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Nature of thermally excited vortical flow in a microsized nematic volume
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The theoretical description of the reorientational dynamics in the case of a hybrid-oriented two-dimensional
(2D) liquid crystal (LC) cell, under the influence of a temperature gradient ∇T , caused by a heat flux q directed at
an angle α across the lower bounding surface with the orientational defect, has been presented. Our calculations,
based on the appropriate nonlinear extension of the classical Ericksen-Leslie theory, show that due to interaction
between ∇T and the gradient of the director field ∇n̂ in the LC sample a thermally excited vortical fluid flow is
maintained in the bulk of the nematic volume. In order to elucidate the role of both the orientational defect and
the heat flux q in formation of the vortical flow in the microsized LC volume, we have analyzed the response of
the LC material confined in the microsized 2D volume on the effect of the laser beam focused on the bounding
surface.
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I. INTRODUCTION

The development of future biodynamics applications re-
quires complicated investigations of natural and soft materials
with multicoupling interactions of inner fields initiated by
external forces. Decreasing of cell sizes down to nanolevel
provides a close connect nematics model with biological
liquid [1]. A challenging problem in all such applications is
the precise handling of liquid microvolume, which requires
self-contained micropumps of small package size exhibiting
a very small displacement volume. Recently, the problem
of motion of an ultra-thin (a few microliters) liquid crystal
(LC) drop confined in the microsized volume between two
horizontal and two lateral surfaces and subjected to uniform
heating both from below and above, has been considered [2,3].
It has been shown that in the case of a hybrid-oriented two-
dimensional (2D) LC cell, the direction and magnitude of the
hydrodynamic flow v produced by induced heating influences
the director reorientation n̂(r, t ) across the LC cell. Under-
standing how the LC material deforms under the influence of
the temperature gradient is a question of great fundamental
interest, as well as an essential piece of knowledge in soft
material science. Despite the fact that certain qualitative and
quantitative advances in a hydrodynamic description of the
relaxation processes in the LC phase under the influence of the
temperature gradient have been achieved, it is still too early to
talk about the development of a theory which would make it
possible to describe the dissipation processes in confined LC
phase with accounting for the orientational defects both in the
bulk of the LC sample as well as on the bounding surfaces [4].
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Note that a thin horizontal layer of quiescent LC fluid
heated from below becomes unstable to convection via the
Rayleigh-Benard mechanism, and this system has been used
extensively for the study of a great variety of pattern-
formation phenomena [5]. In that case the fluid is driven
by maintaining the lower surface at a temperature �T
above the upper surface temperature. The control param-
eter describes the instability, the Rayleigh number R =
αgd3�T/((α4/2ρm)κ⊥), where g is the gravitational acceler-
ation, α is the isobaric thermal expansion coefficient, α4/2ρm

corresponds to the isotropic kinematic viscosity, and κ⊥ is
the perpendicular thermal diffusivity. The instability occurs
at value R = Rc ∼ 1708, independent of the fluid under con-
sideration [5]. Taking into account that the thickness of the
LC channel d up to ∼5 μm, in our case R � Rc, and the
driving force is weak enough to set up convection via the
Rayleigh-Benard mechanism. We assume that the heat current
satisfies Fourier’s law and consider a LC system composed of
asymmetric polar molecules, such as cyanobiphenyl, which
are confined in the microsized LC volume.

Recently, a new method to control LC flow dynamics
using a bidirectionally aligned liquid crystal (BALC) film
was proposed [6]. It was shown for the case of bistable
twisted nematic devices, that dynamic flow is essential to
the switching mechanism [7] and the orientational defects on
the restricted surfaces play a crucial role in the formation
of the vortical flows. Taking into account that the potential
applications of these LC materials are included, for instance,
in the novel optothermal tweezers, more research is needed.

