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Effect of an interstitial fluid on the dynamics of three-dimensional granular media
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The propagation of mechanical energy in granular materials has been intensively studied in recent years given
the wide range of fields that have processes related to this phenomena, from geology to impact mitigation and
protection of buildings and structures. In this paper, we experimentally explore the effect of an interstitial fluid
on the dynamics of the propagation of a mechanical pulse in a granular packing under controlled confinement
pressure. The experimental results reveal the occurrence of an elastohydrodynamic mechanism at the scale of
the contacts between wet particles. We describe our results in terms of an effective medium theory, including the
presence of the viscous fluid. Finally, we study the nonlinear weakening of the granular packing as a function
of the amplitude of the pulses. Our observations demonstrate that the softening of the material can be impeded
by adjusting the viscosity of the interstitial fluid above a threshold at which the elastohydrodynamic interaction
overcomes the elastic repulsion due to the confinement.
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I. INTRODUCTION

The propagation of mechanical vibrations in particulate
matter is a nontrivial phenomenon that has implications in
several fields, both in basic and applied research [1,2]. The
complexity of the contact network [3,4] and the nonlinearity
of the interaction force between particles [5] determines how
the waves propagate in granular media [6]. In dry packings,
the repulsive nonlinear interaction between two spheres with
radius R and elastic modulus E relies on the Hertz contact
force, FH ∝ ER1/2δ3/2 [7]. The latter implies that the contact
stiffness increases rapidly with the deformation δ and vanishes
in absence of mechanical contact. In the dry case, there is
thus no tensile force, and the particles can eventually loose
contact [8]. In one-dimensional lattices of particles [9], the
nonlinear elastic interaction given by the Hertzian contact
dictates the dynamics; a mechanical impact can propagate
weakly to strongly nonlinear waves [10,11] depending on the
amplitude of the pulse. Similarly, in random granular packing,
a low-amplitude mechanical excitation generates a linear bal-
listic waves, both in the longitudinal (namely a P-wave) and
in the transverse (namely a S-wave) directions [6,12,13]. The
coherent perturbation, resulting from an ensemble average
[14], travels straight from the source to the receiver, as in
an effective medium [6,12]. Owing to the randomness, the
coherent pulse is followed by an incoherent and long-lasting
coda wave, which corresponds to the multiple scattering [15]
of the initial excitation, across the contact network. Interest-
ingly, the ballistic waves possess the reminiscent features of
the microscopic scale [12]. Recently, a continuous description
bridging the linear and the nonlinear regimes in random
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packing of particles has been proposed [16], depending on the
confinement pressure applied to the packing and the amplitude
of the propagating impulse [17].

Weakening of granular materials is another nonlinear
mechanism that is reported to occur in particulate systems. Its
origin is a softening induced by an acoustic fluidization mech-
anism [18–21]. Such nonlinear process has been demonstrated
to be responsible for triggering secondary earthquakes after
the occurrence of a main seismic event [13]. The propagation
of the mechanical impulse interacts with the grains in the
material and mobilizes the particles with weaker contacts
[22,23]. This leads to a modification of the contact network
that can trigger major faults and lead to the emission of new
events [13,22]. Since the material weakening involves weakly
consolidated contacts, it can be modified by the presence of
an interstitial fluid, owing to an enhanced cohesion due to
capillary effects [24] or to the viscous lubrication between the
grains [25].

Wet granular media are ubiquitous in nature, as for instance
the sediments, the mud, or the sand of a beach. In this paper,
we look at understanding how the presence of an interstitial
fluid can affect the nonlinear dynamics of particulate matter.
The behavior of wet particles has been investigated in recent
years due to the great number of industrial applications, from
mining to food and pharmaceutical industries. A wet granular
medium has a fluid phase that partially occupies the interstitial
volume available between grains and their motions are likely
determined by interactions mediated by the fluid. In the liter-
ature, it has been shown that viscous forces, surface tension,
and capillary bridges among others, have a great importance
in systems where the energy dissipation occurs due to liquid
films trapped either in the asperities [26] or nearby the contact
region [27]. On one hand, capillarity bridges between grains
[28] have been studied owing to significant effects on the

2470-0045/2019/99(3)/032905(10) 032905-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.032905&domain=pdf&date_stamp=2019-03-28
https://doi.org/10.1103/PhysRevE.99.032905


ZUÑIGA, JOB, AND SANTIBANEZ PHYSICAL REVIEW E 99, 032905 (2019)

