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Both stimuli-responsive gels and growing biological tissue can undergo pronounced morphological transitions
from two-dimensional (2D) layers into 3D geometries. We derive an analytical model that allows us to
quantitatively predict the features of 2D-to-3D shape changes in polymer gels that encompasses different degrees
of swelling within the sample. We analyze a particular configuration that emerges from a flat rectangular gel
that is divided into two strips (bistrips), where each strip is swollen to a different extent in solution. The final
configuration yields double rolls that display a narrow transition layer between two cylinders of constant radii.
To characterize the rolls’ shapes, we modify the theory of thin incompatible elastic sheets to account for the
Flory-Huggins interaction between the gel and the solvent. This modification allows us to derive analytical
expressions for the radii, the amplitudes, and the length of the transition layer within a given roll. Our predictions
agree quantitatively with available experimental data. In addition, we carry out numerical simulations that
account for the complete nonlinear behavior of the gel and show good agreement between the analytical
predictions and the numerical results. Our solution sheds light on a stress focusing pattern that forms at the
border between two dissimilar soft materials. Moreover, models that provide quantitative predictions on the final
morphology in such heterogeneously swelling hydrogels are useful for understanding growth patterns in biology
as well as accurately tailoring the structure of gels for various technological applications.
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I. INTRODUCTION

Morphogenesis is the process by which biological organ-
isms develop their shape. This process typically encompasses
the growth of new tissue [1–4], which enables events such as
the reshaping of epithelial sheets [5,6], the development of
plants and leafs [7–10], and the emergence of surface mor-
phologies on living organs [11–13]. The growth of biological
tissue involves the addition of mass to an evolving structure;
if the structure is formed from an elastic material, the growth
commonly drives a two-dimensional (2D) shape to transition
into a 3D configuration [1,14]. In particular, the addition of
mass to the 2D architecture introduces in-plane strains that
can only be relaxed by the material’s reconfiguration into a
3D morphology. To gain insight into physicochemical factors
that can affect the transition of 2D layers into 3D structures
and the subsequent elastic relaxation within the material, re-
searchers have focused on morphological transitions that can
be induced in hydrogels. Notably, polymeric hydrogels [15]
can mimic the mechanical behavior of biological tissues [16]
and have been used extensively as tissue replacements [17,18].
Moreover, while biological growth processes are in general
time dependent, such as cell division or accretion of surfaces
[2], in many cases the timescales for the subsequent elastic
relaxations are much faster than these dynamical evolutions.
Therefore, at least to leading order, nonstationary effects can
often be neglected [2,3]. Hence, the understanding of 2D-to-
3D shape changes in hydrogels of finite fixed size can yield
significant insight into shape changes within biological tissue.
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Herein we derive an analytical model that allows us to
quantitatively predict the features of 2D-to-3D shape changes
in polymer gels that encompass different degrees of swelling
within the sample. Such gels can be realized, for example,
by introducing variations in the cross-link density within the
network or polymerizing the chains to be longer in one area
of the sample than another. Models that provide quantitative
predictions on the final morphology in such heterogeneously
swelling hydrogels would be useful not only for understand-
ing growth patterns in biology, but also for accurately tailoring
the structure of gels to meet the requirements of various
technological applications.

Pattern formation in thin sheets where a given sample
displays different degrees of deformation or buckling yields
a particularly rich set of morphologies. Kim et al. [19] in-
vestigated the latter scenario experimentally by manipulating
thin gels into 3D configurations. In these experiments, the
cross-link densities in the gels were tuned by a differential
exposure to UV light. The intensity of light that illuminated
each portion of the gel determined its ability to swell within
an aqueous medium. Using this method, the researchers could
drive the thin sheets to form cones, spherical caps, and wavy
patterns and more complex morphologies such as self-folded
cubes and axisymmetric rolls.

We focus on the experimental setup of Ref. [20], where
a rectangular flat sample of a thin gel was divided into two
strips that were manipulated to undergo differential swelling,
i.e., one strip was programmed to swell more than the other.
This bistrip system was then activated in a thermal liquid bath
until its final 3D configuration was achieved. The resulting
shapes consisted of two cylindrical rolls, each with a differ-
ent constant radius, that are connected by a sharp transition
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layer. This transition layer encompasses large deformations
of the gel over very short distances and thereby ensures a
smooth transition between the two rolls. These rolls occurred
repeatedly for different-size samples, which were of different
lengths and thickness. Scaling arguments, which are based
on the competition between stretching and bending energies,
were then utilized to explain the various dependences of the
rolls’ radii on the initial size of the gel. Considering the
simplicity of this approach, the authors were able to predict
the experimental observations to within good agreement.

Researchers have also considered a closely related system
[21,22], which involved an array of thin hydrogel strips with
alternating chemical compositions that was designed to mimic
biological fibrous tissues. When these patterned gels came
into contact with a liquid bath, the different strips under-
went distinct degrees of swelling, similar to the behavior in
Ref. [20]. Depending on the size and orientation of the strips,
these hydrogels formed helical structures with measurable
handedness and pitch, and rolls with periodic undulations
in the radius (similar to rolls seen in Ref. [20]). Given the
ubiquitous appearance of these basic shapes in biology and
their reproducibility in experimental studies, there is a need
for more quantitative studies on structure formation in differ-
entially swelling gels. To address this need, we focus on the
fundamental building block in these structures, i.e., the bistrip.

In particular, we develop an analytical model that accounts
for the different elastic properties of the two strips. Since the
swelling of a gel changes the elastic response of the network,
our model takes into consideration the changes in the thick-
nesses and the Young’s moduli of each strip. Consequently,
by direct comparison with the experimental data, we show that
the elastic theory for thin sheets, supplemented by corrections
to the elastic properties of the gel, captures the quantitative
behavior of the system, including the numerical prefactors.
Utilizing this result, we can analyze a stress focusing structure
that forms on the border between two dissimilar materials,
i.e., materials with different elastic properties. Although stress
concentration in thin elastic sheets has been explored exten-
sively [23], the latter scenario was given less attention. Indeed,
the localization that we observe herein does not coincide with
other known groups of stress focusing patterns, but rather
shares properties with two different groups.

The theory is further validated by comparing the findings
from the analytical model with the results from computer sim-
ulations utilizing the gel lattice spring model (gLSM), which
is a modified finite-element method [24–26]. These numerical
simulations solve the complete elastodynamic formulation for
the mechanical behavior of the gels and were successful in
describing the dynamics of lower critical solution tempera-
ture gels such as poly(N-isopropylacrylamide). Recently, this
technique was modified to account for gels that contain loops,
which unfold to release “stored length” in the sample [27].
These loops are polymer chains that can form new bonds
between two distant points in the network. The creation or
annihilation of these bonds effectively mimics a decrease or
an increase in the rest length of line elements in the gel.
Consequently, the agreement between the simulations, the
theory, and the experiments shows the predictive capability
of our model and sheds light on the various assumptions that
lead from the mechanics of gels to the elasticity of thin sheets.

The paper is organized as follows. In Sec. II we for-
mulate the problem and derive the constitutive relations be-
tween the strains and the displacement fields. In Sec. III
we utilize this formulation to obtain an approximate ana-
lytical solution for a buckled shape in the framework of
the Föppl–von Kármán (FvK) theory. These theoretical pre-
dictions are then tested against the numerical optimization
of the energy and the gLSM simulations. In Sec. IV we
compare the analytical solution to the experimental data of
Ref. [20] and explain the matching between the theoretical
and the experimental parameters. In Sec. V we compare the
properties of our localizing pattern with other known stress
focusing structures and classify it accordingly. Finally, we
summarize our main results and suggest extensions for future
studies.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

Our aim is to derive the set of equations that will allow
us to determine the 3D configuration of thin gel that encom-
passes different degrees of swelling. The relevant physical
parameters of the system are the dimensions of the gel, the
degree of swelling within each region, and the stretching and
bending moduli of the sample. To capture the final structure
of the swollen buckled gel, we must derive an expression for
the elastic energy, the stress-strain relations, and the appropri-
ate constitutive equations. Below we first provide a qualitative
description of our approach and then detail our derivation of
the analytical expressions.