In order to elucidate the role of both the orientational defect
and the heat flux qb directed at an angle α across the lower
bounding surface in the formation of the vortical flow in the
LC volume, we have analyzed the response of the LC material
confined in the microsized 2D volume on the effect of the laser
beam focused on the bounding surface.
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II. FORMULATION OF THE RELEVANT EQUATIONS
FOR NEMATIC FLUIDS

We consider the 2D nematic fluid composed of polar
molecules, such as cyanobiphenyls, at density ρ, and delim-
ited by two horizontal and two lateral surfaces at mutual
distances 2D and 2d , respectively. The coordinate system
defined by our task assumes that the director n̂ = (nx, 0, nz) =
sin θ î + cos θ k̂ is in the xz plane, where î is the unit vector
directed parallel to the horizontal restricted surfaces, which
coincides with the planar director orientation on the upper
boundary (î‖n̂z=d), whereas the unit vector k̂ is directed par-
allel to the lateral restricted surfaces, which coincides with
the planar director orientation on these surfaces (k̂‖n̂x=±d).
Here, θ ≡ θ (x, z, t ) denotes the polar angle, i.e., the angle
between the direction of the director n̂ and the unit vector k̂,
and ĵ = k̂ × î.

The aim of our paper is to analyze the nature of thermally
excited vortical flow v = uî + wk̂ in a microsized nematic
volume under the influence of a heat flux qb directed across
the lower bounding surface at an angle α with respect to the
unit vector î. Here, u ≡ vx(x, z, t) and w ≡ vz(x, z, t) are the
components of the vector v. Taking into account that the width
of the LC channel d ∼ 1–5 μm, one can assume the mass
density ρ to be constant across the channel, and thus deal
with an incompressible fluid. The incompressibility condition
∇ · v = 0 gives

u,x + w,z = 0, (1)

where u,x = ∂u
∂x .

The hydrodynamic equations describing the nature of ther-
mally excited vortical flow in the microsized nematic volume,
when there exists the heat flux qb across the lower boundary,
can be derived from the torque balance equation Tel + Tvis +
Ttm = 0, which has the form [2–4]

[
δWF

δn̂
+ δRvis

δn̂t
+ δRtm

δn̂t

]
× n̂ = 0, (2)

whereas the linear momentum equation can be written
as [2–4]

ρ
dv
dt

= ∇ · σ, (3)

where σ = σ el + σ vis + σ tm − PE is the full stress tensor
(ST), and σ el = − ∂WF

∂∇n̂ · (∇n̂)T, σ vis = δRvis

δ∇v , and σ tm = δRtm

δ∇v
are the ST components corresponding to the elastic, vis-
cous, and thermomechanical forces, respectively (see the
Appendix). Here, R = Rvis + Rtm + Rth is the full Rayleigh
dissipation function composed of the viscous, thermome-
chanical and thermal contributions (for details, see the
Appendix), WF = 1

2 [K1(∇ · n̂)2 + K3(n̂ × ∇ × n̂)2] denotes
the elastic energy density, K1 and K3 are splay and bend elastic
coefficients, P is the hydrostatic pressure, and E is the unit
tensor. When a temperature gradient ∇T is set up across the
LC channel, we expect the temperature field T (x, z, t ) satisfies
the heat conduction equation [2–4]

ρCP
dT

dt
= ∇ · q, (4)

where q = T δR
δ∇T is the heat flux in the LC channel, and CP is

the heat capacity of the LC system.
We will also examine the effect of the orientational defect

(OD) on the formation of the vortical flow v excited in the
nematic volume under influence of the temperature gradient
∇T (x, z, t ), which is initiated by the focused laser beam on
the lower restricted surface. That defect is characterized by
continuously changing the director’s orientation along the
length of the lower restricted surface, from the homeotropic
to planar, and again to homeotropic orientation. So, our 2D
aligned nematic state with the orientational defect contains a
gradient of ∇θ on the lower boundary, i.e.,

θ−10�x�−L,z=−1 = θL�x�10,z=−1 = 0, θ−L<x<L,z=−1 = A,

(5)

and the planar orientation on the upper and lateral surfaces,
i.e.,

θx=±10,−1<z<1 = 0, θ−10�x�10,z=1 = π

2
, (6)

where A = tan−1 ( L2−x2

4x4 ), L = l
d , and 2l is the length of the

orientational defect on the lower boundary with the director’s
orientation changing continuously from the homeotropic to
planar, and again to homeotropic orientation, whereas on the
rest length of that surface there is the homeotropic director’s
orientation (k̂‖n̂z=−1). Notice that in our calculations the
ratio D/d is equal to 10. Moreover, we will work with the
dimensionless space variables x = x/d and z = z/d , and in
the following equations the overbars will be eliminated.