Grains + Oil

To vacuum
    pump

Pendulum

Force Sensor

Accelerometer

  To signal
conditioner

FIG. 1. Sketch of the experimental setup depicting a cylindrical
granular medium enclosed in a soft elastic sheet, the shock initiator
pendulum, and the positions of the dynamic sensors.

static cohesion of granular packings [29,30]. On the other
hand, wave propagation in wet granular media relies on the
dynamics of the interstitial fluid [31,32], which generates a
viscous repulsion [33,34] that generally cannot be neglected at
acoustic frequencies; the fluid modifies the acoustic features
due to a velocity-dependent viscous contribution [35–37],
in addition to increasing the overall dissipation [26]. When
the fluid is highly confined, in the lubrication regime [38],
and under high-frequency or high-amplitude vibrations, the
viscous forces can ultimately induce elastic deformations of
the particles, via an elastohydrodynamic interaction [39–42].
Understanding all these behaviors is fundamental for unravel-
ing all the phenomena ranging from the stability of a pile of
wet grains [43] to the dynamics of dense suspensions [44–47].

In this paper, we aim (i) at ruling out the mechanisms
involved in the propagation of mechanical impulses in a wet
model granular medium and (ii) at unraveling how the fluid
can affect the dynamic weakening of such a material. In
Sec. II, we present the experimental setup, the protocols of
analysis, and a description of the experimental observations.
In Sec. III, we analyze and interpret the features of the high-
frequency spectrum of the transmitted pulses, in terms of the
propagation velocity. These features allow probing the elas-
ticity of the medium, and how it is affected by the presence of
an interstitial fluid. In Sec. IV, we analyze the low-frequency
spectrum of the mechanical response. Our measurements
reveal the elastic weakening of dry granular media at low
confinement and high amplitude, which disappears either at
large confinement pressure or when the contacts are lubricated
by a sufficiently viscous fluid. Finally, Sec. V summarizes the
results and the observations presented in this paper.

II. EXPERIMENTAL SETUP AND OBSERVATIONS

The experimental sample under study (see Fig. 1 and
Ref. [17]) consists in a packing of approximately 3000 spher-
ical glass particles (density ρg = 2400 kg/m3, radius Rg =
2.5 mm, Young modulus Eg = 69 GPa, Poisson’s ratio νg =
0.2, and surface roughness Ra � 10 nm [26,47]) confined
inside a thin deformable latex sheet. The sheet is hermetically
sealed and clamped between two square plates made of a rigid
plastic. The two plates are 1 cm thick and have a 5 cm in

diameter circular aperture. Thin lateral holes on the side of
the plates allow the emergence of sensors cables and a vacuum
hose. The soft sheet allows maintaining a controlled isotropic
stress on the granular medium, by evacuating the interstitial
air from the hose with a vacuum pump. While the sample
is set under pressure, it can be molded by hand in the form
of a cylinder of length Ls = 15 cm and radius Rs = 2.5 cm
that fits in the holes of the two supporting plastic plates. This
finally leads to a solidlike granular medium with compactness
approximately equal to the random close packing fraction,
φs � 0.63. The pump allows reaching a hydrostatic pressure
of as high as P0 ≈ 83 kPa, which is probed by a static
pressure sensor (Honeywell 19C015PV5K with its INA114
low-noise amplifier). At one extremity of the sample, a dy-
namic force sensor (PCB Piezotronics 208C01) is placed in
direct contact with the grains through a central and hermetic
hole cut in the sheet. At the opposite side of the sample, a
miniature accelerometer (PCB Piezotronics 352A24) is lo-
cated on the axis of the cylindrical sample. A single short
mechanical impulse is initiated in the sample by impacting
the back of the dynamic force sensor with a 21 cm long
pendulum. The impacting head of the pendulum consists in
a piece of brass in front of which a spherical glass particles
has been glued. The contact duration depends on the mass
(57 g) of the head [7], which has been chosen so that the
initial excitation is about a fraction of a millisecond [17]. A
collision thus generates a broadband excitation from dc to few
kilohertz. The strength of the impact is controlled by adjusting
the initial release angle of the pendulum. At the opposite
end, the accelerometer records the outgoing pulse that travels
through the sample. The signals of the dynamic force sensor
and the accelerometer are routed through a signal conditioner
(PCB Piezotronics model 482C) and acquired simultaneously,
together with the signal of the static pressure, with an analog-
to-digital converter (National Instruments USB-6356) at 500
kS/s sample rate.

