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Low-frequency dielectric response of a periodic array of charged spheres
in an electrolyte solution: The simple cubic lattice
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We study the low-frequency dielectric response of highly charged spheres arranged in a cubic lattice and
immersed in an electrolyte solution. We focus on the influence of the out-of-phase current in the regime where
the ionic charge is neutral. We consider the case where the charged spheres have no surface conductance
and no frequency-dependent surface capacitance. Hence, the frequency dispersion of the dielectric constant
is dominated by the effect of neutral currents outside the electric double layer. In the thin double-layer limit,
we use Fixman’s boundary condition at the outer surface of the double layer to capture the interaction between
the electric field and the flow of the ions. For periodic conditions, we combine the methods developed by Lord
Rayleigh for understanding the electric conduction across rectangularly arranged obstacles and by Korringa,
Kohn, and Rostoker for the electronic band structure computation. When the charged spheres occupy a very small
volume fraction, smaller than 1%, our solution becomes consistent with the Maxwell Garnett mixing formula
together with the single-particle polarization response, as expected, because interparticle interactions become
less prominent in the dilute limit. By contrast, the interparticle interaction greatly alters the dielectric response
even when charged spheres occupy only 2% of the volume. We found that the characteristic frequency shifts
to a higher value compared to that derived from the single-particle polarization response. At the same time, the
low-frequency dielectric enhancement, a signature of charged spheres immersed in an electrolyte, becomes less
prominent for the periodic array of charged spheres. Our results imply that the signature of the dielectric response
of a system consisting of densely packed charged spheres immersed in an electrolyte can differ drastically from
a dilute suspension.
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I. INTRODUCTION

Immersing charged particles and flakes in an electrolyte
often results in an interesting electromagnetic response. For
instance, a strong low-frequency dielectric enhancement ac-
companied by a non-Lorentzian relaxation frequency depen-
dence is observed experimentally [1,2]. It had been argued
by Schwan et al. [1] that the conventional Maxwell-Wagner
relaxation, frequency-independent surface conductance, and
electrophoresis cannot fit their experiment results. The dielec-
tric enhancement strength depends not only on the amount of
charge, but also on the size and shape of the particles [3–12].
The frequency dispersion of the dielectric response also of-
fers a scheme to probe the microscopic state of suspended
colloids and particles in solution [1,12,13]. In addition, some
electronic devices, such as supercapacitors, are constructed
from similar physical systems, where charged particles are
densely packed into the electrolyte. Hence, a better theoretical
understanding of the dielectric response of such systems will
pave the way for new technologies and applications.

The theoretical study of the low-frequency dielectric re-
sponse of charged particles immersed in an electrolyte often
starts with obtaining the solution for the single-particle po-
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larization coefficient [14]. Because ions are responsible for
the conduction in electrolytes and form the so-called elec-
tric double-layer structure around a charged particle, solving
for the polarization coefficient requires the consideration of
diffusive ionic flows in the electrolyte, consistent with the
electric potential. Hence, compared to a similar classical
electrodynamics problem where a dielectric ball is embedded
into another dielectric material [15,16], the solution of the
polarization coefficient for a charged sphere immersed in an
electrolyte becomes nontrivial [4–6,8]. Based on different
single-particle polarization responses, various physical mech-
anisms have been proposed for qualitatively explaining the
observed dielectric dispersion and enhancement [2,3,8].

Two main mechanisms are often used for understanding
the experimentally observed phenomena. First, a frequency-
dependent surface complex conductance, based on the dif-
fusion of counterions constrained on the surface, was used
to explain the unusual dielectric enhancement [3]. On the
other hand, the out-of-phase neutral ionic current, outside the
double layer, can be another mechanism leading to the strong
low-frequency dielectric enhancement [8,17]. Both mecha-
nisms predict a characteristic relaxation frequency associated
with the particle size. The former mechanism requires the
introduction of particle size or activation energy distributions
to construct a broader non-Lorentzian frequency response for
the relaxation. In contrast, the latter naturally gives rise to the
non-Lorentzian relaxation as observed in experiments.
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With the single-particle polarization coefficient, some
types of effective medium approximation, such as Maxwell
Garnett [18,19] and Bruggeman [20] mixing formulas, are
often used for modeling the eventual dielectric response of
a mixture. In general, these effective medium theories aim
to take into account the effect of surrounding dipoles for the
included materials and yield different degrees of success for
mixtures of dielectric materials [14,21]. Because the diffusive
ionic flow far from the electric double layer can dominate and
lead to a strong low-frequency dielectric enhancement [8],
diffusive ionic flows centered around a charged particle will be
affected by the presence of other charged particles, an effect
which cannot be captured by effective medium approxima-
tions. As a result, it is of interest to study, even in an idealized
setup, the dielectric response of charged particles immersed in
an electrolyte beyond the usual effective medium approxima-
tion used with the single-particle polarization response.

In this paper, we will investigate the low-frequency dielec-
tric response of charged spheres forming a simple cubic lattice
immersed in an electrolyte. Our study focuses on the dielectric
enhancement mechanism due to the presence of the out-of-
phase current proposed by Chew and Sen [8]. The static limit
of a similar construction has been studied by Sen and Kan for
a two-dimensional array [22,23] and by Sen for the simple
cubic lattice [24]. Because a strict zero-frequency limit was
taken, only values of the real static conductivity are obtained
in the prior studies. As a result, the frequency dependence of
the complex dielectric constant (or equivalently conductivity)
and the low-frequency dielectric enhancement for a periodic
array of charged spheres immersed in the electrolyte are still
open questions.

Because our focus in this work is on how the neutral ionic
currents impact the dielectric response, our model will assume
that there is no surface conduction on the charged spheres.
Investigations into the effect of the surface conduction on
the dielectric response of periodic structures can be found in
Refs. [25,26]. In those papers, the dielectric response of a pe-
riodic array of charged spheres does not significantly deviate
from that obtained from the effective medium model with the
single-particle polarization response because the mechanism
leading to the dielectric enhancement there comes from the
surface conduction.

In order to capture the effect of the neutral ionic currents,
we follow Fixman’s thin double-layer approximation for de-
riving a pair of effective boundary conditions just outside the
electric double layer [5]. These boundary conditions couple
the perturbed potential and ion concentrations, due to the driv-
ing external field. We then use Lord Rayleigh’s method, later
corrected and expanded upon by McPhedran and Mckenzie,
for deriving the periodic condition for the perturbed potential
[27–29]. In addition, the Korringa, Kohn, and Rostoker (KKR)
method, developed for band structure calculations in solids, is
used to derive a periodic condition, with a vanishing Bloch
vector, for the perturbed ion concentration [30,31]. Combin-
ing these three parts gives a set of coupled linear equations
that provide the complete functional form of the perturbed
potential and ion concentrations, up to arbitrary order of the
angular momentum number 〈l, m〉, in the electrolyte solution
outside the double layer. Finally, Lord Rayleigh’s Green’s
theorem trick [27] is used to extract the complex conductivity

from the l = 1, m = 0 coefficient in the expansion of the
perturbed potential solution [27].

The paper is organized as follows. In Sec. II, we dis-
cuss the fundamental governing equations and Fixman’s thin
double-layer approximation for the electric potential and the
ion concentration. In Sec. III, periodic boundary conditions
associated with the perturbed electric potential, using Lord
Rayleigh’s method, and with the ion concentrations, using the
KKR method, are developed. In Sec. IV, we first establish
the link between the expansion coefficients of the electric
potential in terms of spherical harmonics to the complex
conductivity of the model. We then derive the formula for
the complex conductivity to the lowest order in the angular
momentum cutoff. In Sec. V, we present the complex conduc-
tivity evaluated with higher order angular momentum cutoffs.
We illustrate the scheme for setting up numerical evaluations
and demonstrate the convergence of the result for the complex
conductivity to numerically accessible orders. Qualitatively,
our studies show that the single-particle polarization response
cannot be used to represent the dielectric response of the
system even with a fairly small volume fraction, 2%, occupied
by the charged spheres. We provide some discussion on
the implications of our results in Sec. VI and then a brief
summary in Sec. VII. In the Appendix, we review the scheme
for evaluating the “structure factors,” geometrical constants
required for completing the periodic boundary conditions in
our computation.

II. FORMULATION OF THE MODEL
AND BOUNDARY CONDITIONS

As depicted in Fig. 1, we consider a system consisting
of identical charged spheres with radius a arranged in a
simple cubic lattice with spacing b immersed in an electrolyte
solution. The spheres are assumed to carry uniformly dis-
tributed negative charges. An electric double layer dominated
by the counterions with thickness of a few Debye lengths λ =√

εwkBT/(2e2
0N0) will surround each charged sphere. Here,

FIG. 1. A schematic plot shows the studied system. Surface
charged spheres with radius a form the cubic lattice with spacing b
and are immersed in an electrolyte. An electric field is applied along
one of the principal axes of the lattice in the x direction. Around each
sphere, an electric double layer is formed to screen the negatively
charged spheres. In equilibrium, the counterions in the double layer
fully screen the negative surface charge. The thickness of the electric
double layer, δ, is on the order of a Debye length λ. Outside the
double layer, the electrolyte remains charge neutral in equilibrium.
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εw is the permittivity of the electrolyte, N0 is the equilibrium
ion concentration in the electrolyte, e0 is the absolute value
of the electron charge, kB is the Boltzmann constant, and T
is the temperature of the electrolyte. For simplicity, we will
consider monovalent ions. Although the relative permittivity
of water is expected to be reduced near the surface [32,33],
we will assume that εw inside the electric double layer has
the same value as that in the bulk electrolyte. Considering
that λ is usually in the range of a nanometer, the thin double-
layer condition λ � a is easily satisfied even for submicron
sized particles. The surface charge of the spheres is fully
screened by the net charge in the double layer. We also assume
that the whole system remains charge neutral, i.e., there are
excess counterions, either naturally coming from the cations
originally attached to the charged spheres or extra sources, in
the electrolyte which balance out the negative charges carried
by the spheres. Hence, the electrolyte remains charge neutral
outside the electric double layer.