In order to elucidate the role of both the orientational
defect and the heat flux qb directed at an angle α across
the lower bounding surface in the formation of the vortical
flow we consider the hydrodynamic regime with the heat flux
qb = qzk̂ = Q sin αk̂, where α is the angle between vectors n̂
and î. In the dimensionless form it can be written as [3]

(χ,z(x, z, τ ))z=−1 =
[

qz − (λ − 1)nxnzχ,x

λn2
z + n2

x

]
z=−1

, (7)

whereas on the rest boundaries the temperature is kept con-
stant

χ−10�x�10,z=1 = χx±10,−1<z<1 = χc. (8)

Here, Q = Q(x, z = −1, τ ) is the injected energy across the
lower boundary, qz = Q sin α, λ = λ‖/λ⊥, λ‖ and λ⊥ are
the heat conductivity coefficient parallel and perpendicular
to the director n̂, χ,x = ∂χ

∂x , χ ≡ χ (x, z, τ ) = T (x, z, τ )/TNI

is the dimensionless temperature, TNI is the nematic-isotropic
transition temperature, and τ = t

tR
is the dimensionless char-

acteristic time needs for reorientation of the director n̂, respec-
tively.

The velocity v = uî + wk̂ on these surfaces has to satisfy
the no-slip boundary condition

u−10�x�10,z=−1 = ux=±10,−1<z<1 = 0, w−10�x�10,z=−1

= wx±10,−1<z<1 = 0. (9)

With the aim to analyze the nature of thermally excited vorti-
cal flow in the microsized nematic volume under the influence
of the heat flux qb directed across the lower bounding surface
at an angle α with respect to the unit vector î, we consider the
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FIG. 1. The fragment of initial distribution of the direc-
tor field n̂eq

elast (x, z) near the orientational defect located at
−L < x < L, z = −1. Here, L = ±0.5.

dimensionless analog of balance equations. The dimension-
less torque balance equation, corresponding to Eq. (2), has the
form (for details, see the Appendix and Ref. [4])

nznx,τ − nxnz,τ

= δ1[nzM0,x − nxM0,z + K31(nz f,z + nx f,x)]

− 1
2ψ,xx

[
1 + γ21

(
n2

x − n2
z

)] − 1
2ψ,zz

[
1 − γ21

(
n2

x − n2
z

)]
× 2γ21ψ,xznxnz+ψ,zNx + Nzψ,x + δ2(χ,xL,x + χ,zL,z).

(10)

The dimensionless linear balance momentum equation, corre-
sponding to Eq. (3), takes the form

δ3ψ,xzτ = a1ψ,zzzz + a2ψ,xzzz + a3ψ,xxzz + a4ψ,xxxz

+ a5ψ,xxxx + a6ψ,zzz + a7ψ,xzz + a8ψ,xxz

+ a9ψ,xxx + a10ψ,zz + a11ψ,xz + a12ψ,xx + F ,

(11)

where ai (i = 1, . . . , 12) and F are functions that have been
defined in the Appendix of Ref. [4]. The dimensionless
entropy balance equation, corresponding to Eq. (4), can be

written as

χ,τ = [
χ,x

(
λn2

x + n2
z

) + (λ − 1)nxnzχ,z
]
,x

+ [
χ,z

(
λn2

z + n2
x

) + (λ − 1)nxnzχ,x
]
,z

+ δ4χ

(
∇ · ∂Rtm

∂∇χ

)
− ψ,zχ,x + ψ,xχ,z, (12)

where τ = t
tT

is the dimensionless time, tT = ρCpd2

λ⊥
,

ψ̄ = tT
d2 ψ is the scaled analog of the stream function

ψ for the velocity field v = uî + wk̂ = −∇ × ĵψ (see
Ref. [4]), f = nx,z − nz,x, nz,τ = ∂nz

∂τ
, M0 = ∇ · n̂,

Nz = nznx,z − nxnz,z, Lx = nxnz,x − 3
2 nznx,x + 1

2 nxnx,z,
Lz = −nznx,z + 3

2 nxnz,z − 1
2 nznz,x. Notice that the overbars

in the stream function ψ have been (and will be) eliminated
in the last as well as in the following equations. The
dimensionless thermomechanical contribution to the
total Rayleigh dissipation function Rtm can be written
as (for the details, see the Appendix and Refs. [3,4])
Rtm=χ,x(− 1