The experimental setup allows probing the acoustic re-
sponse of dry and wet granular media by measuring the speed
of the waves that propagate through the samples. The wet sam-
ples are prepared by homogeneously filling a fraction of the
interparticle space with a viscous fluid. The amount of added
liquid corresponds to a third of the available volume; given the
estimated packing fraction φs, the liquid thus approximately
occupies 12% of the total volume of a sample. If all the
spherical particles were homogeneously lubricated [25], the
liquid coating would have a thickness Dcoat = Rg([1 + (1 −
φs)/3φs]1/3 − 1) � 150 μm. Before pouring the wet particles
into the soft elastic sheet, we make sure that all the grains are
uniformly coated with fluid by carefully stirring the mixture in
a container. After having used a fluid, the grains are washed
several times with alcohol and then gently dried in an oven.
The fluids are silicone oils from Sigma Aldrich. Four different
fluids’ viscosity were considered in this study, ranging over
more than two decades, from μ = 0.1 Pa.s to μ = 30 Pa.s
at room temperature. The sound speed and the mass density
of these fluids are close to the features of water, c f � 1500
m/s and ρ f � 1000 kg/m3. Their surface tension is γ f �
21.5 mN/m [48] and their storage modulus is G � 5 kPa
[49], both independently of the viscosity. In particular, these
fluids remain Newtonian below a critical flow’s shear rate
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FIG. 2. Examples of experimental data at low confinement pressure (P0 = 3.2 kPa). The left column (0) shows the input force for each
experiment: the solid line corresponds to the dry configuration, the dashed line is μ = 1 Pa.s and the dotted line is μ = 30 Pa.s, whose
acceleration outputs are shown in the next three columns (1)–(3), respectively. Rows (a)–(c) correspond to different strength of the initial
excitation, as shown in the right-side text labels.

γ̇ f = G/μ [49,50]. This condition is always satisfied in all our
experiments, as demonstrated in Sec. III. Above the critical
shear rate, the behavior of these fluids is known to be relatively
independent of the viscosity [49,51].

A set of typical waveforms propagated through different
samples under P0 = 3.2 kPa and P0 = 83.0 kPa confinement
pressures is shown in Figs. 2 and 3, respectively. In both
figures, the rows stand for three different excitation amplitude.
The leftmost columns show the initial force perturbation as a
function of time, resulting from the impact of the pendulum.
The short initial impact is about 0.2 ms wide: its spectrum (not
shown; see Ref. [17]) extends from dc to 8 kHz approximately.
The three rightmost columns present the acceleration of the
transmitted waves, first in a dry medium and then with two
different interstitial viscosities. The long-lasting transmitted
coda wave corresponds to the multiple scattering of the in-
cident pulse [15], along different paths through the random
network of particles. The very first transmitted event [see
the magnified plots in Figs. 4(a) and 4(b)] corresponds to
the fastest ballistic contribution [14], that is a longitudinal
pressure wave traveling straight from the source to the receiver
[6,12,13]. In all the transmitted signals presented in Figs. 2
and 3, one clearly distinguishes two distinct frequency compo-
nents. On one hand, the ballistic wave carries a high-frequency
content, lying in the range of 1 kHz [see the rise time in
Figs. 4(a) and 4(b)]. This spectrum matches the bandwidth of
the excitation attenuated by the frequency-dependent scatter-
ing [14] and the viscoelastic dissipation at the contact between
grains [5,11]. In the presence of a fluid, the amplitude of the
ballistic pulse decreases slightly more: the viscous dissipation

enhances the attenuation [26,35,36]. The analysis of the speed
of the ballistic wave is presented in more details in Sec. III. On
the other hand, the transmitted waves shown in Figs. 2 and 3
also exhibit a long-lasting, superimposed, low-frequency os-
cillation of the order of 100 Hz. It has been demonstrated
to rely on a longitudinal resonance of the sample [17] and
to reveal the nonlinear weakening [18–23] of the granular
matter. The detailed analysis of the low-frequency oscillation
is presented in Sec. IV.