To formulate a model for 2D-to-3D shape changes in
polymer gels, it is useful to recall that the mechanical be-
havior of hydrogels is influenced by three distinct factors
[24,28–31]. One is the material’s elasticity, which accounts
for the nonlinear (neo-Hookean) response of the polymeric
network [25]. Second is the enthalpic interaction between the
polymers and the surrounding solvent, which is characterized
by the Flory-Huggins interaction parameter [30]. Third is
the nonlinearity in the fluid dynamics that guarantees the
conservation of mass of both the polymers and the solvent.
This nonlinear formulation for the mechanics of gels is rel-
atively simplified when the following two assumptions are
considered: (i) The 3D gel samples are thin, i.e., the thickness
is negligibly small compared to the two other dimensions and
(ii) only time-independent deformations are considered. Since
thin objects can undergo large deformations while the in-plane
strains remain relatively small, the finite elasticity model, with
neo-Hookean stress-strain relations, can be reduced to a linear
elastic model with Hookean relations. In addition, when only
static deformations are considered, the Flory-Huggins model
and the equations for conservation of mass are only utilized
to determine the constant moduli of the linear elastic theory
[25]. This simplification of the theory into linear elasticity,
supplemented by the standard Kirchhoff-Love hypothesis for
dimensional reduction from three to two dimensions [32,33],
allows one to formulate the mechanics of thin cross-linked
gels solely using the theory of thin elastic sheets. Indeed, this
similarity motivated experimental and theoretical studies of
pattern formation on thin gels [21,34–39].

Although the in-plane deformations of a thin sheet are
assumed to be small, the relations between the strains and
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(b)

FIG. 1. Schematic overview of the system. (a) Top view of a flat system. A strip of unswollen thickness t , width w, and length 2L is
divided into two regimes at z = L (gray line). At the initial, unswollen state, both strips have the same Young’s modulus E . (b) Side view of
a swollen 3D state. The thin orange (light gray) and thick purple (dark gray) curves correspond, respectively, to the strips with the low and
high swelling constants �1 and �2. The radius of the roll at z = L is given by RL . Deviations of the 3D shape from this radius are denoted
by the radial displacement ur (z), where the coordinate z ∈ [0, 2L] represents the arclength of the original, unswollen, state. In the limit of a
small thickness, all the deformation is localized around the center point z = L. Asymptotically, far away from the transition layer, the radial
displacement ur (z) approaches the constant amplitudes A1 and A2. (c) and (d) Two results from our gLSM simulations [27] where one of the
strips contains polymeric loops that unfold as the temperature is reduced and thereby generate internal stresses in the gel. In the left plot of
these figures, the internal stresses are too weak to cause buckling and therefore all the deformation remains in plane. The right plots correspond
to a lower temperature, where more loops are opened. This additional increase in excess length increases the internal stresses in the gels and
causes buckling. The final configurations are part of a body of revolution, whose cross section is described in (b). The difference between (c)
and (d) is in the numbers of prescribed loops. The sample in (d) contains more loops (eight Kuhn segments) than in (c) (four Kuhn segments)
and hence the final gradients at the center of (d) are steeper than the gradients in (c). Colors in these plots represent the polymeric volume
fraction of the gel elements.

the displacement fields are not linear. This nonlinearity is
associated with the geometry of the final configuration, rather
than the nonlinearity in the neo-Hookean model, which ac-
counts for finite strains. Therefore, on top of the linear elastic
formalism of thin sheets, another assumption of “smallness” is
frequently applied. Namely, in the FvK theory (or small slope
approximation), the constitutive relations describing the thin
sheets are approximated by the leading order of the gradients
in the deformation. The FvK theory has been employed in
many recent studies on pattern selection in thin sheets and gels
[32,40–43].

In the following discussion, the term “incompatible sheets”
refers to thin films that contain internal stresses even in
the absence of external forces [35,44–47]. Mathematically,
incompatible sheets are modeled by a reference metric ḡ that
is attached to the midplane of the elastic sheet and determines
the rest lengths of line elements on the sheet. Utilizing Gauss’s
theorem [48,49], one finds that a flat sheet is stress-free
only if Kḡ = 0, where Kḡ is the Gaussian curvature of the
reference configuration. In other words, when Kḡ �= 0 and the
sheet is flat, not all line elements can retain their rest values
simultaneously.

The final 3D configuration of an incompatible sheet is
determined by minimization of its total elastic energy. To
leading order, this energy scales as E ∝ t (a − ḡ)2 + O(t3),
where a is the metric of the deformed state, t is the thickness,
and the first and second terms correspond, respectively, to the
stretching of in-plane line elements and out-of-plane bending.
Therefore, in the limit of a small thickness, the energy is
minimized when a → ḡ or, equivalently, when the Gaus-
sian curvatures of the two metrics coincide [35,39,46,50,51].
Within these energetic considerations, there is a special group
of elastic energy minimizers, called isometric immersions,
that adopt exactly the Gaussian curvature of the reference
metric a = ḡ such that their elastic energy scales as t3 [52].

Nevertheless, isometric immersions do not always exist. In
these cases, the energetic competition between the stretching
and bending energies is more involved and the total energy
scales as tα , where α � 3. The latter scenario was investigated
in Ref. [20] by prescribing a discontinuous swelling profile,
or equivalently a discontinuous reference metric, on the gel’s
surface. For this reference profile, isolated line elements on
the gel attain multiple values and thus isometric minimizers
are prohibited.

Following Ref. [20], we consider a thin strip of an
unswollen thickness t , width w, and length 2L that is subjected
to a differential discontinuous swelling along the midline
of the sample [see Fig. 1(a)]. This discrete variation in the
swelling profile is modeled by the reference metric

ḡαβ = h(z)2(dy2 + dz2), h(z) =
{
�1, 0 < z < L
�2, L < z < 2L,

(1)

where (y, z) ∈ [−w/2,w/2] × [0, 2L] is a set of Cartesian
coordinates and the constants �1 and �2 characterize the
isotropic swelling of each region. In this formulation we
assume that �2 � �1 such that a positive confinement pa-
rameter is defined by τ ≡ �2 − �1. The system is stress-free
when τ = 0.

This swelling profile induces nonuniform stretching and
bending moduli on the gel’s surface for the following two
reasons. First, since the gel swells isotropically in all three
dimensions (not just in two dimensions) the thicknesses from
which the elastic deformations are measured are �it (i =
1, 2), and not just t . Second, the swelling of a gel changes
the polymeric volume fraction, which in turn determines the
elastic response of the sample [25,53]; hence each strip has
a different Young’s modulus. In the following formulation,
we define the spatially discontinuous stretching and bending
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moduli

Y (z) =
{

Y1, 0 < z < L
Y2, L < z < 2L,

B(z) =
{

B1, 0 < z < L
B2, L < z < 2L,

(2)

where Yi = Ei�it/(1 − ν2) are the stretching moduli, Bi =
Ei(�it )3/12(1 − ν2) are the bending moduli, Ei are the
Young’s moduli, and ν is the Poisson ratio. It is useful to
define the ratio of the Young’s moduli e ≡ E2/E1 and the ratio
of the swelling factors φ ≡ �2/�1 such that Y2/Y1 = eφ and
B2/B1 = eφ3.

Although the initial flat state of the system does not
encompass any axisymmetric properties, the experiments in
Ref. [20] suggest that the final configuration is a body of
revolution. These observations are also supported by our
gLSM simulations, as shown in Figs. 1(c) and 1(d). This
final configuration consists of two cylindrical rolls that are
connected by a transition layer around the discontinuous line
of swelling z = L. (We note that this body of revolution differs
from the one considered in Ref. [54] in the sense that its axis
of revolution does not intersect with a point on the body.)

Motivated by these experimental results, we assume that
the 3D position vector to a point in the final configuration is
given by

f (z, θ ) = [RL + ur (z)]r̂ + [
√

ḡzzz + ζ (z)]ẑ, (3)

where ur is the out-of-plane displacement, ζ is the in-plane
displacement, RL is the radius of the body at z = L, and r̂ is a
unit vector in the radial direction [see Fig. 1(b) for a schematic
illustration of these variables and parameters]. While the final
configuration (3) is given in cylindrical coordinates (z, θ ), the
reference metric (1) is given in Cartesian coordinates (y, z).
Thus, to complete the formulation we must transform the y
coordinate into the θ coordinate. To do this, we set dy →
Rdθ and define the regime of the azimuthal coordinate to
be (z, θ ) ∈ [0, 2L] × [−w/2R,w/2R], where R is a constant
reference radius. Under this transformation Eq. (1) reads

ḡαβ = h(z)2(dz2 + R2dθ2), h(z) =
{
�1, 0 < z < L
�2, L < z < 2L.