2 nzM0−nzMxx+n2
x (nxMzz−Mxxnz + 2nxMxz )) +

χ,z( 1
2 nxM0 + nxMzz + n2

z (nxMzz − Mxxnx − 2nzMxz )). Here,
Mi j (i, j = x, z) are components of the tensor M =
1
2 [∇n̂ + (∇n̂)T]. The function F = (σ el

xx + σ tm
xx − σ el

zz −
σ tm

zz ),xz + (σ el
zx + σ tm

zx ),zz − (σ el
xz + σ tm

xz ),xx, the coefficients
ai(i = 1, . . . , 12), the functions σ tm

ij (i, j = x, z) and
σ el

ij (i, j = x, z) are given in the Appendix of Ref. [4]. The

set of parameters of the LC system are K31 = K3
K1

, γ21 = γ2

γ1
,

δ1 = tT K1
γ1d2 , δ2 = ρCpTNI

λ⊥
ξ

γ1
, δ3 = ρd2

γ1tT
, and δ4 = ξ

λ⊥tT
. Here,

ξ = 10−12 [J/mK] is the thermomechanical constant [2,4,8].
Now, the reorientation of the director in the LC volume

confined between two horizontal and two vertical solid sur-
faces, when the relaxation regime is governed by the viscous,
elastic, and thermomechanical forces, and with accounting
for the flow, can be obtained by solving the system of the
nonlinear partial differential equations (10), (11), and (12)
with the appropriate dimensionless boundary conditions for
the polar angle θ -Eqs. (5)–(6)], or for the director field n̂,
stream function ψ and temperature χ , and initial conditions.
The boundary conditions at the solid surfaces can be written

FIG. 2. Distribution of the velocity field v = uî + wk̂ in the microscopic nematic volume with the orientational defect located at −L �
x � L, z = −1, when the heat flux qb is directed at two values of the angle α: (a) 20◦ and (b) 40◦, respectively. The heating occurs during time
τin = 1.6 × 10−4 (∼0.29 ms), whereas the value of the dimensionless heat flux coefficient Q0 is equal to 0.05. Here, 1 mm of the arrow length
is equal to 1.8 μm/s.
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FIG. 3. Same as in Fig. 2, but the values of the angle α are (c) 60◦ and (d) 80◦, respectively.

as

(nx)x=±10,−1�z�1 = 0, (nx)−10<x<10,z=1 = 1,

(nx)−10<x<−L,z=−1

= (nx)L<x<10,z=−1 = 0, (nx)−L<x<L,z=−1 = sinA,

χx=±10,−1�z�1 = 0.97, χ−10<x<10,z=1 = 0.97,

(χ,z(x, z, τ ))z=−1 =
[

qz − (λ − 1)nxnzχ,x

λn2
z + n2

x

]
z=−1

,

(ψ,x)x=±10,−1�z�1 = (ψ,z)x=±10,−1�z�1 = 0,

(ψ,x)−10�x�10,z=−1 = (ψ,z)−10�x�10,z=−1 = 0, (13)

whereas the initial condition takes the form

n̂(x, z, τ = 0) = n̂eq
elast (x, z). (14)

Recently, laser-induced heating was used to inject energy
Q across the bounding surface at the microscopic scale [3,4].
In our case the LC sample will be heated by a laser beam, fo-
cused, for instance, on the lower boundary (z = −1, x = x0),
and the dimensionless injected energy Q can be written as

Q = Q0 exp

(
−2

(x − x0)2 + (z − z0)2

�2

)
H[τin − τ ], (15)

where � = ω0
d = 2L is the dimensionless Gaussian spot size,

H[τin − τ ] is the Heaviside step function, τin is the duration
of the energy injection into the nematic volume, and x0

and z0 are the dimensionless positions of the laser focus,
and Q0 = 2

π�
d2P

λ⊥TNI
is the dimensionless heat flux coefficient.

Here, P is the laser power and ω is the Gaussian spot size,
respectively.