The measurements of the speed of the ballistic pulses are
presented in Fig. 4. The wave speed c is estimated as the
distance Ls between the input (force sensor) and the output
(accelerometer) divided by the time of flight. The latter is
measured as the time difference between the earliest in and out
events [see for instance the dashed line in Figs. 4(a) and 4(b)],
which are detected systematically as the instants at which
the amplitude of each waveform emerges above a threshold
(three times the average noise level). In Figs. 4(c) and. 4(d),
we show the propagation velocity for both low and high
confinement pressures, respectively. In both cases, the wave
speed is measured first in a dry medium as a reference,
then with the four fluids with different viscosities. The dry
measurements at low confinement pressure, P0 = 3.2 kPa, are
shown as circles in Fig. 4(c): the log-log representation reveals
that the wave speed c approximately increases as a power law
of the magnitude of the excitation, as it is predicted from
a Hertzian interaction [6,12,16,17], see Sec. III. In contrast,
with interstitial fluids, the wave speed increases more slowly
with the strength of the impact and quickly tends to a constant
value, independent of the input force, at large viscosities.
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FIG. 3. Examples of experimental data at high confinement pressure (P0 = 83 kPa). The left column (0) shows the input force for each
experiment: the solid line corresponds to the dry configuration, the dashed line is μ = 1 Pa.s and the dotted line is μ = 30 Pa.s, whose
acceleration outputs are shown in the next three columns (1)–(3), respectively. Rows (a)–(c) correspond to different strength of the initial
excitation, as shown in the right-side text labels.

Remarkably, the propagation velocity noticeably increases
with the viscosity of the fluid; this nontrivial feature has
been observed yet in one-dimensional granular media [35,36]
and is analyzed in Sec. III. On the opposite, at the highest
confinement pressure, P0 = 83 kPa, the propagation velocity
shown in Fig. 4(d) appears independent on the amplitude
of the perturbation in the dry configuration: the dynamical
stress being negligible compared to the static pressure, the
response is linear. With fluid, the wave speed does not depend
either on the perturbation strength and a weaker dependence
of the wave speed with the viscosity of the fluid is observed,
compared to the low confinement case.

These observations suggest a competition between the
elastic deformations of the particles resulting from the con-
finement or the dynamic pressure, and an effect of the viscous
fluid, which likely resides in between the particles and at the
periphery of their contacts [27]. Here, it is possible to rule out
the contribution of capillary effects since all our fluids have
the same surface tension, γ f � 21.5 mN/m, independently
of their viscosity [48]: it thus cannot explain the viscosity-
dependent wave speed observed in the wet media. More-
over, equating the Laplace pressure [50] to the confinement
pressure, P0 � γ f /Rc, indicates excessively small capillary
bridges curvatures, compared to the size of the particles and
the liquid’s filling fraction, to produce a significant contribu-
tion: Rc � P0/γ f ∼ 7 μm at P0 = 3.2 kPa and Rc ∼ 0.25 μm
at P0 = 83 kPa. The next section aims at deriving an alter-
native framework, in order to relate the increase of the wave
speed, i.e., the enhancement of the effective elasticity of the
medium, as an effect of the viscous flow in the interstices of
the particles.

III. WAVE SPEED ANALYSIS AND INTERPRETATION

A. Wave speed in dry granular media

Measuring the speed of mechanical waves gives access to
the elastic features of the media, at an effective macroscopic
scale. Considering that the fastest event corresponds to a
ballistic pressure wave in the longitudinal direction [6,12],
one can extract the effective longitudinal modulus M from
the experimental measurements of the wave speed c shown
in Fig. 4,

M = K + (4/3)G = ρgφsc
2. (1)

According to the effective medium theory (EMT) [6,12],
the effective bulk and shear moduli, K and G, of a random
packing of frictional spheres can be related to the interactions
at the inter-particles scale; these moduli are given by

K ∝ (Zφs/R∗)κn, (2)

G ∝ (Zφs/R∗)[κn + (3/2)κt ], (3)

where κn,t = ∂Fn,t/∂δn,t , Fn,t , and δn,t are the normal and
tangential stiffnesses, forces, and deformations at a single
contact between two particles, respectively. Z is the coordina-
tion number and R∗ = Rg/2 is the reduced radius of curvature
at the contacts. The interparticles stiffness depends on the
size of the mechanical contact; in the case of dry spheres, the
Hertz-Mindlin interaction potential [5,7] provides

adry = (R∗δn)1/2 ∝ R∗(p/E∗)1/3, (4)

κn,t ∝ Fn,t/δn,t ∝ E∗adry, (5)
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FIG. 4. Examples of the time of flight (tof) measurement for
(a) dry and (b) wet (μ = 30 Pa.s) cases, at low confinement pressure.
Wave speed as a function of the magnitude of the initial collision
force in dry and wet granular media, for both low (c) and high
(d) confinement pressures. Markers correspond to different intersti-
tial fluid viscosity: ◦ : dry, � : 0.1 Pa.s, � : 1 Pa.s, � : 10 Pa.s, and
	 : 30 Pa.s. The dashed lines are guides for the eyes; the vertical
arrows point toward increasing viscosities.