(4)

Since for any constant value R the rest length of a line element
in the θ direction is equal to �1w (or �2w), as was originally
prescribed by Eq. (1) in the y direction, R is yet an unknown
constant. In this analysis, it will be determined so as to
minimize the total energy. By applying this transformation,
we made an assumption that the rest configuration of the gel
is always buckled in the azimuthal direction. Indeed, although
this transformation preserves the reference Gaussian curvature
Kḡ, it applies a constant bending moment on the azimuthal
edges of the gel, i.e., the total elastic energy is not invariant
under this transformation.

Using these definitions, the total energy of the system has
two contributions. One is the work of internal forces to deform
the lengths of in-plane line elements and the second is the
work of bending moments to deform the gel out of its initial

flat position. This energy is given by [32,54]

E = 1

2

∫ 2L

0

∫ w/2R

−w/2R
[σzzεzz + σθθεθθ ]

√
ḡdθ dz

+ 1

2

∫ 2L

0

∫ w/2R

−w/2R
[Mzzφzz + Mθθφθθ ]

√
ḡdθ dz, (5)

where the first and second terms correspond to the stretching
and bending energies. In addition, σαβ and εαβ are the in-
plane stresses and strains and Mαβ and φαβ are the bending
moments and bending strains (α, β = θ, z), respectively. The
off-diagonal components of these tensors vanish by the as-
sumed axisymmetry of the solution (3), i.e., σzθ = Mzθ = 0
and εzθ = φzθ = 0.

In this linear elasticity formulation, the stresses and the
bending moments are linearly related to the strains and the
bending strains by Hooke’s law,

σαβ = Y [(1 − ν)εαβ + νεγγ δαβ], (6a)

Mαβ = B[(1 − ν)φαβ + νφγγ δαβ], (6b)

where δαβ is the Kronecker delta. To close the formulation,
we need to relate the displacements ur and ζ to the strains.
It was recently shown that the mathematical formulation
of thin sheets that undergo axisymmetric deformations is
considerably simplified if the 3D strain tensor is redefined
[54]. Since the present problem falls under this axisymmetric
category, we take advantage of this simplification and use
Biot’s strain [54–56] rather than the Green–St. Venant strain
[46,47] to formulate the elastic energy. While the former strain
tensor measures linear deviation of line elements from their
rest values, the latter strain tensor measures the square of
these deviations and therefore inherently includes quadratic
terms in the displacement fields. We emphasize from the
outset that although the choice of a strain tensor may have a
qualitative effect on the structure of the elastic theory [54,57],
in the present problem, it does not alter the main conclusions.
Nevertheless, Biot’s strain is used here in order to simplify the
presentation of some expressions, as is discuss further below.
Biot’s constitutive relations read,

Nonlinear strains:

εzz =
√

(
√

ḡzz + ∂zζ )2 + (∂zur )2

√
ḡzz

−1, (7a)

εθθ = RL + ur√
ḡθθ

− 1, (7b)

φzz = 1√
ḡzz

(
√

ḡzz + ∂zζ )∂zzur − ∂zzζ∂zur

(
√

ḡzz + ∂zζ )2 + (∂zur )2
, (7c)

φθθ = 1√
ḡθθ

√
ḡzz + ∂zζ√

(
√

ḡzz + ∂zζ )2 + (∂zur )2
, (7d)

where the components of the reference metric are given by
Eq. (4). Equations (7a) and (7b) measure the linear extension
of a line element in the z and θ directions. They are derived
from the relation εαα = √

aαα/ḡαα − 1, where aαα = ∂αf · ∂αf
is the metric of the final configuration and f is given by Eq. (3).
Note that in these and subsequent expressions summation is
not implied on repeated indices. Similarly, Eqs. (7c) and (7d)
measure the change of the unit normal vector n̂ = ∂zf×∂θ f

|∂zf×∂θ f | ,
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along these two principal directions. They are defined by
φαα = √

cαα/ḡαα , where cαα = ∂αn̂ · ∂αn̂ is the third funda-
mental form. (Different from Ref. [54], here the displacements
ur and ζ switch roles: ur is the out-of-plane displacement and
ζ is the in-plane displacement.) Although the above formula-
tion is derived in the framework of linear elasticity, i.e., under
the assumption of small strains, the constitutive relations
(7) are not linear. This is one of the consequences of the
dimensional reduction process, from three to two dimensions,
that on one hand lowers the dimensionality of the problem,
but on the other hand adds nonlinear terms that characterize
the geometry of the final configuration.

If the gradients in the final configuration are changing
sufficiently slowly, these nonlinear constitutive relations can
be simplified according to the FvK approximation, i.e., expan-
sion of Eqs. (7) to leading order in the displacement gradients.
In addition, since gels can swell significantly beyond their dry
state �i = 1, the amount of swelling �i − 1 is in general of
order one. Therefore, this FvK expansion is taken around the
swollen state of an unconstrained gel and not around its dry
state. In other words, each strip swells by a factor �i up to
small elastic deviations of order εαβ . The reduced constitutive
relations read,

FvK strains: εzz � ∂zζ√
ḡzz

+ (∂zur )2

2ḡzz
, (8a)

εθθ = RL + ur√
ḡθθ

− 1, (8b)

φzz � ∂zzur

ḡzz
, (8c)

φθθ � 1√
ḡθθ

. (8d)

We emphasize two points regarding this reduction. First,
since εθθ does not involve derivatives of the displacement
fields, it remains unchanged compared to its nonlinear coun-
terpart (7b). Second, in the case where ur = 0, the FvK strains
(8) become equivalent to the nonlinear strains (7). The latter
two properties result from using the Biot strain rather than
the Green–St. Venant strain [54]. In fact, if one uses the latter
strain tensor, the reduction of the nonlinear strains to Eqs. (8)
requires additional assumptions, such as assumptions on the
smallness of the displacements themselves and not just their
gradients.

Finally, different from solid materials, the Young’s moduli
of each strip depends strongly on the microscopic structure of
the gel. For this reason gels of a homopolymer network are
usually characterized by the initial (before swelling) number
of cross-links c0v0 and the initial and final (after swelling)
polymeric volume fraction φ0 and φ, respectively [25]. In the
framework of linear elasticity, the latter two quantities are not
independent because conservation of polymer mass implies
that φ � φ0�

−3
i ; this relation becomes exact if one considers

the isotropic expansion of an unconstrained gel. Substituting
the latter relation into the shear modulus that is predicted
from the linearized model of polymer gels [25], we find that

Ei � 2(1 + ν)(c0v0)i�
−1
i , (9)

where we converted the shear modulus to a Young’s modulus
using μi = Ei/2(1 + ν) [32]. Therefore, given the swelling �i

and the total number of cross-links (c0v0)i, within each strip,
we can determine the Young’s modulus.

In summary, the characteristic features of the system are
specified by the geometric dimensions L, w, and t , the
swelling factors �1 and �2, and the physical constants E1, E2,
and ν. Given these parameters, the above formulation allows
us in principle to minimize the elastic energy (5) for a given
set of constitutive equations (7) or (8) and the stress-strain
relations (6). The minimization of the energy is carried out
with respect to the two displacements ur (z) and ζ (z) and the
two constants RL and R. Once these unknowns are determined,
the 3D configuration is given by Eq. (3).

In the next two sections, we use this formulation to obtain
an approximate analytical solution to the 3D configuration
of a buckled gel. We then compare these predictions to the
results from our gLSM simulations and the experimental data
of Ref. [20].

III. APPROXIMATE ANALYTICAL SOLUTION
IN THE FvK MODEL

In this section we utilize the formulation of the preceding
section to derive an approximate solution to the problem. This
solution is derived in the FvK approximation and is divided
into two parts. In the first part, we solve the problem under
the assumption that the gel is flat (ur = 0). This solution is
required in order to fix the value of RL, which guarantees that
when �1 = �2 (τ = 0) the gel swells homogeneously in all
three dimensions and the system becomes stress-free. In the
second part, we relax this assumption (ur �= 0) and minimize
the total energy, given RL from the first part. This minimiza-
tion is taken under an assumed function for ur (variational
ansatz) and yields the 3D configuration of the roll given the
system’s parameters.

A. Approximate solution to the flat state of a swollen bistrip

Although the FvK strains and the nonlinear strains be-
come identical when ur = 0, the following analysis is only
an approximate solution to the flat configuration and not an
exact one. This is because we initially assumed that the final
configuration is a body of revolution [Eq. (3)]. The limits of
this approximation are discussed a posteriori at the end of this
section.