For the case of 4-cyano-4′-pentylbiphenyl (5CB), at tem-
peratures corresponding to nematic phase, the set of param-
eters, involved in Eqs. (10)–(12), are δ1 ∼ 10−3, δ2 ∼ 0.3,
δ3 ∼ 10−6, and δ4 ∼ 10−4.

Using the fact that δ3 � 1, the Navier-Stokes [Eq. (11)]
equation can be considerably simplified. Thus, the whole left-
hand side of Eq. (11) can be neglected and that equation take
the form

a1ψ,zzzz + a2ψ,xzzz + a3ψ,xxzz + a4ψ,xxxz + a5ψ,xxxx

+ a6ψ,zzz + a7ψ,xzz + a8ψ,xxz + a9ψ,xxx + a10ψ,zz

+ a11ψ,xz + a12ψ,xx + F = 0, (16)

where ai (i = 1, . . . , 12) and F are the functions defined in
Refs. [3,4].

III. CALCULATIONAL PROCEDURE AND RESULTS

Now, the nematic phase confined in the microsized volume
is heated by the laser beam focused on the lower bounding
surface at the angle α with respect to the unit vector î. We will
also examine the effect of coupling between the gradient of
the director field ∇n̂ and ∇χ on the formation of the vortical
flow inside the nematic volume. Note that the magnitude Q0

and duration τin of the heat injected across the lower boundary
are restricted only by the nematic phase stability condition. On
the other hand, when the director n̂ is strongly homogeneously
anchored to the upper and two lateral surfaces, and with the
orientational defect on the lower boundary, the director field
n̂(x, z, τ ) has to satisfy the boundary conditions Eq. (13)
and its initial orientation is chosen equal to n̂(x, z, τ = 0) =
n̂eq

elast (x, z). Here, n̂eq
elast (x, z) is the equilibrium distribution

of the director field over the nematic volume obtained from
Eq. (10) with ψ,x = ψ,z = χ,x = χ,z = 0, and with the bound-
ary conditions in the form of Eq. (13), whereas the ini-
tial condition is chosen in the form θelast (x, z, τ = 0) = 0,
at x = ±10, and −1 � z � 1; π

4 (z + 1), at −10 < x < −L,
and L < x < 10; π

2 , at −L � x � L, and z = −1, respec-
tively. Notice that the initial distribution of the director field
n̂eq

elast (x, z) over the microsized volume has been obtained
from Eq. (10) by means of relaxation method [9]. In the
calculations, the relaxation criterion ε = |(θ(m+1)(x, z, τ ) −

FIG. 4. Same as in Fig. 2, but the value of the angle α is equal to
90◦.
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FIG. 5. Same as in Fig. 2, but the values of the angle α are (f) 100◦ and (h) 120◦, respectively.

θ(m)(x, z, τ ))/θ(m)(x, z, τ )| was chosen to be equal to 10−4,
and the numerical procedure was then carried out until a
prescribed accuracy was achieved. Here, m is the iteration
number.

Figure 1 shows a fragment of the initial distribution of the
director field n̂eq

elast (x, z) near the orientational defect located
at −L < x < L, z = −1. Here, L = ±0.5 are the right and
left ends of the orientational defect on the lower boundary.
According to our calculations the highest value of |∇n̂(x, z)|
is reached in the vicinity of the orientational defect and its
effect extends up to 3/4 of the thickness of the nematic
volume.

In turn, the initial distribution of the temperature field
χ (x, z,�τ ), corresponding to the first time step �τ , has
been obtained from Eq. (12), by means of the relaxation
method with ψ,x = ψ,z = 0 and with the boundary and ini-
tial conditions in the form of Eqs. (13)–(14). Having ob-
tained both the initial distributions of the director and the
temperature fields, as well as the function F , which is in-
volved in Eq. (16), one can calculate the initial distribution
of the stream function ψ (x, z,�τ ), corresponding to the
first time step �τ . The next time step �τ for the velocity
and temperature fields, as well as for the director’s distri-
bution across the nematic volume is initiated by the sweep
method [10].