where adry is the radius of the flat contact disk between two
spheres, E∗ = Eg/2(1 − ν2

g ) is the reduced elastic modulus
and p ∝ ZφsFn/R2

∗ [6] is the confining pressure. Note that
the scaling given in Eq. (5) relies on the estimation of the
normal force, Fn ∝ πa2

dry pmax ∝ E∗adryδn, from the maximal
pressure inside the contact region given by the Hooke’s law,
pmax ∝ E∗(δn/adry). Note also that in Eq. (3), the tangential
contribution κt stands for a nonsliding (i.e., sticking) con-
tact resulting from an infinite Coulomb’s friction coefficient
between particles. In the case of frictionless particles, the
tangential stiffness is zero, κt = 0. Hence, it turns out that
the effective longitudinal modulus nonlinearly depends on the
confinement pressure p,

(Mdry/E∗) = αdry(p/E∗)1/3, (6)

where αdry is a numerical prefactor of the order of unity,
which only depends on the topology of the granular packing
(via Z and φs) and wether the contacts of the particles stick
or slip. Quantitatively (see Eqs. (1), (12), (13), and (14) in
Ref. [12]), a lower and an upper bounds of the prefactor are
αdry � 0.37 for frictionless particles with Z = 2 and αdry �
1.70 for frictional particles with Z = 6, at φs = 0.63.
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FIG. 5. (a) Effective longitudinal modulus in the dry case as
a function of the pressure p, where p stands either for the static
pressure P0 at high confinement or for the magnitude of the per-
turbation in the low confinement limit. (b) Ratio of the wet to dry
longitudinal modulus, Mwet/Mdry, as a function of μω/p. (c) Ratio of
the elastohydrodynamic contribution to the dry longitudinal modulus
as a function of μω/p, with Mehd = Mwet − Mdry, see Eq. (11).
(d) Linear plot of the elastohydrodynamic contribution to the elastic
modulus as a function of (μω/E∗)1/3. In (a)–(d), the markers refer
to the definition given in Fig. 4 and the shaded region show the 50%
mean deviation error. In (a) and (c), the straight lines have a slope of
1/3, according to Eqs. (6), (10), and (11).

The estimations of the dry longitudinal modulus, Mdry,
obtained from the measurements of the wave speeds c shown
in Fig. 4, are presented in Fig. 5(a) in a nondimensional
form. Experimentally, p stands for the static pressure at the
highest confinement, p = P0 + Pm � P0 
 Pm, where Pm =
Fm/πR2

s is an estimation of the magnitude of the dynamic
stress and Fm is the magnitude of the measured excitation
force. At the lowest confinement, p stands for the magnitude
of the perturbation, p � Pm 
 P0. Matching the data shown
in Fig. 5(a) to the Eq. (6) provides two estimations for the
prefactor, both being of the order of unity: αdry = 0.25 ± 38%
at low confinement and αdry = 0.88 ± 3% at high confine-
ment. The order of magnitude of these coefficients are in
fair agreement with the EMT prediction given in Eq. (6).
In particular, the experimental data at low confinement pres-
sure reveal the nonlinear nature of the amplitude-dependent
elastic modulus. In this regime, the slightly lower exponent,
in comparison to the 1/3 expectation, and the slightly low
experimental prefactor αdry are presumably a trace of the
nonlinear softening of the material [18–21,23] described in
Sec. IV.

032905-5



ZUÑIGA, JOB, AND SANTIBANEZ PHYSICAL REVIEW E 99, 032905 (2019)

FIG. 6. Sketch of the normal deformation at the contact between
two spheres in the dry case (dashed line) and with an interstitial fluid
(solid line), depicting the spatial extent of the deformations, adry and
aehd, and a fluid layer with thickness Dc.

B. Elastohydrodynamic interactions mediated by the fluid

Getting a deeper insight on the fluid-dependent elastic
features shown in Fig. 5 can be achieved by analyzing the
interaction between two elementary elastic spheres separated
by a thin layer of viscous fluid, as sketched in Fig. 6. This
case has been extensively addressed in the literature until
recently, via the elastohydrodynamic rebound of an elastic
sphere on a liquid layer [38] or via the oscillatory excitations
of a spherical tip immersed in a fluid near an elastic plane
[39–41]. The details presented in these four studies are re-
called in the following, in order to derive a useful description
of our observations. In the following, D > 0 denotes the initial
separation between two spheres separated by an interstitial
layer of viscous fluid in the lubrication limit, D � R∗. The
relative displacement of the particles and their elastic defor-
mation, mediated by the fluid, are denoted by d (t ) and δn(r, t ),
respectively. They result from a normal collision, along the
direction z in Fig. 6, at relative velocity vn = ḋ ∝ ωd . Here,
ω = 2π f is the angular frequency relying on the duration of
the shock, τ ∝ ω−1. The thickness of the fluid as a function
of the radial coordinate r and the time t thus reads 
 =
D + δn(r, t ) − d (t ) + r2/2R∗.