The hydrodynamic flows are assumed to be small com-
pared to the conductive currents. This is a valid assumption if
the net potential drop across the double layer is comparable to
or smaller than kBT/e0 [34]. Furthermore, Fixman has shown
that electrophoresis flows only add qualitative modifications
to the polarization response due to ionic current flows [35].
Hence, we will only focus on the direct ionic currents that
consist of the conductive and the diffusive currents. Both
the cation and anion currents J± separately obey continuity
equations given by

−→∇ · �J± = −∂N±
∂t

, μ± = ln N± ± e0�

kBT
,

�J± = −DN±
−→∇ μ± = −D

(−→∇ N± ± e0N±
kBT

−→∇ �

)
. (2.1)

Here, N± are the ionic densities for the cations and anions,
� is the potential, and μ± are the ionic chemical potentials
in the electrolyte. For simplicity, the diffusion coefficients of
both the cations and anions D are assumed to be equal.

Now, subject the system to a small and quasistatic [36]
periodic driving electric field �E = H exp(−iωt )x̂. We can
rewrite the ionic densities and the potential as follows:

N± = Neq
± + n±, � = �eq + ψ,

�J± ≈ −D

[−→∇ n± ± e0

kBT
(Neq

±
−→∇ ψ + n±

−→∇ �eq )

]
. (2.2)

Here, the superscript “eq” denotes equilibrium values in the
absence of the driving field �E . It is assumed that the perturba-
tions due to the electric field are small: n± � Neq

± and ψ �
�eq. Thus, we neglect the second order terms in the equation
for the current. We also used the fact that in equilibrium, both
currents vanish by definition.

The potential satisfies the Poisson equation that relates it
to the charge density. Because of superposition, the perturbed
potential ψ and perturbed charges n+ and n− will separately
satisfy the Poisson equation given by

−→∇ · ε
−→∇ ψ = −e0(n+ − n−). (2.3)

In this equation, ε is the dielectric constant given by εw outside
the particle and εp inside the particle.

Outside of the double layer, the equilibrium ion densities
simply equal the bulk ion densities Neq

± = N0. The equilibrium
potential obeys the simple Laplace’s equation ∇2�eq = 0. In
addition, the electrolyte always remains neutral outside the
double layer, with or without the driving field [5] (a proof
showing this condition with our current notation can be found
in Ref. [11]). As a result, n+ = n− ≡ n. Furthermore, the ionic
currents simplify greatly outside the double layer:

J± = −D

(−→∇ n ± eN0

kBT

−→∇ ψ

)
. (2.4)

This equation, combined with the ion continuity equation,
gives us a remarkably simple pair of equations that charac-
terize all the physics beyond the double layer:

∇2ψ = 0, ∇2n = − iω

D
n. (2.5)

Here, we have written the governing equations in the fre-
quency domain with the time variation of the ion concentra-
tion following the influence of applied electric field n(t ) =
n exp(−iωt ), where ω = 2πν is the radial frequency with ν

being the regular frequency.
The strategy forward is then to incorporate all the physics

within the double layer into a pair of boundary conditions
relating ψ and n at the edge of the double layer r = a + δ.
For that, we integrate the continuity equation along the radial
spherical coordinate centered on one of the spheres [5]:

iω
ˆ a+δ

a
n±dr = Jr

±|a+δ +
ˆ a+δ

a

−→∇ ‖ · J‖
±dr. (2.6)

Jr
± and J‖

± are ionic currents normal (in the radial direction)
and parallel to the surface of the sphere, respectively. Here, we
have used the boundary condition that the normal ionic current
must vanish at the sphere’s surface, r = a. By using Eq. (2.1),
we can further simplify the parallel part of the divergence as

−→∇ ‖ · J‖
± = −D[

−→∇ ‖N± · −→∇ ‖μ± + N±
−→∇ ‖ · −→∇ ‖μ±]

≈ −DN±
−→∇ ‖ · −→∇ ‖μ±. (2.7)

To derive the last step, we note that the physics around
each sphere remains radially symmetric in the absence of
the driving field �E even in a periodic array, as long as
the charged spheres are separated by at least several Debye
lengths or, equivalently, the double layers around different
spheres do not overlap. This is because, under this assumption,
easily satisfied in all but the close-packed geometry, the
screening by the double layer around each sphere ensures
the electric field from surface charge on that sphere does
not directly affect the charge dynamics on other spheres
nearby. From such radial symmetry we have, in equilib-
rium,

−→∇ ‖Neq = 0 and
−→∇ ‖�eq = 0. Because both

−→∇ ‖μ± ≈
(
−→∇ ‖n±) ± (e/kBT )

−→∇ ‖ψ and
−→∇ ‖N± = −→∇ ‖n± are first order

in the perturbation, their product is a second order term that
can be safely neglected.

Furthermore, we note that
−→∇ μ± are conservative vector

fields (their curl is zero) and thus their tangential component
is uniform over short distances in the radial direction as long
as their radial components are finite [37]. This means that we
can treat

−→∇ ‖ · −→∇ ‖μ± in Eq. (2.7) as a constant and take it
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out of the radial integrals in Eq. (2.6). Assuming D is constant
across the double layer, these integrals simply give the ion
densities per unit area in the double layer. Let us assume that
the negative surface-charge density on the sphere � is so large
that the ions in the double layer are predominantly cations
[38]. Then, it follows from the perfect screening of this surface
charge by the double layer that

ˆ a+δ

a

−→∇ ‖ · J‖
+dr ≈ −D�

−→∇ ‖ · −→∇ ‖μ+,

ˆ a+δ

a

−→∇ ‖ · J‖
−dr ≈ 0. (2.8)

Because
−→∇ ‖ · −→∇ ‖μ+ is uniform across the double layer, we

can choose its value to be evaluated right at the outer boundary
r = a + δ, just like that of Jr

± in Eq. (2.6). When the diffusion
coefficient D is not constant, a weighted surface cation density
can be used, instead, for the rest of this discussion [24].

Finally, the only term not yet expressed in terms of physical
quantities outside the double layer is the left-hand side of
Eq. (2.6). This term, which represents the radial integral of
n±, turns out to be negligible. To show this, it suffices to show
that it is much smaller than the radial current. We expect n−
to be very small inside the double layer, so that, according to
Eqs. (2.6) and (2.8), the radial current for the negative ions at
the outer boundary of the double layer should be close to zero.
That means that the radial derivative of the perturbed charge
and of eN0/kBT times the perturbed potential are similar in
size. Because the radial current for the positive ions is the
sum of these two terms, we need only to determine when one
of these terms is significantly larger than the left-hand side of
Eq. (2.6). To do so, we will follow Fixman’s argument and
integrate Poisson’s equation for the perturbed potential (2.3)
from just inside the surface of the particle to the outer edge of
the double layer to obtain

εw

∂ψ

∂r

∣∣∣∣
r=a+δ

− εp
∂ψ

∂r

∣∣∣∣
r=a−

≈ −e
ˆ a+δ

a
n+dr. (2.9)

In this equation, we have neglected the integral over the
tangential derivative of ψ . When the dielectric constant inside
the particle is zero, we then have

−D
eN0

kBT

∂ψ

∂r

∣∣∣∣
r=a+δ

≈ D

δ2

ˆ a+δ

a
n+dr, (2.10)

where we have used the fact that the double-layer thickness δ

is in the same order of the Debye length λ. Thus, the left-hand
side of Eq. (2.6) can be ignored when ω � D/δ2. When the
dielectric constant inside the particle, εp is not zero, this bound
will decrease.

By combining Eqs. (2.6) and (2.8), and neglecting the
smaller terms at low frequency, we have the following effec-
tive boundary conditions at the outer edge of the double layer:

Jr
−|r=a+δ = 0, Jr

+|r=a+δ − D�
−→∇ ‖ · −→∇ ‖μ+|r=a+δ = 0.

(2.11)

Now, using Eqs. (2.1) and (2.4), we can explicitly write the
two equations as

0 = ∂n

∂r
− eN0

kBT

∂ψ

∂r

∣∣∣∣
r=a+δ

,

0 = −
(

∂n

∂r
+ eN0

kBT

∂ψ

∂r

)
− �

N0

L2

r2

(
n + eN0

kBT
ψ

)∣∣∣∣
r=a+δ

.