Setting ur = 0 in Eq. (3) reduces the final configuration
into a cylinder with constant radius

f (z, θ ) = RL r̂ + [
√

ḡzzz + ζ (z)]ẑ, (10)

where the in-plane displacement ζ (z) and the constant RL are
yet to be determined by minimization of the total energy. In
order to calculate this energy we first reduce the constitutive
relations (8) to their form in the flat state and then substitute
them into Eq. (5). This procedure gives

E = w

2

∫ 2L

0

[
σzz

∂zζ√
ḡzz

+ σθθ

(
RL√
ḡθθ

− 1

)]
ḡzzdz

+ (B1 + B2)wL

2R2
, (11)
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where we have carried out the azimuthal integration in the
stretching energy and the total integration in the bending
energy.

Minimization of Eq. (11) with respect to ζ gives
∂z(

√
ḡzzσzz ) = 0. Since σzz must vanish at the free boundaries

z = 0 and z = 2L, the latter equation can be integrated to give
σzz = 0, on the entire gel. The solution to this zero stress
equation is given by

ζ (z) =
{−ν(RL/R − �1)z + a/2, 0 < z < L
−ν(RL/R − �2)z − a/2, L < z < 2L,

(12)

where the constant of integration a = (1 + ν)(�2 − �1)L is
determined such that the ẑ component of f (z, θ ) [Eq. (3)] is
continuous at L. Substituting Eq. (12) back into the energy
(11) and performing the remaining integration gives

E = wL

2
(1 − ν2)[Y1(RL/R − �1)2 + Y2(RL/R − �2)2]

+ (B1 + B2)wL

2R2
. (13)

Equation (13) gives the complete dependence of the energy
on the parameters RL and R. Minimization of this energy with
respect to RL gives the required result

RL = �1 + φe�2

1 + φe
R. (14)

Note that Eq. (14) is symmetric under the transformation
of the two indices, i.e., �1 ↔ �2 (φ ↔ 1/φ) and E1 ↔ E2

(e ↔ 1/e). This is a consequence of the mirror symmetry in
the problem around the axis z = L. This symmetry will be of
further use in the next section when we choose the ansatz for
the out-of-plane displacement ur .

Although we obtained our main result (14) and can proceed
to analyze the buckled state, we first characterize the flat state
as it will provide us with information about the level of this
approximation. Substituting RL back into the energy (13) and
normalizing by the system’s parameters, we obtain the total
energy of the flat configuration

2E

E1�1twL
= φe

1 + φe
(�2 − �1)2 + (1 + φ3e)(�1t )2

12(1 − ν2)R2
, (15)

where the first and second terms on the right-hand side cor-
respond, respectively, to the stretching and bending energies.
Since minimization of Eq. (15) with respect to R gives a
diverging radius R → ∞, the minimizing configuration cor-
responds to a state with finite stretching and zero bending, as
expected from a flat sheet. In addition, substituting Eq. (14)
into the in-plane displacement (12) and then in the cylindrical
configuration (10), we obtain the 3D position vector of the gel.
Up to a rigid translation, this vector reads

f (z, θ ) = �1 + φe�2

1 + φe
Rr̂ + g(z)ẑ,

g(z) =
{[

�1 − νφe
1+φe (�2 − �1)

]
z + a/2, 0 < z < L[

�2 + ν
1+φe (�2 − �1)

]
z − a/2, L < z < 2L.

(16)

While the radial part of this 3D position vector diverges since
R → ∞, the component in the ẑ direction remains constant.

In the case, when �1 = �2 ≡ �, we have that RL = �R and
consequently εzz = εθθ = 0, i.e., the gel swells isotropically in
the two in-plane directions such that the width becomes �w

and the total length �(2L). Keeping in mind that the thickness
is also swollen by a factor �, we obtain that an unconstrained
gel is homogeneously swollen in all three dimensions.

Finally, since σzz = 0 only the stress component in the
azimuthal direction differs from zero. This stress is a constant
in both strips and has a discontinuity at z = L,

σθθ/E1�1t=
{

(�2 − �1)/�1(1 + (φe)−1), 0 < z < L
−(�2 − �1)/�2(1 + (φe)−1), L < z < 2L.

(17)

This solution corresponds to two flat strips (R → ∞) that are
homogeneously stretched (or compressed) in the azimuthal
direction. This distribution of stresses is similar to the re-
sulting forces in a mechanical system that consist of two
springs, connected in parallel, with different rest lengths
and springs constant. The analogy to a discrete system of
linear springs (which holds even if one uses the nonlinear
strains) is a consequence of using Biot’s strain tensor, which
measures linear deviations of line elements from their rest
lengths [54].

Equation (17) sheds light on our level of approximation in
this flat-state solution, because in practice the azimuthal stress
σθθ must not be constant. This is due to two reasons. First, our
solution violates the boundary condition of vanishing normal
stress on the azimuthal edges of the gel, σθθ (z,±w/2R) = 0.
This violation arises because of the axisymmetric assumption
(10) that prohibits shear strains and thereby the dependence of
the displacements on the θ coordinates. Second, because the
minimizing configuration acts to restore the prescribed rest
length on each strip and thereby to relax the in-plane stresses,
we would expect σθθ to obtain a maximum value at z = L and
then decay to zero away from that maximum. Since in the flat
state the solution does not depend on the gel’s thickness but
only on the two in-plane dimensions w and L, we estimate that
in the L direction, the stress will decay to zero over a length
that is comparable to w (see, for example, Ref. [58]). In this
case, our approximation (14) holds as long as the strip’s length
is small compared to its width, L � w.

B. Approximate solution to a buckled state of a swollen bistrip

Although the reference metric (4) prescribes zero Gaussian
curvature on each individual strip, the reference Gaussian
curvature of the entire system, the bistrip, is not zero. Instead,
it has a sharp peak along the line of discontinuity z = L, where
the gel is necessarily stretched.1 Since the final configuration
tends to adopt the Gaussian curvature of the reference metric,
we anticipate each strip to be almost intrinsically flat, i.e.,
with zero Gaussian curvature, except at some transition region
close to the line of discontinuity. These considerations, along

1One way to obtain the Gaussian curvature of a discontinuous
metric is to choose h(z) to be a continuous family of functions
that asymptotically converge into a step function by tuning some
parameter. One example of such functions can be found in Ref. [22].
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with the experimental results, motivate the variational ansatz
for the radial displacement

ur (z) =
{

A1[1 − (z/L)α1 ], 0 < z < L

A2[1 − (z/L)α2 ], L < z < 2L,
(18)

where Ai and αi (i = 1, 2) are four variational constants,
which are yet to be determined. The reason that the amplitude
of ur is not symmetric around z = L (A1 �= A2) is because of
the different elastic moduli and swelling factors of the two
strips.

We add two comments regarding the selection of this
ansatz. First, in the limit of a small thickness we anticipate
ur to be constant almost everywhere except at some transition
layer close to the line of discontinuity. This behavior is man-
ifested in Eq. (18) when αi � 1. In this case the polynomial
terms can be approximated by decaying exponents (z/L)±αi �
e±(z−L)/δi , where δi are the lengths of the transition layers

δ1 ≡ L/|α1|, δ2 ≡ L/|α2|. (19)

Indeed, in the following analysis we show that the variational
constants scale as αi ∝ t−4/5.

Second, although the radial displacement (18) must be
continuous at L, its derivatives can in general contain discon-
tinuities. These discontinuities are dictated by the matching
conditions between the two strips at z = L, which in our
axisymmetric formulation require continuity of σzz and Mzz.2

While the stress σzz depends on the first derivative of ur , the
bending moment Mzz depends on the second derivative of ur .
Thus, in general, ur has to be continuous up to its second
derivative. However, in this analysis, we assume that the

energetic cost to satisfy the continuity of the bending moments
is a higher-order correction. This assumption is motivated by
recent studies that predicted the formation of boundary layers
with negligible energetic cost [38,54,59,60] and will further
be verified by our numerical solution in the next section.
Therefore, we demand that only the first derivative of ur is
continuous at z = L.

This condition (A1α1 = A2α2), supplemented by the mirror
symmetry of the system to an exchange of indices, allows us
to eliminate one of the unknown constants. For this reason we
define

α1 = (A2/R)α, α2 = (A1/R)α, (20)

where the constant α is used to replace the two αi’s and
we divide the amplitudes Ai in Eq. (20) by the constant R
in order to obtain dimensionless numbers. We emphasize
that this is just an approximate solution and at equilibrium
the configuration must also satisfy continuity of the bending
moment Mzz, which involves second-order derivatives.