Rigid particles (δn = 0). The case of rigid particles is
considered first. The weak collision (d � D) between the
two spheres squeezes the fluid out from the interstitial region
and induces a radial flow, which is assumed laminar and in-
compressible [38,50]. Within the incompressible assumption,
the mean radial velocity of the fluid 〈vr〉 = (1/
)

∫ 


0 vrdz
can be estimated from the flow rate conservation, πr2vn =
2πr
〈vr〉, as 〈vr〉 ∝ rḋ/(D + r2/2R∗). The latter expression
reveals the radial extent of the hydrodynamic field ah =
(2R∗D)1/2 [38]: the radial velocity vanishes at r = 0 and
r 
 ah, and is maximal and of the order of 〈vr〉 ∝ ahḋ/D at
r ∝ ah. The laminar assumption implies that vr is parabolic
along the normal z axis [39] (vr = 0 at the solid/fluid in-
terfaces due to the nonslip condition and is maximal at
z = 0 for symmetry reason). The local shear rate in the
fluid is thus γ̇ = ∂vr/∂z ∝ ahḋ/D2 and its mean value over
the whole interstitial region is 〈γ̇ 〉 = (1/πR2)

∫ R
0 γ̇ 2πrdr ∝

(ah/R)2γ̇ ∝ ḋ/ah. The flow generates a hydrodynamic pres-
sure given by the Stokes equation, (∂ ph/∂r ∝ ph/ah) �
(μ∂γ̇ /∂z ∝ μahḋ/D3) [38,39], such that ph ∝ μa2

hḋ/D3 ∝
μωR∗d/D2. In the case of rigid particles, the interstitial
flow consequently induces the well-known Reynolds force
[50], which counteracts the relative approach of the particles,
Fh � πa2

h ph ∝ μωR2
∗d/D.

Interstitial fluid flow. The details of the interparticles flow
regime can be inferred from the long-wavelength experimen-
tal data shown in Figs. 2, 3, and 4. The largest acceleration
is typically � ∝ ωV ∼ 10 m/s2, see Figs. 2 and 3, with V
denoting the velocity field. The rise duration revealing a fre-
quency content at around f ∼ 1 kHz, see Fig. 4, then V ∼ 1.6
mm/s at the most. The normal relative velocity between two
particles, vn = ḋ , can be deduced from an estimation of the
gradient of the velocity field, V/λ where λ = c/ f is the wave-
length, as vn ∝ RV/λ ∝ R�/c. The wave speed being at least
c ∼ 200 m/s with fluids, see Fig. 4, then ḋ ∼ 0.25 mm/s at
the most. This allows estimating then the typical fluid’s shear
rate in the interstitial region, 〈γ̇ 〉 ∝ ḋ/ah ∝ (R/D)1/2(�/c).
The latter requires an estimation of the fluid’s thickness D. As
a worst situation, the surface roughness of the particles, Ra ∼
10 nm [26,47], can be considered as the minimal achievable
separation, D ∼ Ra, below which the fluid may be trapped in
between asperities [27,47]. At worst, the typical shear rate is
thus 〈γ̇ 〉 ∼ 25 s−1. This value remains an order of magnitude,
or smaller, below the critical shear rate, 〈γ̇ 〉 � γ̇ f = G/μ,
above which the fluid becomes non-Newtonian: with G � 5
kPa [49], the critical shear rate is γ̇ f ∼ 166 s−1 at the highest
viscosity μ = 30 Pa.s and γ̇ f ∼ 50.000 s−1 at the lowest
viscosity μ = 0.1 Pa.s. The fluid thus remains Newtonian
in all our experiments. Finally, the largest radial velocity of
the fluid, 〈vr〉 ∝ (R/D)1/2(�R/c) ∼ 6.25 cm/s, indicates a
Mach number M f = 〈vr〉/c f � 1 and a Reynolds number,
Re = ρ f 〈vr〉D/μ � 1 well below unity. The interstitial flow
thus remains incompressible and laminar [50], in agreement
with previous assumptions. As a consequence, the increase
of the effective elasticity observed in wet samples cannot be
attributed either to a non-Newtonian viscoelastic behavior of
the fluid, or to an effect of its compressibility.