(2.12)

Here, we introduced the usual shorthanded L for the angular
momentum operator that is the tangential component of the
Laplace operator: L2/r2 = ∇2 − ∂2/∂r2. These two boundary
conditions at r = a + δ ≈ a, combined with the equations of
motion (2.5) for the ion density n and the potential ψ , com-
pletely characterize the physics beyond the double layer. In
the following section, we will discuss the periodic conditions
required for solving these equations when the charged spheres
are arranged in a simple cubic lattice.

Let us set the origin of the spherical coordinate system at
the center of one sphere. Then, the general solutions for n and
ψ in Eqs. (2.5) are

ψ =
∞∑

l=0

l∑
m=0

[Almrl + Blmr−l−1]Pm
l (cos θ ) cos(mφ), (2.13)

n =
∞∑

l=0

l∑
m=0

[Clm jl (κr) + Dlmnl (κr)]Pm
l (cos θ ) cos(mφ).

(2.14)

Here, Pm
l (x) are the associated Legendre polynomials, and

jl , nl are the lth order spherical Bessel functions of the first
and second kinds [15,39]. In addition, κ = √

iω/D = (1 +
i)

√
ω/(2D) is a complex wave vector. Here, we have chosen

a coordinate system such that the solutions of ψ and n are an
even function of φ, i.e., the reference axis for the azimuthal
angle φ is along one of the principal axes of the simple cubic
lattice [29].

Unlike in the case of a single sphere, the expansion of
the general solution in Eq. (2.13) contains terms of the form
rl which diverge at infinity. Because we are using a lattice
with multiple centers, these terms are incoming waves which
arise from the scattered waves leaving the other centers in the
framework of multiple scattering theory. This physical picture
will prove to be the key to solve for ψ in a periodic lattice
[27]. Similarly, both the jl and nl terms diverge at infinity in
Eq. (2.14). Again, an understanding of the multiple scattering
nature of the system is required for us to proceed [30,31].

Considerable simplification can be achieved by carefully
taking into account the symmetry. For a simple cubic lattice
with �E aligned along its major axis, the potential must change
signs when θ goes to π − θ . As a result, only odd integers l
are allowed in the solutions. Because a rotation of π/2 around
the azimuthal axis leaves the system invariant, only m’s that
are divisible by four are allowed in both expansions. Further-
more, because the crystal lattice breaks the rotational symme-
try, unlike in the case of a spherically or axially symmetric
single scatterer (e.g., a sphere or a cylinder), m �= 0 terms
in both expansions cannot be ignored. We will see explicitly
in the next section that the structural constants derived from
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the crystal structures couple different angular momentum
states.

By inserting Eqs. (2.13) and (2.14) into the boundary
conditions in Eq. (2.12) at the outer surface of the double

layer r = a + δ ≈ a, using L2Pm
l (cos θ ) cos(mφ) = −l (l +

1)Pm
l (cos θ ) cos(mφ), and matching the coefficients of the or-

thogonal basis sets Pm
l (cos θ ) cos(mφ), we have the following

coupled linear equations relating the coefficients Alm, Blm,

Clm, and Dlm:

κ[Clm j′l (κa) + Dlmn′
l (κa)] − [lAlmal−1 − (l + 1)Blma−l−2] = 0,

−2κ[Clm j′l (κa) + Dlmn′
l (κa)] + �

N0

l (l + 1)

a2
[(Almal + Blma−l−1) + Clm jl (κa) + Dlmnl (κa)] = 0. (2.15)

Here, we have absorbed the factor (e/kBT ) into the definition
of ψ and have rescaled n(�r) → N0n(�r). The primed functions
n′

l and j′l are the derivatives of the spherical Bessel functions.
The matched boundary conditions in Eq. (2.15) do not mix
terms with different 〈l, m〉 indexes.

It is worthwhile to discuss some physical implications
of the governing equations in Eq. (2.5) and the boundary
conditions in Eq. (2.15). First, when combining Eqs. (2.5) and
(2.15) with the two extra boundary conditions, ψ → −Hx and
n → 0 at |�r| → ∞, which are applicable for a single sphere,
one can show that only the � = 1 term is nonvanishing and
derive the single-particle polarization response for a charged
sphere immersed in the electrolyte, given by [8,9,11]:

P =
ξ − (

1 − ξ

κa
h(1)

1 (κa)

h′(1)
1 (κa)

)
ξ + 2

(
1 − ξ

κa
h(1)

1 (κa)

h′(1)
1 (κa)

) , (2.16)

where ξ ≡ �/(N0a) can be viewed as the effective ratio of
the particle conductivity to the electrolyte conductivity. Also,
h(1),(2)

� ≡ j� ± in� are the spherical Hankel’s function of the
first and second kinds [39], respectively, and h′(1),(2)

� are their
derivatives. This single-particle polarization response is often
the starting point for constructing effective medium models
to describing the response of the complex conductivity [14].
As the baseline for our following discussions, we will use this
result together with the Maxwell Garnett mixing formula to
obtain a prediction for the dielectric response. Typically, this
approach is valid for low volume fractions of the spheres and,
as we will show later, at higher frequencies.

In addition, the Helmholtz equation for the perturbed ion
density in Eq. (2.5) indicates that there is a length scale for
the decay given by

√
D/ω. Hence, the length scale becomes

longer at lower frequencies. Given that D ∼ 10−9 m2/s, the
decay length scale is on the order of microns for ω ∼ 103

radians/s. This implies that the presence of obstacles or other
charged spheres within the length scale of the decay will
interfere with the ion redistribution due to the applied electric
field. Hence, we expect that the polarization response of
densely packed charged spheres will exhibit different behavior
compared to that for a single charged sphere in Eq. (2.16)
at low frequency. Periodic boundary conditions, which will
be derived in the next section, will allow us to account for
the interference of the polarization response between different
charged spheres.

To conclude this section, it is worthwhile to emphasize
that two dimensionless parameters ξ = �/(N0a) and
κa = √

iω/Da dictate the dielectric response of the system

in the absence of nearby spheres. In addition, the length scale
of the lattice spacing b will naturally give the associated
dimensionless parameter κb. In addition to an overall
multiplication amplitude depending on the background
electrolyte properties εw and σw, we can argue that the
dispersive dielectric response of the system will be completely
determined by these three dimensionless parameters ξ , κa,
and κb. In terms of explicit physical quantities, the dielectric
response of the considered setup is influenced by the sphere
size a, the lattice constant b, the surface charge density �,
and the electrolyte concentration N0.

III. PERIODIC BOUNDARY CONDITIONS

We will now derive the corresponding periodic boundary
conditions for both Laplace’s equation, satisfied by the elec-
tric potential, and the Helmholtz equation, satisfied by the ion
densities, for a periodic arrangement of charged spheres. It is
useful to recognize that the two conditions are independent of
each other. All the interactions between the potential and the
ion density are encoded in the boundary conditions discussed
in the previous section. However, because the presence of the
lattice structure breaks the spherical symmetry, we expect that
the periodic conditions will mix terms with different 〈l, m〉
indices.

A. Periodic conditions for the Laplace equation

The conceptually simpler of the two conditions is the
one for the Laplace equations in a periodic array for ψ . As
illustrated by Lord Rayleigh [27], insight can be gained by
carefully studying the structure of the general solution given
in Eq. (2.13). The potential ψ in the space outside the sphere
at origin O has three contributions: (i) the part that comes
from the charges on the surface of this sphere (its double
layer, etc.); (ii) the part contributed by the charges of all other
spheres; and (iii) the external driving potential −�E ·�r. Part (i),
and only this part, will decay monotonically as r increases.
This is represented by the decreasing parts, the r−l−1 terms,
in the general solution evaluated point Q = (r, θ, φ), given
in Eq. (2.13). Conceptually, these are equivalent to the “out-
going waves” of ψ with the sphere at the origin O as the
“source.”

The “incoming waves,” consisting of the rl terms in the
general solution, must be precisely contributed from (ii) the
surface charge of all the other spheres and (iii) the driving
potential. However, from the point of view of the other
spheres i, what it is contributing is precisely its outgoing
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wave, of the form
∑

lm Blmρ−l−1
i Pm

l (cos θi ) cos(mφi ), where
(ρi, θi, φi ) are the coordinates of the point Q above, but in
the spherical coordinate system centered at the ith sphere.
Here, we have used the fact that the lattice is periodic, which
means that the spheres’ Alm and Blm coefficients are the
same.

With these observations, we have a powerful identity, valid
for any point Q (a more complete proof than the argument
given here can be found in Sec. 2 of Ref. [29]):

∞∑
l=1

2l−1∑
m=0

A2l−1,mr2l−1Pm
2l−1(cos θ )cos(mφ)

=
∑
i �=0

∞∑
l=1

2l−1∑
m=0

Blmρ−2l
i Pm

2l−1(cos θi )cos(mφi ) − Hx.

(3.1)

Here, we use the form of the expansion in Eq. (2.13) and
take into account that only terms with odd integer l have non-
vanishing coefficients due to the symmetry. Again, (r, θ, φ)
is the coordinate of point Q in the polar coordinate system
centered at the origin O, whereas (ρi, θi, φi ) is the same point
represented in coordinates centered around the sphere i not at
the origin: �ρi = �r − �Ri, where �Ri = (Ri,�i,�i ) is a nonzero
Bravais lattice vector.