To obtain the energy as a function of Ai, R, and α, we first
need to calculate the in-plane displacement ζ . To do this, we
substitute the constitutive relations (8) into the energy (5) and
minimize it with respect to ζ . Since ζ appears only in Eq. (8a),
we obtain ∂zσzz = 0 on each side of the bistrip. This equa-
tion, along with the boundary conditions of vanishing stress
at the gel’s edges z = 0 and z = 2L, implies that σzz = 0.
This equation is solved separately in each strip, where the
continuity condition of σzz at z = L is automatically satisfied.
The solution reads

ζ (z) =
⎧⎨
⎩

ν(�1−�2 )
1+(φe)−1 z − νA1z

R + A1L
R

[ α2αA2
2

2�1(1−2α1 )L2

(
z
L

)α1−2 + ν
1+α1

](
z
L

)α1+1 + a
2 , 0 < z < L

ν(�2−�1 )
1+eφ z − νA2z

R + A2L
R

[ α1αA2
1

2�2(1−2α2 )L2 ( z
L )α2−2 + ν

1+α2

](
z
L

)α2+1 − a
2 , L < z < 2L,

(21a)

a = (1 + ν)(�2 − �1)L + A2
1A2

2α
2

2LR2

(
1

(1 − 2α2)�2
− 1

(1 − 2α1)�1

)
+ να1α2L(α2 − α1)

(1 + α1)(1 + α2)α
, (21b)

where the constant of integration a [Eq. (21b)] is determined such that f · ẑ is continuous at z = L. When ur = 0, this solution
reduces to the flat state (12), where RL is given by Eq. (14).

Second, we substitute the ansatz (18) and the above solution (21) back into the constitutive relations (8) and then into the
energy expression (5). This gives, after integration, 2E/E1�1twL = Es + Eb, where

Es =
(

A1

R
+ �2 − �1

1 + (φe)−1

)2

+ φe

(
A2

R
− �2 − �1

1 + φe

)2

+ 1

2A1A2Rα

[
3
(
φeA3

2 − A3
1

) − 4R(�2 − �1)

1 + (φe)−1

(
A2

1 + A2
2

)]
, (22a)

Eb = (�1t )2

12(1 − ν2)

(
1 + φ3e

R2
+ A2

1A2
2(A2 − φeA1)α3

2L4R3�2
1

)
(22b)

are, respectively, the leading-order corrections to the stretch-
ing and bending energies compared to the flat state [Eq. (15)].
Since we anticipate that α � 1, Eqs. (22) and the fol-
lowing results are presented to leading order in powers
of 1/α.

2More accurately, the boundary conditions are �1σ
1
zz = �2σ

2
zz and

�1M1
zz = �2M2

zz, where the superscripts 1 and 2 indicate that the
stresses and the bending moments are calculated in different strips.

Third, we minimize the total energy (22) with respect to
Ai, R, and α. To leading order, the amplitudes A1 and A2 are
obtained by minimization of the stretching energy (22a) alone.
This gives

A1 = − (�2 − �1)R

1 + (eφ)−1
, A2 = (�2 − �1)R

1 + eφ
. (23)

When Eqs. (23) are substituted back into the stretching en-
ergy (22a), we obtain two simplifications. (i) The first two
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terms in this energy cancel and its leading order becomes
proportional to 1/α. (ii) Equation (22a) becomes indepen-
dent of the reference radius R. Thus, the total energy now

depends on R only through the bending term [Eq. (22b)].
Therefore, minimization of Eq. (22b) with respect to R
gives

R = 21/4 (1 + φe)5/4(1 + eφ3)1/4�
1/2
1 (�2 − �1)−5/4L

e1/2φ1/2(1 + e2φ2)1/4α3/4
. (24)

Finally, once Eqs. (23) and (24) are substituted back into Eqs. (22), we obtain the complete dependence of the energy on the
parameter α,

2E

E1�1twL
= (1 + φ2e2)(�2 − �1)

2(1 + φe)α
+

√
2φe(1 + eφ3)1/2(1 + e2φ2)1/2�1t2(�2 − �1)5/2α3/2

12(1 − ν2)(1 + φe)5/2L2
. (25)

Minimization of Eq. (25) with respect to α gives

α = 23/5 (1 + φe)3/5(1 + φ2e2)1/5

φ2/5e2/5(1 + eφ3)1/5�
2/5
1

(1 − ν2)2/5(�2 − �1)−3/5(L/t )4/5. (26)

Substituting Eq. (26) back into the reference radius (24) and the energy (25), we obtain the desired solution

R/L = 2−1/5 (1 + eφ3)2/5(1 + eφ)4/5�
4/5
1

φ1/5e1/5(1 + e2φ2)2/5
(1 − ν2)−3/10(�2 − �1)−4/5(t/L)3/5, (27a)

2E

E1�1twL
= 5

6 × 23/5

φ2/5e2/5(1 + eφ3)1/5(1 + e2φ2)4/5�
2/5
1

(1 + eφ)8/5
(1 − ν2)−2/5(�2 − �1)8/5(t/L)4/5. (27b)

As a self-consistency check, it can be verified that these
expressions are invariant under an exchange of indices, as
required by the mirror symmetry.

Equations (27) are the central results of this paper. They
provide the explicit dependence of the radius R and the energy
E on the various parameters of the system. We note that the
scaling of R and E with t , L, and the confinement τ = �2 −
�1 coincide with the prediction in Ref. [22] (see Sec. 3.5,
case 2, in that paper), which analyzed a closely related system.
Nevertheless, the above solution improves these results in two
aspects: First, we have obtained the full expressions including
prefactors and not just scaling laws, and second, we added the

correction due to the different elastic moduli and thicknesses
of the two strips, i.e., the dependence of the solution on the
parameters e and φ.

This completes the analytical solution in the FvK ap-
proximation. In summary, given the geometrical parameters
t and L, the physical parameters ν and e = E1/E2, and
the swellings �1 and �2, the final configuration is given
by Eq. (3), where the radius RL and the reference radius
R are given by Eqs. (14) and (27a). In addition, the dis-
placements ur and ζ are given by Eqs. (18) and (21), re-
spectively, where Ai and α, are calculated from Eqs. (23)
and (26).

FIG. 2. Quantitative comparison between the analytical solution and the numerical optimization of the energy, Eq. (5). In all of these
plots we use �2 = 1.1, �1 = 1, ν = 1/2, L = 1, φ = �2/�1, and e = �1/�2 [we choose (c0v0)i = 1 in Eq. (9)]. (a) A log-log plot of the
normalized reference radius R/L as a function of the normalized thickness t/L. The analytical prediction (27a) is given by the dashed line and
numerical results are indicated by orange (light gray) and blue (dark gray) circles, which correspond to nonlinear and FvK strains, respectively.
Both sets of strains give almost identical results, which agree nicely with the analytical solution. (b) A log-log plot of the energy (27b) (dashed
line) compared to the numerics. (c) The configuration of the sheet for several values of the thickness. The final configuration is a body of
revolution that is obtained by rotation of these curves around the horizontal axis. The solid lines are the analytical predictions (3), where
the displacements are given by the FvK solution in Sec. III B. The dashed lines result from numerical optimization of the energy using the
nonlinear strains, Eqs. (7).
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FIG. 3. Quantitative comparison between the approximated analytical solution (solid blue line) and the gLSM simulations (blue circles).
In all plots logarithmic scales are used for both axes. In (a) and (b) we plot the radius of the roll RL/t [see Eq. (30)] as a function of its length
L/t . The light blue shaded area around the theoretical radius RL/t corresponds to the minimum and maximum radii of a given shape, i.e.,
(RL + A1)/t and (RL + A2)/t , where the Ai are given by Eqs. (23). In (a) one strip is embedded with four loops and the entire gel is cooled to
5 ◦C. Using Ref. [27], we convert this setup into our theoretical swelling factors �2 = 1.95 and �1 = 1.47, where φ = �2/�1 and e = �1/�2

[see Eq. (9)]. The final configuration at L = 10 (third gLSM point) is plotted in Fig. 1(c). In (b) we embed eight loops in one strip and cool
the system to 15 ◦C. Using Ref. [27], this gives �2 = 2.14 and �1 = 1.38, where φ and e are as in (a). The 3D configuration in the case where
L = 10 (first gLSM point from the right) is plotted in Fig. 1(d). (c) The radius of the roll RL/�1t as a function of φ = �2/�1. In this plot
we keep the length constant, L = 8, and vary the number of loops within the gel from three to eight (left to right). While at three loops the
temperature was lowered to 5 ◦C in order to obtain a buckled shaped, at the other points (four to eight loops) buckling into a roll is presented
at 15 ◦C.