Elastic particles (δn > 0). Nevertheless, the hydrodynamic
pressure field ph ∝ μωR∗d/D2 can reach sufficiently high
values, for instance when the fluid’s thickness vanishes, to in-
volve the elasticity of the particles [38,39]. Given the Hooke’s
law, ph ∝ E∗(δn/ah), the elastic deformation of the particles
can be rewritten as a fraction of their relative displacement,
(δn/d ) ∝ (Dc/D)3/2, where [39]

Dc = 8R∗(μω/E∗)2/3 (7)

is a cutoff thickness at which the deformation accommodates
the displacement, δn = d . This situation was referred to as an
elastic confinement of the fluid [41]: the fluid being clamped
by its viscosity, it does not flow but instead mediates the
elastic deformations of the bodies as a rigid layer. The cutoff
thickness thus stands as a minimal achievable fluid thickness.
Quantitatively, it is approximately Dc � 70 nm with the low-
est viscosity and Dc � 3 μm with the highest viscosity, under
our experimental conditions. These values are larger than the
typical surface roughness, Dc 
 Ra ∼ 10 nm, and smaller
than the typical thickness of the liquid coating, Dc � Dcoat ∼
150 μm, this regime is thus accessible in our experiments. In
such an elastohydrodynamic regime, the typical extent of the
field and the normal stiffness thus become, respectively

aehd = (2R∗Dc)1/2 ∝ R∗(μω/E∗)1/3, (8)

κn ∝ Fehd/δn ∝ E∗aehd, (9)
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where the elastohydrodynamic force Fehd ∝ πa2
ehd pehd is pro-

portional to the pressure given by the Hooke’s law, pehd ∝
E∗(δn/aehd ), with pehd ∝ μωR∗d/D2

c . In addition, the tangen-
tial interaction presumably becomes frictionless in presence
of the lubricating layer of fluid, κt = 0. Consequently, the
effective longitudinal modulus given by Eqs. (2), (3), (8), and
(9) becomes

(Mehd/E∗) = αehd(μω/E∗)1/3, (10)

where αehd is a numerical prefactor depending on Z and φs

only. Interestingly, the comparison of the expressions of the
dry and the wet elastic moduli, given by Eqs. (6) and (10),
respectively, shows that their ratio is a function of a single
nondimensional parameter, (Mehd/Mdry) ∝ (μω/p)1/3. This
result substantiates the observation of a nontrivial competition
between a viscous contribution of the fluid and the elastic
deformation of the particles under the action of the con-
finement pressure. This feature is confirmed by representing
the experimental wet-to-dry elastic moduli as a function of
μω/p, see Fig. 5(b). The data set, aggregating two different
confinement pressures and four different viscosities, indeed
fairly collapses along a master curve when represented in
such a nondimensional form. However, the ratio of the elastic
moduli asymptotically saturates at one for small values of
μω/p in experiments. This is consistent with the fact that a
wet sample under a high pressure and with a small interstitial
viscosity should tend to behave as a dry sample, Mwet �
Mdry at μω/p � 1. Moreover, within a constant confinement
pressure only, the fluid quasistatically flows out from the
contact between particles, leaving a central region in me-
chanical contact surrounded by a peripheral region filled with
fluid [27], see Fig. 6. A more convenient ansatz would thus
correspond to a Hertzian elastic response, coming from the
central and flat dry region, acting in parallel to a peripheral
elastohydrodynamic response, due to the fluid pinched at the
edge between the elastic solids:

Mwet = Mdry + Mehd. (11)

The ansatz given by Eq. (11) is probed in Fig. 5(c),
which represents the ratio (Mehd/Mdry) = (Mwet/Mdry − 1) as
a function of (μω/p). As in Fig. 5(b), the data set still
demonstrates fair correlations, but now shows a clear power
law with an exponent close to 1/3, in agreement with our
analysis, see Eqs. (6) and (10). Quantitatively, the fit of the
data shown in Fig. 5(c) provides (αehd/αdry) = 1.01 ± 43%
at low confinement pressure and (αehd/αdry) = 0.46 ± 20%
at high confinement pressure; this corresponds to prefactors
of the order of unity, αehd � 0.25 and αehd � 0.40, respec-
tively. Finally, the Fig. 5(d) shows (Mehd/E∗) as a function
of (μω/E∗)1/3 for the high confinement pressure data set. The
plot confirms that Mehd increases monotonically according to
Eq. (10), i.e., the effective elastic modulus increases with the
viscosity of the fluid; matching the curve to Eq. (10) provides
a consistent value of the prefactor, αehd = 0.37 ± 37%.