The most straightforward way to extract useful equations
relating Alm and Blm from Eq. (3.1) is to use a generalization
of the addition theorem (cf. Ref. [29]) to transform between
representations in polar coordinate systems centered around
different origins:

Pm
l (cos θi )eimφi

ρ l+1
i

=
∑
l ′m′

(−1)l+m′ (l + l ′ + m′ − m)!

(l − m)!(l ′ + m′)!
rl ′

Rl+l ′+1
i

× Pm′
l ′ (cos θ )Pm−m′

l+l ′ (cos �i )e
im′φei(m−m′ )�i .

(3.2)

Putting Eq. (3.2) back into Eq. (3.1) and using the orthogo-
nality of the Legendre polynomials, we obtain the following
equations for Alm, Blm [cf. Eq. (16) of [29]]:

−Hδl1δm0 =
∞∑

l ′=1

2l ′−1∑
m′=0

′
{
δll ′δmm′

(2l − 1 + m)!

(2l − 1 − m)!εm
A2l ′−1,m′

+ (−1)m<U |m′−m|
2(l+l ′−1) + U m+m′

2(l+l ′−1)

2(2l − 1 − m)!(2l ′ − 1 − m′)!
B2l ′−1,m′

}
,

(3.3)

where m< is the smaller of m, m′; εm = 1 for m = 0 and 2
otherwise; and the prime in the summation indicates that only
those m divisible by 4 are included. The U m

l are a series of
geometric factors, similar to the “structure factors” Gl,m;l ′,m′

below in the KKR calculations and are defined as

U m
l = (l − m)!

∑
i �=0

R−l−1
i Pm

l [cos(�i )] cos(m�i ). (3.4)

Once these sums, over all nonzero Bravais vectors Ri, are
computed and tabulated [28], all the coefficients in the linear
equations (3.3) are determined.

B. Periodic conditions for the Helmholtz equation

In this section, we will use the periodicity of the lattice to
derive an additional relation between the coefficients Clm and
Dlm that appear in the expansion for the perturbed ion density.
To obtain this relation, we will make use of a formulation
adapted from the KKR method (described more fully below.)
This method requires only that we can express our problem in
terms of a periodic potential that is nonzero only in a localized
region inside each unit cell. In our case, this region can be
taken to be the space occupied by the spherical particle and
its double layer. As we will show below, only the existence of
this effective (or “fictitious”) potential is required. The actual
form of this potential does not matter and does not need to be
considered.

To solve the Helmholtz equation for the perturbed ion
density n in the charge-neutral liquid outside the double
layer, we need to take full advantage of the periodicity of
the lattice. Because the boundary conditions in Eq. (2.12)
involve only derivatives of the potential ψ , and the derivative
of the potential from the driving force �E ·�r has no spatial
dependence, the ion concentration n is indeed translationally
invariant with respect to the Bravais lattice vectors. Hence, our
solution should satisfy Bloch’s theorem, given by

n�k (�r + �Ri ) = n�k (�r) exp(i�k · �Ri ) (3.5)

for all Bravais lattice vectors �Ri. This reduces all the physics
to a single primitive cell.

To proceed, we now adapt the KKR method [30,31], which
deals with the so-called “muffin-tin” potential: a localized po-
tential that is nonvanishing only in a small sphere at the center
of the unit cell. Although our problem does not really have
such a potential, we can justify the existence of an effective
potential of that form as follows: the boundary conditions in
Eq. (2.15) will cause a complex phase shift for each partial
wave component at the boundary of the double layer. As can
be seen in Eq. (2.14), the contribution for each l and m can
be rewritten as a sum of an incoming and outgoing 1D wave,
and the ratio between the two amplitudes gives the complex
phase shift. For each of these partial wave components, the
Helmholtz equation thus reduces to a 1D radial problem (cf.
Ref. [40], Sec. 32), and one can always find an equivalent
potential that creates the same phase shifts ([40],Sec. 21). Be-
cause the waves are freely propagating, except at the boundary
of the double layer, the equivalent potential can always be
chosen so that it vanishes outside of the double layer. Note
that when the partial waves are recombined, the full equivalent
potential V (�r) is generally no longer spherically symmetric,
but is still confined within the sphere. For simplicity of
notation, we will use an effective “Schrödinger equation”
with an equivalent potential V in our formal derivations
below. More accurately, the potential V should be thought
of as an abstract operator encoding boundary changes that
is spatially confined within the sphere and the thin double
layer.

Here, we will derive our formalism in a slightly different
way from the original variational approach used by the KKR
method [30,31]. As hinted in the Appendix in Kohn and
Rostoker’s original paper, we will use the Green’s function
and integral equation formalism, although the basic physics
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is that of multiple scattering. It is worth noting that our
derivations do not depend on the specific form of V other than
that it vanishes outside the sphere and double layer, and we are
able to arrive at the final coupled equations for the coefficients
Clm and Dlm.

Let us start with the Green’s function for the wave equation
in free space:

(∇2 + E )GE (�r,�r ′) = δ(�r −�r ′),

GE (�r,�r ′) = − eiκ|�r−�r ′|

4π (|�r −�r ′|) . (3.6)

Here, E ≡ iω/D = κ2 to be consistent with Helmholtz equa-
tion of interest defined in Eq. (2.5). As discussed above, we
convert the boundary conditions into a fictitious short-range
single-site potential V (�r) confined within the sphere. Effec-
tively, our problem is described by the following equations:

−∇2n(�r) + U (�r)n(�r) = En(�r),

n(�r) =
ˆ

GE (�r,�r ′)U (�r ′)n(�r ′)d3�r ′, (3.7)

where the integral is over the entire space and U is the
single-site function V translated to every site in the lattice
of spheres. Thus, U is the true “potential” of the lattice.
The second equation is simply the integral form of the first
equation given Eq. (3.6). This can be verified by applying the
operator ∇2 + E to both sides of the integral equation, where
the ∇ acts on the vector�r.

We now break up the integral over all space in Eq. (3.7)
into a summation over each unit cell and then make a change
of variable �r ′′ = �r ′ − Ri in each unit cell. This translates the
integral back to the unit cell containing the origin of our
polar coordinates. Because the Ri are Bravais lattice vectors,
we have, by Bloch’s theorem, n�k (�r + �R) = n�k (�r) exp(i�k · �R),
whereas the translated part of U becomes V in the unit cell
at the origin. Finally, the integral equation becomes (with
r′′ → r′ at the end)

n(�r) =
ˆ

D
GE ,�k (�r,�r ′)V (�r ′)n(�r ′)d3�r ′,

GE ,�k (�r,�r ′) =
∑

i

GE (�r,�r ′ + �Ri )e
i�k·�Ri . (3.8)

Here, the domain of the integral D covers only the single unit
cell at the origin. The summation is over all Bravais lattice
points and encodes all the information of Bloch’s theorem
into a modified Green’s function GE ,�k , which depends on an

undetermined wave vector, �k.
In the usual band structure computation, the relation be-

tween E = κ2 and �k is simply the dispersion relation and
is obtained from a secular equation. However, the presence
of the nonhomogeneous equation (3.3) (the −H term for
l = 1, m = 0) coupled to the rest of boundary conditions
(2.15) separates our case from usual quantum mechanics
calculations. This makes physical sense because the size of n
should be set by the strength of driving field H . Also, unlike in
quantum mechanics, where the periodicity of the expectation
value over the complex wave function is not affected by a

Bloch phase factor, the ion density n(ω) is a “true” physical
observable with its periodicity directly affected by the Bloch
vector �k. We thus need to honor this periodicity, except when
there is mechanism to break it. Because we are interested in
the linear response regime with respect to the driving electric
field, we shall require our solution to preserve the spatial
periodicity. In this spirit, we can only have �k = 0, which is
consistent with the condition used in Refs. [22,23] at the
frequency ω = 0. Hereafter, we will drop all the�k dependence
with the understanding that we have already taken �k = 0.

The confinement of the “potential” or operator V within a
sphere (the original sphere plus a thin double layer) brings a
further simplification: the domain D of the integral in Eq. (3.8)
is in fact the sphere with r � a + δ ≈ a. Let us consider
two points �r and �r ′ within domain D. First, we observe
that, analogous to Eq. (3.6), (∇′2 + E )GE (�r,�r ′) = δ(�r −�r ′),
where the prime on the ∇ indicates that the derivative is with
respect to the vector �r′. This is because only the first term,
with R = 0 in the summation in Eq. (3.8), is relevant for r and
r′ � a. Multiplying both sides by n(�r ′) and integrating over
the unit cell D, we have

n(�r ) =
ˆ

D
d�r ′n(�r ′)(∇′2 + E )GE (�r,�r ′). (3.9)

On the other hand, we have (∇′2 + E )n(�r ′) = V (�r ′)n(�r ′)
within domain D. Multiplying both sides by GE , integrating
both sides over D, and then using Eq. (3.8), we have

n(�r ) =
ˆ

D
d�r ′GE (�r,�r ′)(∇′2 + E )n(�r ′). (3.10)

By subtracting Eq. (3.9) from (3.10), and using the identity
A
−→∇ · −→∇ B = −→∇ · (A

−→∇ B) − −→∇ A · −→∇ B, we can convert the
volume integral into a surface integral, evaluated at the outer
edge of the double layer �:

ˆ
�

dS′
[

n(�r ′)
∂

∂r′G(�r,�r ′) − G(�r,�r ′)
∂

∂r′ n(�r ′)
]

= 0. (3.11)

This integral equation on the outer surface of the double layer
encodes all the physics, from the periodic structure to the
boundary conditions, throughout the entire space [41].