The stability of the numerical procedure for Eqs. (10), (12),
and (16) was defined by the conditions [9]:

�τ

δ3

(
1

(�x)2 + 1

(�z)2

)
� 1

2
,

3a5

(�x)4 − 2a1

(�z)4 > 0,

where �x and �z are the space steps in the x and z directions,
and a1 and a5 are the coefficients defined in Eq. (16). Now we
can calculate the evolution of both the velocity v = uî + wk̂
and the temperature χ (x, z, τ = τin ) fields over the nematic
volume with the orientational defect as the function of the
angle α. Distribution of the velocity field v in the microscopic
nematic volume with the orientational defect located at −L �
x � L, z = −1, when the laser beam is directed at the values
of the angle α equal to 20◦ and 40◦ [Figs. 2(a) and 2(b)],
60◦ and [Figs. 3(c) and 3(d)], 90◦ [Fig. 4(e)], 100◦ and 120◦
[Figs. 5(f) and 5(h)], 140◦ and 160◦ [Figs. 6(i) and 6(j)] are
shown in Figs. 2, 3, 4, 5, and 6, respectively. The heating
occurs during time τin = 1.6 × 10−4 (∼0.29 ms), whereas the
value of dimensionless heat flux coefficient Q0 is equal to
0.05. The distribution of the velocity field v in the microscopic
nematic volume with the orientational defect located at −L �
x � L, z = −1, when the heat flux qb is directed at two values
of the angle α = 20◦ and 40◦, with respect to the lower
bounding surface is characterized by maintaining vortices as
shown in Figs. 2(a) and 2(b), respectively. Here, 1 mm of
the arrow length is equal to 1.8 μm/s. The direction and
magnitude of the hydrodynamic flow v(x, z, τ ) is influenced
by both the direction of the heat flux qb across the lower
bounding surface and the character of the orientational defect.
According to our calculations of the director field n̂(x, z, τ )
across the nematic volume, the highest value of |∇n̂(x, z)|
is reached in the vicinity of the orientational defect, and,
as a result, the biggest thermally excited velocities occur
in the vicinity of the lower hotter surface. In that case, the
self-sustaining vortical flow is excited in the negative sense

FIG. 6. Same as in Fig. 2, but the values of the angle α are (i) 140◦ and (j) 160◦, respectively.
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FIG. 7. Plot of the temperature field distribution χ (x, z, τ = τin ) over the nematic volume near the orientational defect located at −L �
x � L, z = −1, when the heat flux qb is directed at two values of the angle α: (a) 20◦ and (b) 160◦, respectively. The heating occurs during
time τin = 1.6 × 10−4 (∼0.29 ms), whereas the value of the dimensionless heat flux coefficient Q0 is equal to 0.05.

(counterclockwise) around its center, as the value of the angle
α reaches 60◦. Further increase in the angle value of more than
60 degrees leads to the formation of two vortices, one, larger,
in the left-hand side of the nematic volume, and another,
smaller, in the right-hand side of the LC phase, as shown in
Figs. 3(c) and 3(d), 4(e), and 5(f) and 5(h), respectively. With
increasing the value of the angle α, the larger vortex begins to
decrease in size, while the smaller vortex begins to increase.
The size of the smaller vortex reaches its maximum size at the
angle α = 120◦ [see Fig. 5(h)]. Notice that the bigger self-
sustaining vortical flow in the left-hand side of the LC volume
is thermally excited in the negative sense (counterclockwise),
whereas the smaller vortical flow in the right-hand side of the
LC volume is excited in the positive sense (clockwise) around
their centers. With increasing the value of the angle α more
than 120 degrees, the larger vortex disappears and we have
only one the self-sustaining vortical flow in the positive sense
(clockwise) around its center [see Figs. 6(i) and 6(j)].

So, based on our calculations, one can conclude that the
direction of the heat flux across the hotter bounding surface
with the orientational defect plays a crucial role in maintaining
the thermally excited vortical flow in the 2D LC cell.

The distribution of the temperature field χ (x, z, τ = τin )
over the nematic volume near the orientational defect located
at −L � x � L, z = −1, when the heat flux qb is directed at
two values of the angle α: 20◦ [Fig. 7(a)] and 160◦ [Fig. 7(b)],
after time term τin = 1.6 × 10−4 (∼0.29 ms), is shown in
Fig. 7. The value of the dimensionless heat flux coefficient Q0

is equal to 0.05 (∼4.2 × 10−4 mW/μm2). In general, under
the above conditions, the picture of warming is such that only
a small part of the nematic phase is involved in the heating
process, while a large part of the volume of the fluid were not
heated. It should be noted that in both cases the area of the
greatest heating was shifted in the direction in which the heat
flux was directed due to laser radiation.