1. Comparison with numerical simulations

Quantitative comparisons between the analytical predic-
tions of the preceding section and the numerical optimization
of the energy is presented in Fig. 2 (see the Appendix for fur-
ther discussion of these numerical methods). The agreement
between these numerical calculations and the above analyt-
ical solution validates our main assumption in this analysis,
i.e., the variational ansatz (18). In addition, it validates the
following two assumptions that were utilized to simplify the
final expressions: One is the continuity of ur , which was
assumed to be continuous only up to its first derivative, and
the second is the expansion in powers of α. These quantitative
predictions (and ones in the next section) set the present
analysis apart from previous studies, which focused on the
qualitative behavior of the system. It is worth noting the
important role played by the different elastic moduli (2) in
the prefactors of our final solution, i.e., the dependence of
Eqs. (27) on e and φ.

We also make quantitative comparisons between the the-
ory and the gLSM simulations (see Fig. 3). The 3D gLSM
combines a finite-element approach and a finite-difference
approach and thus allows us to numerically solve the elasto-
dynamic equations that characterize the behavior of chemore-
sponsive polymer gels. The gLSM was recently augmented to
simulate the behavior of lower critical solution temperature
polymer networks that encompass thermoresponsive loops.
The loops unfold as the temperature is decreased and thereby
release the length that was stored within the folded configura-
tion. The unfolding of the loops further increases the degree
of local swelling and introduces new stresses into the system.
Details about the simulations are given in Ref. [27]. In this
study, all the simulations start from a flat and relaxed gel
at 30 ◦C, where the unswollen dimensions are L × L × 1,
i.e., the width and the length are equal, w = L, and the
unswollen thickness is t = 1. For this reason, lengths in the
final configurations are measured in units of the unswollen
thickness t . This simulated sample is then divided into two

strips, one that contains loops and one without loops, such
that when the temperature is reduced the loop-containing strip
swells more than the other side. The relation between the
number of loops, the temperature, and the amount of swelling
is given in Ref. [27]. Since the initial number of cross-links
(c0v0)i is identical in both strips, we use Eq. (9) to extract the
Young’s moduli ratio. This gives e = �1/�2.3

All plots present a systematic deviation of up to 10%
between the theoretical line and the simulations. These
discrepancies are attributed mainly to deviations from the
Hookean model and to unavoidable shear stress at the
transition region. Nonetheless, the quantitative agreement
between the gLSM simulations and the analytical solution
validates the assumptions that lead from the microscopic
description of the gels, which account for the polymeric
network structure and the internal forces within a single chain
(the freely jointed chain model) [27], to the macroscopic
description of thin elastic sheets, which coarse grain these
effects into a single elastic moduli.

2. Limit to the validity of the FvK solution

We add one comment regarding the limits of our analytical
analysis. The analytical solution in the FvK approximation
breaks down when the thickness becomes sufficiently small
(strong localization). This is because the deformation gra-
dients are unbounded in this solution, i.e., the derivative of

3In order to verify that Eq. (9) holds in our simulation, we also
measured E1 and E2 (and therefore the ratio e) directly from their
force-displacement curves. While for a small number of loops the
value of e agrees well with the predicted value of Eq. (9), for a large
number of loops we found deviation of up to 15%. This deviation is
attributed to our numerical model, which uses a freely jointed chain
rather than the Gaussian model for polymer chains. Nevertheless, this
deviation changes the theoretical prediction in Fig. 3 by a negligible
amount.
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ur diverges as the thickness decreases, ∂zur ∼ Aiα ∝ t−1/5.
Consequently, the expansion in powers of small slopes, as in
Eqs. (8), is unjustified below a critical thickness tcr.

This critical thickness can be estimated from σzz when the
nonlinear strains are invoked. This is because to leading order,
σzz vanishes in both the nonlinear and the FvK models. Similar
to Sec. III B, where we showed that the FvK solution satisfies
σzz = 0, we can minimize the stretching energy, the first term
in Eq. (5), given the nonlinear strains (7a) and (7b), and obtain
the same equation. Substituting the nonlinear strains in this
zero stress equation εzz + νεθθ = 0 gives√

ḡzz + ∂zζ =
√

ḡzz(1 − νεθθ )2 − (∂zur )2 �
√

ḡzz − (∂zur )2,

(28)

where in the last equality we used εθθ � 1 to simplify the term
under the square root. Since the derivative of ur diverges, the
right-hand side of Eq. (28) becomes imaginary at a critical
thickness. This is the thickness at which we estimate that
the FvK solution will deviate significantly from the nonlinear
formulation. Using our analytical solution, we equate the
right-hand side of Eq. (28) to zero and solve for the critical
thickness. This gives

tcr/L � 4e2φ2(1 + eφ3)

(1 + φ2e2)(1 + eφ)3�3
1

(1 − ν2)1/2(�2 − �1)3,

(29)

where we used ḡzz = �2
1 and ∂rur (L) = −A1α1/L. Using the

mirror symmetry to exchange indices in Eq. (29), we can
obtain the criterion from the second strip, however it gives
a lower bound for tcr.

Different from the FvK strains that allow the displacement
gradients to grow indefinitely, we would expect the nonlinear
formulation to saturate this nonregular behavior, because of
the square root in Eq. (28). We note that this saturation was
not depicted by our numerical simulations in Fig. 2 because
in this case tcr/L � 4 × 10−4 and the simulations almost reach
their limit of validity. Indeed, when the thickness is reduced
beyond this value, the localization in the elastic configuration
almost becomes of order of the numerical lattice spacing.

IV. COMPARISON WITH EXPERIMENTS

In this section we compare the analytical solution to the
experimental data of Ref. [20]. In these experiments, the final
configurations were characterized by their Gaussian curvature
profile K (z), where z is the axis of revolution. Two direct
measurements were taken with respect to this profile. One
measurement is the radius of the roll when K is equal to zero,
RK=0. Second is a measurement of the transition region �expt,
the distance on the z axis between the minimum and maximum
values of K . Since our solution does not satisfy continuity
of bending moments, i.e., the ansatz (18) is discontinuous at
its second derivative, we cannot extract a continuous profile
similar to K (z). Nevertheless, we conjecture that in the limit
of a small thickness, the experimental measurements of RK=0

and �expt will coincide with our definition of RL and the
transition layer δ1 + δ2.

We summarize the main formulas for this comparison.
First, the radius of the 3D shape at z = L, RL, is given by
Eq. (14),

RL =2−3/5 f (φ, e,�1)(1−ν2)−3/10(�2−�1)−4/5(2L)2/5t3/5,

(30a)

f (φ, e,�1) = (1 + eφ2)(1 + eφ3)2/5�
9/5
1

φ1/5e1/5(1 + eφ)1/5(1 + e2φ2)2/5
, (30b)

where we used the reference radius R, from Eq. (27a),
and we defined the function f (φ, e,�1) in Eq. (30b). It is
straightforward to verify that this function complies with the
mirror symmetry f (φ, e,�1) = f (1/φ, 1/e,�2). Second, in
Eqs. (19), we defined two transition layers, one in each strip.
Since these layers are given in the reference coordinates and
the experimental transition region �expt is measured in the
deformed shape, we need to calculate the total lengths of these
layers δ1 + δ2 in the final configuration. To do this, we recall
that the length of a line element in the z direction is given by√

azzdz, where azz = ∂zf · ∂zf is the z component of the actual
metric, i.e., the metric of the final configuration (3). Therefore,
the length of the transition layer in the final configuration is
given by

� =
∫ L+δ2

L−δ1

√
azzdz =

∫ L+δ2

L−δ1

√
ḡzz(1 + εzz )dz

� �1δ1 + �2δ2, (31)

where in the second equality we used the definition of the
strain tensor εzz = √

azz/ḡzz − 1 and in the third equality we
used the fact that εzz � 1 to estimate the integral. In addition,
using Eqs. (19), (20), (23), and (26), we find that δ1 and δ2 are
given by

δ1 = 2−3/5 f1(φ, e,�1)(1 − ν2)−2/5(�2 − �1)−2/5L1/5t4/5,

(32a)

δ2 = 2−3/5 f1(φ, e,�1)

φe
(1 − ν2)−2/5(�2 − �1)−2/5L1/5t4/5,

(32b)

f1(φ, e,�1) = e2/5φ2/5(1 + eφ3)1/5�
2/5
1

(1 + e2φ2)1/5(1 + eφ)−2/5
. (32c)

Keeping in mind that t and L are the independent pa-
rameters in the experiments, we find that Eqs. (30) and (32)
depend on four unknown constants that must be provided by
the experimental setup, ν, �1, �2, and e. These parameters
are determined as follows. First, since gels are almost incom-
pressible we choose ν = 1/2 [61]. Second, the constants �1

and �2 are related to the experimental areal swelling ratios by
�1 = �

1/2
low and �2 = �

1/2
high. This is because areal swelling is

defined as the ratio between the swollen (�2
i wL/2) and the

unswollen (wL/2) areas of an unconstrained gel [19]. The
experimental values of these ratios are given by �low = 2.2
and �high = 4.3.