The general solution for n in Eq. (2.14) provides an explicit
expression at the surface � in terms of the associated Legen-
dre polynomials. An expansion of G can be derived from the
addition theorem for the Legendre polynomials (cf. Ref. [31],
Appendix II), given by

GE (�r,�r ′) =
∑
l,m

∑
l ′,m′

[Glm;l ′m′ (κ ) jl (κr) jl ′ (κr′)

+ κδl,l ′δm,m′ jl (κr)nl (κr′)]Ylm(θ, φ)Y ∗
l ′m′ (θ ′, φ′),

(3.12)

where Ylm(θ, φ) are the spherical harmonics which can be
easily related to the associated Legendre polynomials [15].
Also, Glm,l ′m′ (κ ) are so-called “structure factors” (denoted as
Alm,l ′m′ in Ref. [31]) and depend only on E and the lattice
structure. The functional forms for the structure factors are
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given by [31]

Gl,m;l ′,m′ (κ ) = − (4π )2i(l−l ′ )

τ jl (κr) jl ′ (κr′)

∑
n

jl (|�Kn|r) jl ′ (|�Kn|r′)Y ∗
lm(θn, φn)Yl ′m′ (θn, φn)

(�Kn +�k)2 − E
− κδll ′δmm′

nl (κr′)
jl (κr′)

. (3.13)

Here, τ is the volume of the unit cell. The �Kn are the vectors of the reciprocal lattice, and θn and φn are the polar angles of �Kn

relative to the origin. For the simple cubic lattice, we have τ = b3 and �Kn = (2π/b)(nxx̂ + nyŷ + nzẑ) for integer nx,y,z. Values of
Gl,m;l ′,m′ (κ ) for real E have been extensively tabulated for KKR calculations [42]. However, in our problem, E = κ2 = iω/D, an
imaginary number, which means it is outside the typical region of interest for the KKR calculations. Hence, we need to evaluate
the slowly converging sum in Eq. (3.13). In Appendix, we will review an efficient method for computing the structure factor
developed by Ham and Segall [43].

By substituting Eq. (3.12) and the general solution for n in Eq. (2.14) into the surface integral equation (3.11), and carrying
out the angular integration using the orthogonality of the functions Pm

l (cos θ ′) cos(φ′), we obtain linear equations involving
Clm, Dlm given by

−κ
1

εm
√

4l − 1

√
(2l − 1 + m)!√
(2l − 1 − m)!

C2l−1,m +
∞∑

l ′=1

2l ′−1∑
m′=0

1

2
√

4l ′ − 1

√
(2l ′ − 1 + m′)!√
(2l ′ − 1 − m′)!

[G2l−1,m;2l ′−1,m′ + (−1)m′
G2l−1,m;2l ′−1,−m′ ]

× D2l ′−1,m′ = 0. (3.14)

Again, we have used the fact that all the Clm and Dlm with even
index l vanish, and that εm = 1 for m = 0 and is 2 otherwise.

We now have a set of linear equations for the coefficients
Al,m, Bl,m, Cl,m, and Dl,m given by Eqs. (2.15), (3.3), and
(3.14). Given an angular momentum cutoff {l � L, m � M},
there are exactly the same number of unknowns and equations.
As a result, we can, in principle, evaluate these coefficients
to arbitrary precision by increasing the values of the cutoff
〈L, M〉. In the next section, we will show that only B1,0

is needed to obtain the complex dielectric constant of the
system.

To conclude, we note that the boundary conditions at the
interface, as derived in Sec. II, allow us to effectively include
the effect of the local field variation due to the presence of
a single sphere. On the other hand, the periodic boundary
conditions derived in the present section allow us to include
the influence of the surrounding spheres, which will further
modify the local electric field. Hence, our calculation will
self-consistently capture the full effect from the variation of
the local field from the applied field.

IV. COMPLEX CONDUCTIVITY: RELATION TO B1,0 AND
THE LOWEST ORDER FORMULA

In this section, we first follow Lord Rayleigh [27] by relat-
ing the value of the complex conductivity to the coefficient
B1,0 in Eq. (2.13). With this relation, we derive the lowest
order formula for the complex conductivity. We will then
compare this derived formula to that of the single-particle po-
larization response from the Maxwell Garnett mixing formula.

The basis of Lord Rayleigh’s trick starts with the following
form of Green’s theorem:‹

�

dS(φ n̂ · −→∇ ψ − ψ n̂ · −→∇ φ) = 0, (4.1)

where � is the surface of a singly connected region D, n̂
is the unit vector normal to this surface, and ψ and φ are
potentials obeying Laplace’s equation. We now choose D to
be the region between the sphere and the boundary of the unit
cell and take ψ to be our potential in Eq. (2.13). Assuming

the external field �E is along the z direction, we take φ = z =
r cos θ .

To evaluate the integral, we begin with the four surfaces of
the unit cell that are parallel to the z direction. The electric
field

−→∇ ψ and the gradient of φ at each of these four surfaces
are parallel to the surfaces due to the symmetry of the simple
cubic lattice. Thus, the surface integral vanishes on these
four sides. Next,

−→∇ ψ evaluated at the other two sides of
the unit cell is perpendicular to these two sides. Its magni-
tude is −Ez(x, y)|z=±b/2 = − jz(x, y)/σw because the medium
there is simply the interstitial electrolyte solution outside
the double layer, with conductivity σw(ω). Here, we have
used the periodic condition Ez(x, y)|z=+b/2 = Ez(x, y)|z=−b/2.
Then, the first term of the surface integral in Eq. (4.1) simply
gives b3〈 jz〉/σw with 〈 jz〉 defined as surface averaged current
density at the cell boundary normal to the applied electric
field.

The second term of the integrand evaluated at these two
surfaces is simply the drop in potential ψ between the two
sides. By the translational symmetry in the z direction of the
lattice and perturbed charges, this potential drop is simply Hb
[28]. Finally, the contribution from the inner sphere surface
can be computed because the cos(θ ) = P1(cos θ ) angular
dependence of φ and ψ leaves only the 〈l = 1, m = 0〉 term
nonvanishing. Putting all these together, we can write the
complex conductivity σs of the mixture as

σs = 〈 jz〉
H

= σw(ω)

(
1 + 4πB1,0

Hb3

)
. (4.2)

Here, σw(ω) = σ ′
w(ω) − iε0ωε′

w(ω) is the frequency-
dependent conductivity of the electrolyte solution, where
ε′
w(ω) and σ ′

w(ω) are the relative permittivity and conductivity
of the electrolyte. As usual, ε0 is the vacuum permittivity.
Thus, to get the complex conductivity of charged spheres
arranged in simple cubic lattice immersed in the electrolyte
solution, one only needs the single coefficient B1,0 in the
solution (2.13).
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To further simplify our computations, it is convenient to
rescale all quantities with respect to the lattice spacing b.
Namely, we shall use the resacled variables (denoted by the
overhead bar symbol) given by r̄ = r/b, ā = a/b, N̄0 = b3N0,
�̄ = b2�, κ̄ = bκ , Ē = b2E , and H̄ = Hb. The reciprocal
lattice vectors are also defined accordingly as �̄Kn = 2π (nxx̂ +
nyŷ + nzẑ) in the rescaled coordinates. The rescaled expansion
coefficients are defined as Āl,m = blAl,m, B̄l,m = Bl,m/bl+1,
C̄l,m = Cl,m, and D̄l,m = Dl,m. At the same time, the two
structure factors becomes Ū m

l = bl+1U m
l and Ḡl,m;l ′,m′ (κ ) =

bGl,m;l ′,m′ (κ ). In terms of the rescaled variables, we have

σs = σw(ω)

(
1 + 4π B̄1,0

H̄

)
. (4.3)

Hereafter, we will always use the rescaled quantities.
To gain further intuition, it is useful to obtain the analytic

form of B̄1,0 and, hence, the complex conductivity, to lowest
order. With the angular momentum cutoff 〈L = 1, M = 0〉,
Eqs. (2.15), (3.3), and (3.14) give four coupled linear equa-
tions for four variables. After some algebra, we obtain the
following prediction for the response of the conductivity to
the 〈L = 1, M = 0〉 order:

σ 〈1,0〉
s

σw(ω)
= 1 + f

ξ − (
1 − ξ

κ̄ ā
Ḡ1,0;1,0 j1(κ̄ ā)+κ̄n1(κ̄ ā)
Ḡ1,0;1,0 j′1(κ̄ ā)+κ̄n′

1(κ̄ ā)

)
1− f

3 ξ + 2+ f
3

(
1 − ξ

κ̄ ā
Ḡ1,0;1,0 j1(κ̄ ā)+κ̄n1(κ̄ ā)
Ḡ1,0;1,0 j′1(κ̄ ā)+κ̄n′

1(κ̄ ā)

) ,

(4.4)

where ξ = �/(N0a) = �̄/(N̄0ā) and f = 4π ā3/3 is the vol-
ume fraction of charged spheres. We have used U 0

2 = 4π/3
as argued by Lord Rayleigh for a needle-shaped sample
[27,28]. The method for evaluating Ḡ1,0;1,0(κ̄ ) is discussed
in Appendix. Interestingly, one can numerically confirm that
Ḡ1,0;1,0(κ̄ ) → −iκ̄ when |κ̄| → ∞, and Ḡ1,0;1,0(κ̄ )κ̄2 → 4π

when |κ̄| → 0. The latter limit allows us to show that solution
in Eq. (4.4) is consistent with that found in Ref. [24] to
comparable order.

