 3.
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FIG. 9. The variation of (a) the surfactant concentration and (b) the leading order interface slip with the surface Péclet number Pes for a
fixed Marangoni number Ma = 100. Here ε = 0.1 is used to calculate surfactant concentration while the values of the other parameters λ, h,
a, and d are kept the same as those of Fig. 3.

functions. Now, if a sheet is near a surfactant-laden interface,
the surfactant concentration varies nonmonotonically with the
position, as shown by red dash-dotted lines in Fig. 7. As the
interfacial tension decreases with an increase in the surfactant
concentration, this nonhomogeneous surfactant concentration
gives rise to a nonhomogeneous interfacial tension which
in turn causes the tensile stress imbalance on the interface,
pulling the fluid from the regions of maximum � toward the
regions of minimum �. This Marangoni induced slip velocity
is shown by red (lower) arrows in Fig. 7. The slip of a
surfactant-laden interface is the sum of the slip of a clean

interface and the Marangoni induced slip. As this Marangoni
induced slip is directed oppositely to the clean interface’s slip
at most of the locations, the slip of a surfactant-laden interface
is less than the slip of a clean interface (see the blue dotted line
in Fig. 7 for the slip of a surfactant-laden interface).

With an increase in Ma, the Marangoni stresses increase
[see Fig. 8(a)] which in turn reduce the slip of an interface
[see Fig. 8(b)]. At large Ma like Ma = 100, with an increase
in Pes the advective transport of surfactant increases in com-
parison to its diffusive transport; this increases the gradients
in the surfactant concentration [see Fig. 9(a)] or Marangoni
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FIG. 10. Comparison of the interface slip of surfactant-laden interfaces with different Pes but with a fixed Ma = 1. In each plot, the
interface slip at low and high Pes are denoted, respectively, by blue solid and blue dotted lines. Also plotted is the change in the surfactant
concentration at high Pes in comparison to that at low Pes (red dash-dotted line). The dashed lines are just for reference. In (a) the low and
high Pes are 0.1 and 1, while in (b) they are 1 and 10, respectively. The blue (upper) and red (lower) arrows denote, respectively, the vector
field of the surfactant-laden interface’s slip at low Pes and the direction of the Marangoni induced slip as Pes is increased from its low to high
value. The axis for the interface slip is on the left while that for the change in the surfactant concentration is on the right. The values of the
other parameters h, λ, a, and d are kept the same as those of Fig. 3.
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stresses which in turn reduce the interface slip [see Fig. 9(b)].
For these values of Ma and Pes at which the interface slip
decreases with an increase in Ma for a fixed Pes (or with
an increase in Pes for a fixed Ma), the swimming velocity
increases with the corresponding variation of Ma or Pes (see
Fig. 3).

We note that the Marangoni stresses increase with an in-
crease in Pes at any fixed Ma, not just at large Ma. But at small
Ma, with an increase in Pes, the increasing Marangoni stresses
reduce the interface slip during the initial increase of Pes [see
Fig. 10(a)] while they increase the interface slip during the

latter increase of Pes [see Fig. 10(b)]. This is expected because
during the initial (respectively, latter) increase in Pes, the
Marangoni induced slip is directed opposite to (respectively,
along) the slip of a relatively clean interface at most of the
interface locations. Compare the red (lower) arrows with the
blue (upper) arrows in Fig. 10 to understand this observation.
Here relatively clean interface is an interface with lower Pes.
At this value of Ma at which the interface slip varies non-
monotonically with an increase in Pes, the swimming velocity
also varies non-monotonically with an increase in Pes [see
Fig. 3(b)].
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