IV. CONCLUSION

We have investigated the reorientational dynamics in the
case of a hybrid-oriented two-dimensional (2D) liquid crystal
(LC) cell, under the influence of a temperature gradient ∇T ,
caused by a heat flux q directed at an angle α across the
lower bounding surface with the orientational defect. Our

calculations, based on the appropriate nonlinear extension of
the Ericksen-Leslie theory, accounting for the entropy balance
equation, show that due to interaction between ∇T and the
gradient of the director field ∇n̂ in the LC sample with the
orientational defect on the lower hotter boundary is excited
in the vortical flow. The direction and magnitude of the hy-
drodynamic flow has influenced both the direction of the heat
flux qb across the lower bounding surface and the character
of the orientational defect. Our calculations show that the
biggest thermally excited velocity occurs in the vicinity of
the orientational defect. The analysis showed that at the same
power of the laser radiation, with a change in the value of the
angle α, the picture of the vortex flow in the LC cell changes.
When the heat flux qb is directed at the angle α less than
40 degrees, the LC volume is excited on the self-sustaining
vortical flow in the negative sense (counterclockwise) around
its center. Further increase in the angle value of more than
60 degrees leads to the formation of two vortices, one larger,
in the left-hand side of the LC volume, another smaller, in
the right-hand side of the LC volume, respectively. With
increasing the value of the angle α up to right angle and more,
the larger vortex begins to decrease in size, while the smaller
vortex reaches its maximum size at the angle 120 degrees. An
increase in the angle value of more than 120 degrees leads to
the formation of one of the self-sustaining vortical flows in the
positive sense (clockwise) around its center.

Recently, the vortical flow formation in homeotropically
oriented LC film doped by chiral molecules has been ob-
served [11]. It has been shown, by means of circular polar-
ization techniques, that in the LC film, due to the pumping of
energy by laser irradiation, the vortical flow is excited similar
to what is shown in Figs. 2–6. The experimentally observed
formation of the vortical flow in the LC film has been ascribed
to thermocapillary convection in the LC sample. In turn, in
our case, the vortical flow is excited due to coupling between
director and temperature gradients, initiated by the laser beam
irradiation.

So, based on the our calculations, one can conclude that
the direction of the heat flux across the bounding surface
with the orientational defect plays a crucial role in main-
taining the thermally excited vortical flow in the 2D LC
cell, and is expected to be applied for novel opto-thermal
tweezers.
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APPENDIX: TORQUES, STRESS TENSOR COMPONENTS
AND ENTROPY BALANCE EQUATION

The hydrodynamic equations describing the reorientation
of the LC phase in 2D case, when the system is subjected
to a temperature gradient ∇T , due to the heat flux qb across
the lower restricted surface, can be derived from the torque
balance equation [2–4]

Tel + Tvis + Ttm = 0,

where Tel = δWel

δn̂ × n̂ is the elastic, Tvis = δRvis

δn̂t
× n̂ is the vis-

cous, and Ttm = δRtm

δn̂t
× n̂ is the thermomechanical torques,

respectively. The linear momentum equation for the velocity
field v can be written as [2–4]

ρ
dv
dt

= ∇ · σ,

where dv
dt = ∂v

∂t + uv,x + wv,z, σ = σ el + σ vis + σ tm − PE is
the full stress tensor (ST), and σ el = − ∂Wel

∂∇n̂ · (∇n̂)T, σ vis =
δRvis

δ∇v , and σ tm = δRtm

δ∇v are the ST components correspond-
ing to the elastic, viscous, and thermomechanical forces, re-
spectively. Here, R = Rvis + Rtm + Rth is the full Rayleigh
dissipation function, Wel = 1

2 [K1(∇ · n̂)2 + K3(n̂ × ∇ × n̂)2]
denotes the elastic energy density, K1 and K3 are splay and
bend elastic coefficients, P is the hydrostatic pressure in the
HALC system, and E is the unit tensor. When the temper-
ature gradient ∇T is set up, for instance, due to the heat
flux O across the lower restricted surface, we expect that
the temperature field T (x, z, t ) satisfies the heat conduction
equation [4]