It is useful to compare this lowest order result with that
from the Maxwell Garnett mixing formula using the polar-
ization response of a single particle. The Maxwell Garnett

mixing formula can be expressed as [18,19]

σMG = σw(ω)

(
1 + 3 f

P

1 − f P

)
, (4.5)

where f = 4π ā3/3 is simply the volume fraction of charged
spheres. By using the single-particle polarization coefficients
in Eq. (2.16), we find that the complex conductivity predicted
by the Maxwell Garnett formula is given by

σMG_SP

σw

= 1 + f
ξ − (

1 − ξ

κ̄ ā
h(1)

1 (κ̄ ā)

h′(1)
1 (κ̄ ā)

)
1− f

3 ξ + 2+ f
3

(
1 − ξ

κ̄ ā
h(1)

1 (κ̄ ā)

h′(1)
1 (κ̄ ā)

) . (4.6)

We observe that Eqs. (4.4) and (4.6) have a similar functional
form.

Remarkably, in the limit as |κ̄| → ∞, one can verify that
σ 〈1,0〉

s → σMG by using relations between spherical Hankel’s
and Bessel’s functions [39]. Recalling that κ̄ = b

√
iω/D, this

implies that σMG becomes valid: (1) for dilute mixtures with
b � √

D/ω or, equivalently, (2) in the high-frequency regime,
with ω � D/b2. As expected, the Maxwell Garnett mixing
formula should capture the response in the dilute limit. Our
result here also reveals a less intuitive frequency dependence,
that the Maxwell Garnett mixing formula becomes more valid
at higher frequencies.

V. COMPLEX CONDUCTIVITY: HIGHER ORDER
EVALUATIONS

In this section, we will first recast the four sets of inde-
pendent linear equations in Eqs. (2.15), (3.3), and (3.14) into
two sets of equations. This allows us to effectively set up
numerical calculations for higher angular momentum cutoffs.
Let us start from Eq. (3.3) and write Ā2l+1,m explicitly as a
summation over the B̄2l+1,m as follows:

Ā2l−1,m = −H̄δl1δm0 − εm

(2l − 1 + m)!

×
∞∑

l ′=1

2l ′−1∑
m′=0

′ Ũ2l−1,m;2l ′−1,m′

(2l ′ − 1 − m′)!
B̄2l ′−1,m′ , (5.1)

where Ũ2l−1,m;2l ′−1,m′ = (Ū |m′−m|
2(l+l ′−1) + Ū m+m′

2(l+l ′−1))/2 and the
prime at the summation indicates that only m′ divisible by 4
are included. On the other hand, Eq. (3.14) gives

C2l−1,m = εm
√

4l − 1

κ̄

√
(2l − 1 − m)!√
(2l − 1 + m)!

∞∑
l ′=1

2l ′−1∑
m′=0

√
(2l ′ − 1 + m′)!√
(2l ′ − 1 − m′)!

G̃2l−1,m;2l ′−1,m′√
4l ′ − 1

D2l ′−1,m′ , (5.2)

where G̃2l−1,m;2l ′−1,m′ = (Ḡ2l−1,m;2l ′−1,m′ + Ḡ2l−1,m;2l ′−1,−m′ )/2.
By inserting Eqs. (5.1) and (5.2) into the first equation of (2.15), we obtain following linear equations to an arbitrary order in

the angular momentum 〈2l − 1, m〉 sector:

−Hδl1δm0 =
∞∑

l ′=1

2l ′−1∑
m′=0

[
δll ′δmm′

2l

εma2l+1
+ (2l − 1)a2lŨ2l−1,m;2l ′−1,m′

(2l − 1 + m)!(2l ′ − 1 − m′)!

]
B̄2l ′−1,m′

+
∞∑

l ′=1

2l ′−1∑
m′=0

[
δll ′δmm′

κ̄n′
l (κ̄ ā)

εm
+

√
4l − 1√
4l ′ − 1

√
(2l − 1 − m)!√
(2l − 1 + m)!

√
(2l ′ − 1 + m′)!√
(2l ′ − 1 − m′)!

G̃2l−1,m;2l ′−1,m′ j′l (κ̄ ā)

]
D2l ′−1,m′ .

(5.3)
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Similarly, the second equation in (2.15) becomes

−Hδl1δm0 = l (2l − 1)
∞∑

l ′=1

2l ′−1∑
m′=0

[
a2lŨ2l−1,m;2l ′−1,m′

(2l − 1 + m)!(2l ′ − 1 − m′)!
− δll ′δmm′

1

εma2l+1

]
B̄2l ′−1,m′

+
∞∑

l ′=1

2l ′−1∑
m′=0

[
δll ′δmm′

κ̄

εm

(
n′

l (κ̄ ā)

ξ
− l (2l − 1)

nl (κ̄ ā)

κ̄ ā

)
+

√
4l − 1√
4l ′ − 1

√
(2l − 1 − m)!√
(2l − 1 + m)!

√
(2l ′ − 1 + m′)!√
(2l ′ − 1 − m′)!

G̃2l−1,m;2l ′−1,m′

×
(

j′l (κ̄ ā)

ξ
− l (2l − 1)

jl (κ̄ ā)

κ̄ ā

)]
D2l ′−1,m′ . (5.4)

We have reduced four sets of linear equations to two
sets. For arbitrary order of the angular momentum cutoff,
L and M, given by L = max(2l − 1) = max(2l ′ − 1) and
M = max(2m − 1) = max(2m′ − 1), by truncating the higher
angular momentum terms, it is straightforward to set up a
square matrix associated with these two sets of linear equa-
tions, once the values of the structure factors Ũ2l−1,m;2l ′−1,m′

and G̃2l−1,m;2l ′−1,m′ are evaluated. After that, inverting the
matrix gives us the value of B〈L,M〉

1,0 and, hence, the complex
conductivity from Eq. (4.3).

The dielectric constant can then be obtained from the
complex conductivity with the following relation:

σs(ω) = σ ′
s (ω) + iσ ′′

s (ω) ≡ ε0ωε′′
s (ω) − iε0ωε′

s(ω), (5.5)

where σ ′
s and σ ′′

s are real and imaginary parts of the con-
ductivity, while ε′

s and ε′′
s are real and imaginary parts of

the dielectric constant. We then have ε′
s = −σ ′′

s /(ε0ω). It is
convenient and also useful to subtract the dc contribution
from the imaginary part of dielectric constant and define the
parameter ε̃′′

s as

ε̃′′
s = σ ′

s (ω) − σ ′
s (ω = 0)

ε0ω
. (5.6)

The peak position of ε̃′′
s (ω) as a function of frequency directly

reflects the characteristic relaxation frequency [8].
Throughout our discussion, we will use the following

values for the parameters: the diffusion coefficient is given
by D = 1.334 × 10−9 m2/s; the relative permittivity of the
electrolyte is given by ε′

w = 80; the surface charge density
is given by � = 0.5 nm−2; the intrinsic ion density is given
by N0 = 1.03 × 1025 m−3; and the electrolyte conductivity is
given by σ ′

w = 0.2 S/m. Here, the values of the ion density
and the electrolyte conductivity roughly correspond to those
of an electrolyte with 1 part per thousand in weight of NaCl.
The surface charge density roughly corresponds to one surface
defect per 100 unit cells of lattices. Our focus is on how the
sphere size a and the lattice spacing b affect the dielectric
response. We will also use the filling fraction f in our discus-
sions. Because the filling fraction is given by f = (4π/3)ā3,
varying f while keeping a (or b) fixed is equivalent to varying
b (or a).

In this study, we will not discuss in detail the effect of
the surface charge strength � and the ionic concentration
N0 of the electrolyte. However, from how the parameter ξ =
�/(N0a) appears in the complex conductivity to the 〈L =
1, M = 0〉 order in Eq. (4.4), we can argue that a larger
amount of surface charge � will lead to a stronger response,

while higher ionic concentration suppresses the dielectric
enhancement. In addition, because the direct frequency de-
pendence of the complex conductivity only comes in with two
dimensionless parameters κa = √

iω/Da and κb = √
iω/Db,

the parameter ξ does not strongly influence the frequency
dispersion features. As a result, the characteristic frequency,
i.e., the peak frequency of ε̃′′

s , depends very weakly on both N0

and �, which we expect to follow qualitatively from the trends
in the single-particle response discussed in Refs. [8,11].