Third, we need to estimate the ratio of the Young’s moduli
e. Although this value was not given explicitly in Ref. [20]
(nor the number of cross-links), a later publication utilized
elastocapillary bending of thin polymer films to extract their
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FIG. 4. Quantitative comparison between the approximated analytical solution and the experiments in Ref. [20]. In all panels the solid blue
line is the analytical prediction and blue circles are points from the experimental data. The data in (a), (b), and (c) are taken respectively from
Figs. 2C, 2D, and 2B in Ref. [20]. In all plots logarithmic scales are used for both axes. We emphasize that the experimental radius RK=0 is
defined slightly differently than the analytical radius RL . For this reason we added a shaded area around the analytical prediction. This area is
obtained when RL is replaced by either the minimum radius RL → rmin = �1R or the maximum radius RL → rmax = �2R of a given 3D shape,
where R is given by Eq. (27a). (a) The radius RL of the roll (30a) as a function of the unswollen thickness t , where 2L = 200 μm is the total
unswollen length of the gel. (b) The radius RL (30a) as a function of the unswollen total length 2L, where the unswollen thickness is t = 11 μm.
(c) Length of the transition layer � as a function of the radius RL . For a given thickness we calculate the parametric line (RL (t ),�(t )), where
� is given by Eqs. (31) and (32) and RL by Eqs. (30). The total length 2L is the same as in (a).

elastic coefficients [62]. These experiments used almost iden-
tical copolymer and solvent as in Ref. [20]. Given the vol-
umetric swelling ratios (�1)3 � 3.2 and (�2)3 � 8.9, we
find that E1 � 800 kPa and E2 � 300 kPa such that e � 0.37
(see Table S3 in the Supplemental Material of Ref. [62]).
Alternatively, following the same experiments, we could also
obtain the number of cross-links from the extent of conversion
p. To do this, we convert the volumetric swelling into a UV
dose4 and then to p (Table S3 and Fig. S2b in Ref. [62]).
Considering Eq. (9), this gives a slightly different estimation
e = (0.22/0.37)�1/�2 � 0.42, but yet within the range of
the experimental error. Since the latter two values for e change
the roll’s radii by a negligible amount, we choose the former,
direct, measurement in the following comparisons.

This completes the mapping of the various theoretical and
experimental parameters. In summary, we have

ν = 1/2, �1 = (2.2)1/2, �2 = (4.3)1/2, e � 0.37,

φ = �2/�1. (33)

Using these constants we can now verify that the experi-
mental setup reconciles the main assumptions of our model.
First, our model is derived in the context of linear elasticity,
where Hookean stress-strain relations are invoked. Direct
measurements of the gel’s properties [16,64] indicate that this
assumption holds up to strains of ±15%, beyond which neo-
Hookean constitutive relations take place. Indeed, the strains
in the experimental system only slightly deviate from these
limitations. From Eq. (7b) and the solution for RL [Eq. (30)]
we obtain that the maximum azimuthal strain is

εθθ (L) =
{

(�2 − �1)/[1 + (φe)−1]�1 � 13%, strip 1
−(�2 − �1)/(1 + φe)�2 � −19%, strip 2.

(34)

4We note that the UV dose as a function of the volumetric swelling
ratio differs between Refs. [20] and [62]. This is due to different light
sources that were used for the cross-linking in the two experiments
[63].

In addition, using σzz = 0 we obtain that εzz(L) = −νεθθ (L)
and therefore the strain in the z direction is always less than
10%. Second, we verify that the thickness does not cross its
critical value (29); below this value, nonlinear terms in the
constitutive relations become important. Indeed, substituting
the experimental constants (33) into Eq. (29) gives tcr/L �
2 × 10−2, slightly below the experimentally used thicknesses.

Finally, in Fig. 4 we plot the analytical predictions against
the experimental data. Since the experimental radius RK=0

is not equivalent to RL we added a shaded area around the
theoretical curve. This shaded area corresponds to the regime
between the minimum and maximum radii of a predicted
3D shape, r ∈ [rmin, rmax], where rmin = RL + A1 and rmax =
RL + A2. While in Fig. 4(a) the radius RL is plotted as a func-
tion of the thickness t , in Fig. 4(b) it is plotted as a function of
the total length 2L. In Fig. 4(c) we compare the theoretical
transition layer [Eqs. (31) and (32)] and its experimental
counterpart �expt. All plots present good agreement with our
approximate solution. The scattering of the data around the
predicted lines can be attributed to defects in the preparation
of the gel’s network such as the creation of loops, side chains,
or heterogeneity in the length of the network size [65]. These
defects can significantly change the elastic moduli of the gel.

V. DISCUSSION

A. Classifications of the pattern and the elastic problem

Pattern formation on thin elastic sheets are universal in na-
ture. For this reason much effort is devoted to classifying them
into groups that share similar properties. Following Ref. [23],
stress focusing structures on thin sheets are classified into
two groups: One is vertices [66], which localize the energy
into isolated points, and the second is ridges [67], which
focus the energy along 1D lines. Although the pattern we
observe herein localizes the energy along a 1D line z = L
and its total energy is equipartitioned between the stretching
and bending components, as in a ridge, the other properties
of the pattern do not coincide with the universal properties
of ridges. This is due to the following three reasons. First,
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while in our solution the gradients of the displacement fields
diverge as the thickness diminishes, in a ridge they remain
finite. Therefore, the FvK solution of a ridge remains valid
even in the asymptotic limit of vanishing thickness. Second,
contrary to a ridge, the maximum strain in our system does
not scale with the thickness size, i.e., Eq. (34) is independent
of t . Third, while the total energy of our pattern scales as t9/5,
the energy that is accumulated in a ridge is much smaller and
scales as t8/3.

In addition to these 2D stress focusing patterns, much
attention was given to creases [68,69], which are lines of dis-
continuity on the material that are endowed with a hingelike
behavior.5 Different from ridges, which emerge spontaneously
on a sheet with homogeneous elastic properties, creases are
predesigned since they emanate from defects that are formed
prior to the deformation. In general, creases are not necessar-
ily accompanied by a transition layer that relaxes the stresses
around them and they do not necessarily involve the forma-
tion of a nonzero Gaussian curvature. Mathematically, while
a ridge is associated with a continuous and differentiable
surface (at least C2 surface), a crease creates an origamilike
pattern, which has discontinuity in the first derivative (C0

surface).
The localized pattern observed herein retains properties

of both groups, ridges and creases. On one hand, it has a
ridgelike behavior since the energy is relaxed in a well defined
transition layer around the line of discontinuity. On the other
hand, similar to a crease, it emanates from a prescribed
discontinuity in the swelling profile (1) and consequently
in the material’s properties (2). Although this discontinuity
manifests in plane (the derivative of ζ and consequently the
azimuthal stress are discontinuous at L), it only asymptotically
emerges in the height function of the final configuration, i.e.,
the first derivative of ur diverges only in the limit of vanishing
thickness. Although we assess that this creased-ridge pattern
is more general in nature and can be found in other thin-sheet
systems that are subjected to discontinuous swelling profiles,
the characteristics of our solution (such as the scaling of the
energy with the thickness) most probably depend on the setup
of the system.

On top of the above classifications of stress focusing
patterns, there are ongoing attempts to enumerate the elastic
problems according to the strength and method by which the
elastic sheet is confined [71,72]. Given a system setup, the
ultimate goal of this classification is to identify the set of mor-
phologies that are theoretically accessible to it, a priori to any
experiments or numerical simulations. A recent publication
by Davidovitch et al. [73] suggests that the current problem
falls under a class of geometrically incompatible confinement
(GIC), which corresponds to nondevelopable deformations
that emerge in the absence of external forces. This class is
divided into two subgroups of weak and strong confinements
depending on whether the confinement scales with the thick-
ness size (weak) or not (strong). While in cases of strong
confinement (and very small thickness) it is argued that the

5We note that the term “crease” is used in the literature with
multiple meanings, for example, the system in Ref. [70]. Here a
crease is used to describe an origami line defect.

final configuration converges to an asymptotic isometry, i.e.,
a configuration in which the ratio between the stretching and
bending energies diminishes as a power of the thickness, prob-
lems with weak confinement present more subtle stretching-
bending interaction [42], such as equipartitioning of these
energies. Given these suggestions, we assess that our system
can be classified into a weak GIC problem, at least where
the thickness t/L is of order of the confinement τ . Indeed,
this is roughly the regime where our gLSM simulations are
performed and the main focus of the experimental data.