ρCP
dT

dt
= −∇ · q,

where q = −T δR
δ∇T denotes the heat flux in the LC system and

CP is the heat capacity of the LC system.
The torque balance equation can be derived from the

dimension balance of elastic Tel = δWel

δn̂ × n̂, viscous

Tvis = δRvis

δn̂t
× n̂, and thermomechanical Ttm = δRtm

δn̂t
× n̂

torques, where Wel = 1
2 [K1(∇ · n̂)2 + K3(n̂ × ∇ × n̂)2] is the

elastic energy, and K1 and K3 are the splay and bend elastic
coefficients, n̂t ≡ dn̂

dt is the material derivative of n̂ = nx î +

nzk̂, whereas Rvis = α1(n̂ · Ds · n̂)2 + γ1(n̂t − Da · n̂)2 +
2γ2(n̂t − Da · n̂) · (Ds · n̂ − (n̂ · Ds · n̂)n̂) +α4Ds : Ds+(α5 +
α6)(n̂ · Ds · Ds · n̂) is the viscous contribution to the total
Rayleigh dissipation function R = Rvis + Rtm + Rth.
Here, 1

ξ
Rtm = (n̂ · ∇T )Ds : M + ∇T · Ds · M · n̂ + (n̂ · ∇T )

(n̂t − Da · n̂ − 3Ds · n̂ + 3(n̂ · Ds · n̂)n̂) · M · n̂+n̂(∇v)T ·M ·
∇T + 1

2 (n̂ · Ds · n̂)∇T · M · n̂ + n̂t · M · ∇T + 1
2M0∇T ·

∇v · n̂ + (n̂ · ∇T )M0(n̂ · Ds · n̂) + 1
2M0n̂t · ∇T and

Rth = 1
T (λ‖(n̂ · ∇T ))2 + λ⊥(∇T − n̂(n̂ · ∇T )2) are the

thermomechanical and thermal contributions to R,
respectively. Here, α1–α6 are the Leslie viscosity coefficients,
γ1(T ) and γ2(T ) are the rotational viscosity coefficients
(RVCs), ξ is the thermomechanical constant, and λ‖,
λ⊥ are the heat conductivity coefficients parallel and
perpendicular to the director n̂, respectively. Here,
Ds = 1

2 [∇v + (∇v)T] and Da = 1
2 [∇v − (∇v)T] are the

symmetric and asymmetric contributions to the rate of strain
tensor, M = 1

2 [∇n̂ + (∇n̂)T], and M0 = ∇ · n̂ is the scalar
invariant of the tensor M. We use here the invariant, multiple
dot convention: ab = aib j , a · b = aibi, A · B = AikBk j ,
and A : B = AikBki, where repeated Cartesian indices are
summed. Straightforward calculations for the geometry
n̂ = (nx, 0, nz ) give the dimensionless expressions for
the elastic Tel, viscous Tvis and thermomechanical Ttm

contributions to the torque balance equation, as well as to the
ST σ components and the entropy balance equation.

The dimensionless analog of the elastic, viscous, and ther-
momechanical contributions to the torque balance equation,
as well as of the stress tensor components are given in
Ref. [4], whereas the dimensionless analog of the heat flux
q = −T ∂R

∂∇T is given by

−qx = χ,x
(
λn2

x + n2
z

) + (λ − 1)nxnzχ,z + δ4∇x

(
χ

∂Rtm

∂∇χ

)
,

−qz = χ,z
(
λn2

z + n2
x

) + (λ − 1)nxnzχ,x + δ4∇z

(
χ

∂Rtm

∂∇χ

)
.

Finally, the dimensionless entropy balance equation takes the
form

χ,τ = [
χ,x

(
λn2

x + n2
z

) + (λ − 1)nxnzχ,z
]
,x

+ [
χ,z

(
λn2

z + n2
x

) + (λ − 1)nxnzχ,x
]
,z

+ δ4χ

(
∇ · ∂Rtm

∂∇χ

)
− ψ,zχ,x + ψ,xχ,z,

where ψ is the scaled analog of the current function for the
velocity field v = uî + wk̂ = −∇ × ĵψ .
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