We are now in a position to evaluate ε′
s
〈L,M〉(ω) and

ε̃′′
s

〈L,M〉(ω) from the B〈L,M〉
1,0 evaluated to an arbitrary cutoff

〈L, M〉 in the angular momentum. Let us first investigate the
convergence behavior of ε′

s
〈L,M〉(ω) and ε̃′′

s
〈L,M〉(ω), beginning

with lower order and then considering higher order values of
the cutoff 〈L, M〉. In Figs. 2 and 3, we show the dispersion
of ε′ and ε̃′′ as a function of frequency for different angular
momentum cutoffs, up to 〈L, M〉 = 〈9, 8〉. The size of the
spheres is taken to be a = 10 μm. The volume fractions of the
charged spheres are f = 2% and f = 45% for Figs. 2 and 3,
respectively. For smaller volume fractions of charged spheres
(cf. Fig. 2), the dielectric response calculated from only the
lowest order of the angular momentum terms already gives
the convergent result because ε′

s
〈1,0〉(ω) and ε̃′′

s
〈1,0〉(ω) are

virtually the same as ε′
s
〈3,0〉(ω) and ε̃′′

s
〈3,0〉(ω). For higher vol-

ume fractions of charged spheres, we need to include higher
angular momentum corrections, as shown in Fig. 3. How-
ever, it converges rapidly because ε′

s
〈3,0〉(ω) and ε̃′′

s
〈3,0〉(ω)

are very similar to ε′
s
〈9,8〉(ω) and ε̃′′

s
〈9,8〉(ω). In general, the

convergence becomes slower with higher volume fractions of
charged spheres, i.e., it requires higher angular momentum
corrections to reach the convergent result. In this work, we
will restrict our discussion to cases with f < 45%, where the
angular momentum cutoff to order 〈L, M〉 = 〈9, 8〉 already
gives convergent results. Our experience shows that higher
order corrections are needed when f > 45%.

We also show, in both Figs. 2 and 3, the comparison
between our results and those from the Maxwell Garnett
mixing formula, depicted by the black solid curve labeled
“MG_SP”, given in Eq. (4.6). We found that the dielectric
response of charged spheres arranged in a cubic lattice will
reduce to the Maxwell Garnett mixing formula in two limits:
(1) the high-frequency regime and (2) lower volume fractions
of charged spheres. This is consistent with the discussion in
the previous section. In general, we observe the trend that
the characteristic relaxation frequency for charged spheres
arranged in a cubic lattice is higher than that predicted by the
Maxwell Garnett mixing formula. This shows that the pres-
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FIG. 2. The dispersion of (a) ε ′ and (b) ε̃ ′′ with different angular
momentum cutoffs 〈L, M〉 is shown as a function of frequency. The
black solid curve shows the response using the Maxwell Garnett
mixing formula with the single-particle polarization coefficient. The
size of the spheres is a = 10 μm and the volume fraction of the
charged spheres is f = 2%.

ence of nearby charged spheres strongly affects the neutral
current flow that is induced by a single charged sphere. It is
an indication that the polarization response of a single particle
given in Eq. (2.16) may not represent the essential physics for
more densely packed systems.

In Fig. 4, we illustrate how the dielectric response of
charged spheres arranged in a simple cubic lattice varies with
the change in volume fraction. Again, the size of the spheres
is a = 10 μm. We choose the angular momentum cutoff to be
〈L, M〉 = 〈9, 8〉, which has reasonable convergence, as shown
in Fig. 3. For comparison, we also show the predicted dielec-
tric response for the corresponding Maxwell Garnett formula
with f = 10%. It is important to note that the characteristic
frequency does not depend on the volume fraction of the
charged spheres in the Maxwell Garnett formula. Only the
height of the peak and the strength of the dielectric enhance-
ment will depend on the volume fraction [8,11]. With increas-
ing volume fractions of charged spheres, the characteristic
frequencies predicted by our model (the position of the peak
of the ε̃′′) shift toward higher values and, hence, away from
those given by the Maxwell Garnett formula. This is a clear
indication that interparticle interactions can and will make the
dielectric response deviate strongly from the single-particle
physics.

Finally, we show in Fig. 5 the size dependence of the
dielectric response for a fixed volume fraction of charged

0.01 0.10 1 10 100 1000
0

1000

2000

3000

4000

5000

6000 MG_SP
L=1, M=0
L=3, M=0
L=5, M=4
L=7, M=4
L=9, M=8

0.01 0.10 1 10 100 1000
0

500

1000

1500

(a)

(b)

FIG. 3. The dispersions of (a) ε ′ and (b) ε̃ ′′ with different angular
momentum cutoffs 〈L, M〉 is shown as a function of frequency. The
black solid curve shows the response using the Maxwell Garnett
mixing formula with the single-particle polarization coefficient. The
size of the spheres is a = 10 μm and the volume fraction of the
charged spheres is f = 45%.

spheres. As expected, the characteristic frequency decreases
with increasing size of the spheres, which is qualitatively con-
sistent with the prediction from the Maxwell Garnett formula
with the single-particle polarization coefficient. However, the
resulting characteristic frequencies in our model are roughly
one order of magnitude higher than that predicted by the
Maxwell Garnett formula as shown in Fig. 4.

VI. DISCUSSION

The anomalous low-frequency dielectric response of
charged particles immersed in an electrolyte has been ob-
served in various types of systems, from suspensions of
polystyrene latex particles, emulsions of fat particles [1], and
suspensions of clay particles [12,13] to complicated rock
formations [44]. Often, the explication of this phenomenon
begins with the single-particle polarization response, similar
to that given in Eq. (2.16). Then, a representative model of the
system is established using various types of effective medium
approximations [8,9,11,45,46] which aim to capture the influ-
ence of the particles’ interactions on the dielectric response.
This approach is particularly vulnerable to the specific mech-
anism discussed in this work and first proposed in Ref. [8]
because the nonlocalized neutral current in the electrolyte is
responsible for the low-frequency dielectric enhancement.

As alluded to in Sec. II, the nonlocalized neutral current ex-
tends farther away from the charged sphere as the frequency is
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FIG. 4. The dispersion of (a) ε ′ and (b) ε̃ ′′ for different volume
fractions f of charged spheres is shown as a function of frequency.
The size of the spheres is a = 10 μm. The angular momentum cutoff
is 〈L, M〉 = 〈9, 8〉. For comparison, the black solid curve shows the
prediction from the Maxwell Garnett mixing formula in Eq. (4.6)
with f = 10%.

decreased. Hence, the presence of other charged spheres could
affect the neutral current and influence the dielectric response.
As a result, our solution for the dielectric response of the
system of interest, charged spheres arranged in a simple cubic
lattice and immersed in an electrolyte, serves as an important
step in properly modeling more densely packed suspensions
or even jams. Because the method illustrated in this paper can
be carried out to arbitrary order in the angular momentum
cutoff with proper numerical implementation, the predicted
dielectric response from the theory effectively becomes exact
once proper convergence is observed (cf. Figs. 2 and 3). Even
though our modeled system is rather restrictive given the strict
periodicity, the fact that an exact solution can be obtained
eliminates ambiguities originating from the effective medium
approximation, and it allows us to draw valuable insights.

As illustrated in Figs. 2–4, the dielectric response of our
model exhibits qualitatively different behavior from that in
which only the single-particle physics is taken into account.
First and foremost, the tendency to induce a strong dielectric
enhancement competes with a suppression effect due to the
presence of other spheres. We thus observe a weaker low-
frequency dielectric enhancement according to our solution
compared to that from the Maxwell Garnett formula. In ad-
dition, because the neutral current extends much farther at
lower frequencies, the suppression effect becomes stronger
in that regime, with the characteristic relaxation frequency
shifting to a higher value compared to that predicted by
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800(a)

(b)

FIG. 5. The dispersion of (a) ε ′ and (b) ε̃ ′′ for charged spheres
with different radii 2, 5, 10, 20, 50, and 100 μm is shown as a
function of frequency. The volume fraction of the spheres is fixed
at f = 30%. The angular momentum cutoff is 〈L, M〉 = 〈9, 8〉.

the single-particle polarization response. In general, larger
volume fractions of charged spheres lead to a higher character-
istic relaxation frequency in our model (cf. Fig. 4). Combined
with the observation in Fig. 5 that the characteristic frequency
also depends on the size of the charged sphere given a fixed
volume fraction, we can conclude that both the sphere size
and the separation distance between spheres will influence the
resulting characteristic relaxation frequency.

The introduction of the second length scale is not un-
expected. For a single particle, the low-frequency dielectric
response is dominated by the neutral current that flows in
response to the density gradient of the ions that built up on
the surface of the sphere [8]. Because the positive and neg-
ative charges collect at the opposite ends of the sphere, the
size of the sphere is the natural length scale. Once there is
more than one sphere, the neutral current can also flow in
response to the density gradient of the ions that have collected
on the surfaces of adjacent spheres. This gives a second length
scale associated with the distance between the two spheres.