The analysis of the experimental wave speed presented in
Fig. 4, based on an effective medium theory, thus demon-
strates that the propagation of mechanical waves in wet granu-
lar samples induces an elastohydrodynamic mechanism at the
interparticle level. The mechanical response of a wet sample

results from the competition between (i) an elastic contri-
bution related to the static confinement pressure within the
contact region between grains and (ii) an elastohydrodynamic
interplay between the particles and the fluid, which resides at
the periphery of the contacts. The crossover between these two
contributions is fairly described by a unique nondimensional
number, (μω/p).

IV. MATERIAL WEAKENING

Material weakening has been proposed as a triggering
mechanism for the emission of secondary pulses after the
passage of a principal mechanical event. Several authors
[13,18,23] have linked the breaking of unconsolidated and
weak contacts with the loss of material strength and the
dynamical change of the shape of the coda wave. Here, the
material softening is probed by tracking the frequency shift
of the lowest prominent mode in the spectrum of the long-
lasting outgoing acceleration. The dry configuration is first
considered, see Fig. 7(a), at both low and high confinement
pressure. It is observed that for the high confinement pressure,
the low-frequency component, at around 100 Hz, remains
unaffected by the strength of the dynamical perturbation. This
results is coherent with the fact that the dynamics of the
sample is linear at high confinement, owing to a negligible
dynamical perturbation: the sample is highly consolidated and
no material weakening is observable. On the other hand, at the
lowest confinement pressure, the low-frequency component
decreases with increasing impulse amplitude: a 20% variation
in respect to the initial frequency is observed, consistently
with the observations available in the literature [13]. The
decrease of the prominent frequency reveals the nonlinear
nature of the contact dynamics and the weakening of the
material as the dynamical strength is progressively increased.

Next, the same procedure is repeated in samples containing
interstitial fluids with different viscosities, see Figs. 7(b)–7(d).
In Fig. 8, the evolution of the lowest mode for every fluid is
shown as a function of the impulse amplitude. The weakening
of the sample remains observable for the lowest viscosity only,
and progressively disappears when the viscosity is increased.
This means that an interstitial fluid with a sufficiently high
viscosity consolidates the sample and tends to linearize its
mechanical response. Indeed, using the nondimensional pa-
rameter (μω/p) derived in Sec. III as an indicator of the
regime, one find a crossover viscosity μ∗ = p/ω. Below this
value, the dynamics is essentially Hertzian and nonlinear, see
Eqs. (6). Above the crossover, the dynamics tends to becomes
linear owing to a dominant elastohydrodynamic interplay, see
Eqs. (10) and (11). Such a crossover is μ∗ � 3.6 Pa.s at low
confinement pressure, where f ∼ 140 Hz, in agreement with
our observations. Similarly, the crossover is μ∗ � 82 Pa.s at
high confinement pressure, where f ∼ 160 Hz. In this case,
the behavior of all the wet samples relies on the Hertzian elas-
tic interaction: it is thus reminiscent to the dry configuration,
which proved to be consolidated and where no weakening is
expected.

V. CONCLUSIONS

The experimental evidences presented in this paper showed
that the presence of an interstitial fluid in a granular media
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significantly modifies the contact dynamics between particles
and, consequently, the features of mechanical waves prop-
agation in the long wavelength approximation. In both low
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FIG. 8. Frequency of the lowest mode as a function of the
input force, for different fluid viscosities at (a) low and (b) high
confinement pressures. The markers refer to the definitions given in
Fig. 4.

and high confinement cases, it was observed that the fluid
induces an elastohydrodynamic mechanism that enhances the
rigidity of the contacts, rendering a higher wave speed as
compared with the dry configuration. All our results were
discussed in terms of an effective mean-field theory, cou-
pled to a description of the elastohydrodynamic interaction
between spherical elastic particles mediated by an interstitial
Newtonian viscous fluid. Our analysis suggested a nontrival
competition between the elastohydrodynamic interaction and
the elastic deformation due to the confining pressure. The
interplay was shown to be fairly described by a unique
nondimensional parameter μω/p, which allowed defining a
threshold viscosity above which the effect of the fluid dom-
inates. It was also observed that the dry granular material
weakens when submitted to strong dynamical perturbations,
due to the breaking of unconsolidated contacts. This non-
linear softening can be impeded by either increasing the
confinement pressure, or by adding an interstitial fluid with
a viscosity above the threshold. Our analysis and description
qualitatively match the experimental observations; all these
results might prove to be useful in practical situations and
pave the way to the need of a more quantitative and precise
description.
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