Nevertheless, in Sec. III B 2 we extended our weak GIC
solution into the strong regime by fixing the confinement
and reducing the gel’s thickness. Since this naive extension
breaks down at t � tcr we would expect this weak-to-strong
transition to be accompanied by a morphological transition
of the gel. This is because a roll that enters the nonlinear
regime (t � tcr) saturates the gradients of the displacements.
In return, this saturation inhibits the creation of boundary
layers around the line of discontinuity and prevents efficient
relaxation of the elastic energy. This inhibition can even lead
to finite accumulation of stretching within the roll, in contrast
to the expected behavior of a strong GIC solution. Although
some attempts have been made to investigate morphological
patterns on ultrathin sheets close to lines of discontinuities
[74], most of this area still remains unexplored. For this
reason, further experiments and numerical investigations are
required in order to reveal the accessible morphologies in this
regime.

B. Conclusion

Herein we studied a 2D-to-3D morphological change in
hydrogels that are subjected to discontinuous swelling profile.
In particular, we followed the experimental setup of Ref. [20]
and derived an analytical model that predicts the 3D configu-
ration of a buckled gel. We demonstrated that such structures
are well described by the elastic theory of thin and incom-
patible sheets when the theory contains the elastic moduli
that account for the gel’s polymeric structure. Our analytical
results were verified by three independent comparisons: (i)
comparison with the experimental data of Ref. [20] (Fig. 4),
(ii) numerical simulations that account for the complete elas-
todynamic behavior of gels (gLSM of Ref. [27]) (Fig. 3),
and (iii) numerical optimization of the elastic energy (Fig. 2).
All three comparisons present quantitatively good agreement
with the analytical model. These quantitative predictions place
the experimental setup of Ref. [20] as a benchmark in the
analysis of pattern formation on thin gels since nontrivial 3D
shapes are predicted analytically without any fitting param-
eters. Indeed, given our solution, this setup can be used to
calibrate other experimental systems or to test the solutions of
new finite-element methods. From a broader perspective, our
analysis takes a step forward toward engineering the design of
thin gels through use of analytical and numerical tools rather
than experimental trial and error.

Several comments should be added regarding the analyt-
ical model. First, we summarize the main assumptions that
allow the derivation of an analytically tractable theory. Ini-
tially, we applied the Kirchhoff-Love hypothesis to reduce the
problem’s dimensionality from three to two dimensions. The
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reduced theory not just allowed in-plane differential swelling
of the gel but also accounted for the spatially varying elastic
moduli. We note that this spatial dependence of the stretching
and bending moduli is an essential component in achieving
quantitative fits; considering a single modulus for the entire
sheet significantly alters the theoretical predictions. Then we
focused on deformations that are along the principal axes of
the stress (without shear strains), i.e., the final configuration
is a body of revolution. Finally, we reduced the constitutive
relations between the strains and the displacement fields to
their FvK approximation and assumed a variational ansatz
for ur .

Although our analysis is based on a particular ansatz,
we were able to draw quantitative predictions on the final
configuration. This is because, regardless of the exact form
of the localizing pattern, to leading order it can always be
approximated by a polynomial expansion. We note that this
expansion is properly introduced only if it is supplemented
with the system’s mirror symmetry to an exchange of indices
and it correctly satisfies the boundary conditions. Further-
more, since our analysis is based on the FvK strains (8)
and the nonlinearity in this model is manifested only by
the quadratic term (∂rur )2, assuming a variational ansatz for
ur , we essentially linearize the problem completely. Indeed,
using this assumption, we obtained a linear equation for
ζ , which is exactly solvable. We note that this variational
ansatz for the out-of-plane displacement was also used in
Ref. [54] to derive a quantitative prediction for the bound-
ary layer in an incompatible sheet with an elliptic reference
metric.

Moreover, in Eq. (22) we obtained that the energy of
a buckled gel depends linearly on Ai instead of the usual
quadratic dependence on the out-of-plane displacement. This
comes from the azimuthal strain (8b) in which the out-of-
plane displacement ur appears linearly instead of quadrati-
cally. It emanates from the assumption that the final config-
uration is a body of revolution. Therefore, in our formulation,
the flat-state solution is always unstable against buckling in
the radial direction. To explore the linear stability of the
system, i.e., the flat-to-roll transition, this axisymmetric as-
sumption must be relaxed. In addition, we note that although
our analytical formulation is based on Biot’s strain tensor, a
similar system in Ref. [22] was analyzed using the Green–
St. Venant strain. Despite the differences between the two
formulations, the dimensional analysis in the latter paper
yields the same scaling laws as predicted herein. Therefore,
we conclude that deviations between the two models, if any,
are confined to an order which is beyond the small slope
approximation. Whether beyond this FvK regime the devia-
tions between the two models are significant is yet an open
question [57,75].

Finally, this work can be extended in several directions and
utilized in several applications, as we now discuss. First, an
interesting aspect in the experiments of Ref. [20] revealed,
in some samples, hysteresis of the 3D structure upon a
temperature cycle, i.e., raising and lowering the temperature
of a buckled-rolled gel in a cycle resulted in a metastable
state. These interesting properties that result from thermal
fluctuations of the system [76] are currently not part of our
theoretical model and the gLSM simulations and can be

considered as a possible extension. Second, using a discrete
swelling profile, the experimentalists in Ref. [20] were able to
produce responsive micropatterned hinges. Since these hinges
are the building blocks of many technological applications,
such as self-assembled robots [77] or origami patterns [78],
it may be valuable to derive theoretical predictions to the
relation between the swelling profile of a gel and the angles
of the hinges. Third, since our analytical model predicts the
numerical prefactors of the resultant 3D shape and geometri-
cal measurements of the final configuration are to some extent
simpler than direct measurements of the elastic properties of
the gel, our solution can be used to extract the mechanical
properties of the gel, such as its Young’s modulus or the
Flory-Huggins interaction parameter. Fourth, as a fundamen-
tal pattern in thin sheets, it will be interesting to explore
the formation of a ridge [67] on the boundary between two
dissimilar materials.
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APPENDIX: NUMERICAL OPTIMIZATION
OF THE TOTAL ENERGY

The optimization of the energy (5) follows the numerical
model in Ref. [79], but includes two modifications. First, since
only axisymmetric minimizers are anticipated we discretize
a 1D segment of the elastic body instead of the entire 2D
sheet, i.e., we consider a 1D line of length 2L that lies on
the z axis. Second, since we expect sharp gradients around
the center point z ∈ [L − ε, L + ε], where ε � L, whereas
outside this regime the configuration is almost flat, the line
is not discretized into equally spaced points. Instead, each
strip is divided into n = n0 + nε points (n − 1 line elements),
where n0 and nε are the number of points outside and inside
the localization region. For example, in the first strip we have
n0 points that are equally spaced in z ∈ [0, L − ε] and nε

points that are equally spaced in z ∈ [L − ε, L].
The two displacements fields ur (z) and ζ (z) and the com-

ponents of the reference metric ḡzz and ḡθθ are then discretized
on this 1D grid such that the constitutive relations (7) or (8)
and thereby the stress-strain relations (6) are converted into
finite differences. Accordingly, the integration of the total
energy (5) becomes a discrete sum over all the line elements.
Then, for given parameters {�1,�2, ν, ε, L, n0, nε, e}, the
energy is minimized with respect to ur and ζ (2n discrete
points for each field) and the constant reference radius R,
where we assume that RL is given by Eq. (14).

Starting from t = tmax and an initial guess that is given
by the FvK solution (Sec. III), we look for the optimum
minimizer using a Newton-based method that is incorporated
inside the built-in function FindMinimum in Mathematica©

[80]. At each successive iteration, we reduce the thickness by
a given increment and use the preceding output of this func-
tion as an initial guess for the next iteration. This procedure is
repeated until the gradients in the transition layer become too
large compared with the numerical lattice spacing.
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