It is worthwhile pointing out that the Maxwell Garnett for-
mula with the single-particle polarization response does quali-
tatively describe the measured dielectric response of spherical
polystyrene particles, effectively charged spheres, suspended
in a KCl electrolyte [1,8]. Even though our model allows
us to take into account the interparticle effect, the predicted
dielectric response from our solution becomes less consistent
with the measured dielectric response found in Ref. [1].
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Two possible scenarios can lead to the discrepancy be-
tween our theory and the experiment. First, the packing of
the polystyrene spheres in the suspension is likely to be
more random than our simple cubic array. Namely, there
can be some lattice effects in our calculations that lead
to a qualitative difference from more randomized systems.
However, unlike in the case of electron localization versus
conduction in periodic crystals where the periodic scatterers
introduce interference effects that are qualitatively different
from those of random obstacles, the “wave vector” κ [below
Eq. (3.6)] in our case is complex with the real and imaginary
parts having the same amplitude. As a result, the effective
wavelength of the oscillation is the same as the length scale
of the exponential decay. Thus, we do not expect a qualitative
and sizable difference between the responses of periodic and
randomly packed structures due to interference. Indeed, the
consideration of different lattice structures, such as bcc or fcc
structures, could help us to identify the lattice effects. Given
our argument that the nonlocalized neutral current should be
more suppressed at lower frequencies, we still expect that
the dielectric enhancement will, in general, be suppressed,
with the characteristic relaxation frequency shifted to higher
values compared to the single-particle response. Second, the
mechanism discussed in this paper may not truly capture the
physics responsible for the dielectric enhancement observed
in Ref. [1]. This implies that the qualitative agreement be-
tween the single-particle response and the experiment might
simply be a coincidence [8], and other types of mechanisms,
such as those discussed in Ref. [3], are responsible for the
observed phenomenon. Additional quantitative experiments
are required to understand the mechanism behind the observed
dielectric enhancement.

VII. SUMMARY

In summary, we have presented a formalism for solving
for the complex dielectric constant of a system consisting
of charged spheres arranged in a simple cubic lattice and
immersed in an electrolyte. The influence of the periodicity
on the dielectric response is recast into two periodic condi-
tions for two of the variables: the electric potential obeying
Laplace’s equation, and the ion concentration described by
Helmholtz’s equation. For Laplace’s equation, we employed
the method developed by Lord Rayleigh for computing the
complex conductivity of the system with periodically ar-
ranged dielectric spheres embedded in another dielectric ma-
terial [27]. We then applied the KKR method developed for
band structure calculations to derive the periodic condition for
the Helmholtz equation [30,31]. Two other sets of boundary
conditions are given at the outer surface of the electric double
layer as derived by Fixman for the single-particle polarization
response of a charged sphere, which effectively encodes all
the information about the interaction between the electric
potential and the ion density. Combining all these efforts, we
established a numerical scheme for computing the dispersion
of the complex conductivity to arbitrary order in the angular
momentum cutoff.

Our solution shows that the Maxwell Garnett formula,
together with the single-particle polarization coefficient, does
not properly describe the dielectric response of our system

even when only the lowest order 〈L = 1, M = 0〉 corrections
are taken into account (cf. Fig. 4), even for volume frac-
tions of the spheres as low as 2%. With increasing volume
fractions of charged spheres, we found that higher angular
momentum corrections are required to obtain convergence to
the exact solution, as indicated in Fig. 3. Also, as illustrated
in Fig. 4, the dielectric response of the modeled system will
become qualitatively more distinct from the single-particle
response when the charged spheres occupy a higher volume
fraction. Because our modeled system allows us to rigorously
account for the influence of multiple particles on the dielectric
response, our findings indicate that the presence of nearby
charged spheres will strongly modify the polarization re-
sponse given by a single, stand alone, charged sphere. Hence,
a densely packed system will give rise to a dielectric response
that is qualitatively and quantitatively different from a dilute
suspension. Further investigations on periodic structures, such
as bcc and fcc lattices, will further our understanding of the
dielectric response of densely packed systems.
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APPENDIX: EVALUATION OF STRUCTURE FACTORS

To complete the periodic boundary conditions discussed in
Sec. III, we need to evaluate two sets of structure factors: U m

l
and Gl,m;l ′,m′ . The former can be directly evaluated using the
definition in Eq. (3.4). Below, we will provide some evaluated
values of U m

l , which have been documented in Ref. [28] with
less precision. The evaluation of Gl,m;l ′,m′ is more involved.
The direct use of Eq. (3.13) is not feasible as it will converge
very slowly. In addition, because Gl,m;l ′,m′ is a function of
κ ≡ √

iω/D, it requires computing a larger number of them
to construct a faithful dielectric dispersion. Fortunately, an
efficient method for computing the structure factor has been
developed by Ham and Segall [43]. We will review their
formulas for computing the structure factors.

1. Evaluation of Um
l

In principle, the structure factor U m
l can be directly eval-

uated by Eq. (3.4), with one important twist. Although the
shape of the considered system does not affect the evaluated
value for most of the U m

l as long as a large enough number
of terms are included in the summation, only the value of U 0

2
depends on the choice of shape. One can demonstrate that a
system with full spherical or cubic symmetry will have U 0

2 =
0. However, as pointed out by Lord Rayleigh and later argued
by McPhedran and McKenzie [27,28], the long needle is the
representative shape. In this case, the value of U 0

2 is simply
4π/3. (Note the slight difference between our definition of
U m

l and theirs.)
Here, we list some values of U m

l evaluated with Eq. (3.4):
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U 0
2 = 4π/3

U 0
4 = 74.5956

U 0
6 = 412.797 U 4

6 = −2889.58

U 0
8 = 131414.7 U 4

8 = 131414.7

U 0
10 = 3.662272 U 4

10 = −8.056998 U 8
10 = −1.36969

×106 ×106 ×108

U 0
12 = 1.384915 U 4

12 = 8.189911 U 8
12 = 8.176006

×109 ×108 ×109

The terms with higher values of l and m can be easily
computed by summing a few terms close to the origin in
Eq. (3.4).

2. Evaluation of Gl,m;l ′,m′

As noted by Kohn and Rostoker, the evaluation of Gl,m;l ′,m′

with Eq. (3.13) converges very slowly [31]. Hence, an alterna-
tive formula has been developed for effectively computing the
structure factor. In the most general case, Gl,m;l ′,m′ depends
both on the energy κ and the Bloch wave vector �k. Because
we have �k = 0 due to the strictly periodic condition in our
problem and because we are interested in the simple cubic
lattice, we will only review formulas that fit our purposes.

Following the observation of Kohn and Rostoker [31], the
structure factor Ḡl,m;l ′,m′ can be expressed as a finite summa-
tion of another form of structure factor D̄L,M as follows:

Ḡl,m;l ′,m′ = 4π i(l−l ′ )
∑
L

1

iL
D̄L,m−m′CL,m−m′;l,m;l ′,m′ , (A1)

where the sum of L runs over the values |l − l ′|, |l − l ′| + 2,
. . . |l + l ′|, and

CL,M;l,m;l ′,m′ =
ˆ

d�YLM(θ, φ)Y ∗
lm(θ, φ)Yl ′m′ (θ, φ). (A2)

It is useful to note that CL,M;l,m;l ′,m′ = 0 when M �= m − m′
due to angular momentum conservation. Again, the bar over
the symbols Ḡl,m;l ′,m′ and D̄L,M indicates that variables are
rescaled by the lattice spacing b and is dimensionless.

As shown by Ham and Segall [43], the structure factors
D̄L,M can be casted into three sets of infinite summations as
follows:

D̄L,M = D̄(1)
L,M + D̄(2)

L,M + D̄(3)
L,M, (A3)

where the speed of convergence for each term is controlled
by an arbitrary dimensionless parameter η̄. Remarkably, even
though values of D̄(α)

L,M with α = 1, 2, 3 depend on η̄, adding
them to obtain D̄L,M yields a result that is independent from
the choice of η̄.

The first summation is given by

D̄(1)
L,M = −4π

iL

κ̄L
eκ̄2/η̄

∑
n

|�̄Kn|Le−|�̄Kn|2/η̄

|�̄Kn|2 − κ̄2
Y ∗
LM(θn, φn),

(A4)
where �̄Kn = 2π (nxx̂ + nyŷ + nzẑ) are rescaled reciprocal lat-
tice vectors, and θn and φn are their corresponding polar an-
gles. Here, nx,y,z runs over all integers. The second summation
reads as

D̄(2)
L,M = − 2L+1

√
πκ̄L

∑
s �=0

|�̄rs|LY ∗
LM(θs, φs)

×
ˆ ∞

√
η̄/2

dξ ξ 2Le−ξ 2|�̄rs|2+κ2/(4)ξ 2
, (A5)

where �̄rs = sxx̂ + syŷ + szẑ are the rescaled lattice vectors,
and θs and φs are their corresponding polar angles. In the
summation, sx,y,z runs over all integers except sx = sy = sz =
0 as indicated by s �= 0. The third summation is given by

D̄(3)
L,M = −δL0δM0

√
η̄

2π

∞∑
α=0

(κ2/η̄)α

(2α − 1)α!
, (A6)

which only contributes to the structure factor when L =
M = 0. Finally, it is worthwhile to mention that D̄(1)

L,M will
converge faster (requiring less terms away from the origin
of the reciprocal lattice) with a smaller value of η̄ while
D̄(2)
L,M will converge faster (requiring less terms away from

the origin of the lattice) with a larger value of η̄. Numerically,
an effective way for choosing a proper value of η̄ is thus very
important for the faster overall convergence.
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