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We study theoretically the rotation induced on an uncharged metal nanocylinder immersed in an electrolyte
by AC electric fields. We consider the rotation of the cylinder when subjected to a rotating electric field
(electrorotation) and the orientation of the cylinder in an AC field with constant direction (electro-orientation).
The cylinder rotation is due to two mechanisms: the electric field interaction with the induced dipole on the
particle and the hydrodynamic stress on the particle originated by the induced-charge electro-osmotic (ICEO)
flow around the particle. The cylinder rotation induced by the ICEO mechanism can be calculated by using
the Lorentz reciprocal theorem, while the rotation due to the induced dipole is calculated from the cylinder
polarizability. We employ 3D numerical computations using finite elements for the general case as well as
analytical methods for slender cylinders. Both calculations use the thin-double-layer approximation. We compare
the results for slender cylinders of both methods showing good agreement. The electro-orientation (EOr) due to
dipole torque aligns the axis of slender cylinders with the applied field, but aligns the axis of short cylinders
perpendicularly to the field. The EOr due to ICEO torque always aligns the axis of cylinders with the field. The
rotation induced by ICEO torque tends to disappear for frequencies of the applied field much greater than the
characteristic frequency for charging the double-layer capacitance of the metal-electrolyte interface.
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I. INTRODUCTION

Manipulation of small particles in suspension can be
achieved by means of AC electric fields [1] and it has been
an important topic of research during the past decades in
the fields of colloids and biotechnology [2–4]. Recently,
electrokinetic manipulation of metal and semiconducting mi-
croparticles has been explored in the context of microfluidics
and nanoelectronics [5–9]. For example, ac fields are used to
assemble Janus spheres and form chains of metallodielectric
particles [10,11]. Janus spheres subjected to electric fields
are also used as cargo carriers for specific targets [12]. Sus-
pensions of metal nanoparticles subjected to ac fields form
microwires between electrodes [13,14]. References [15–17]
report the positioning and rotation of metal nanowires. Ref-
erence [18] demonstrates frequency-dependent assembly pat-
terns of metal nanowires with ac fields and Ref. [19] shows
how to use ac electric fields to separate metal nanowires from
semiconducting carbon nanotubes.

An important number of recent works have been focused
on the study of the physical mechanisms behind the elec-
trokinetic manipulation of metal microparticles, as reviewed
in Ref. [20]. These works demonstrate that the electrokinetic
motion of metal particles arises from the interaction of the
applied electric fields with the induced charges in the elec-
trical double layer (EDL) at the particle-electrolyte interface.
As a consequence of this interaction, two distinct mechanisms
appear: The action of the electric field on the induced electric
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dipole and the motion that arises from the viscous stresses
originated by the induced electro-osmotic (ICEO) flow around
the particle [21,22]. The relative importance of these mecha-
nisms is manifested in the following phenomena:

(1) The displacement of a particle suspended in an elec-
trolyte and subjected to a nonuniform field is known as
“dipolophoresis” [23–25]. Theoretically, dipolophoresis of
metal particles is influenced by the two mechanisms: ICEO
flows and forces on the induced dipole. However, recent ex-
periments with gold-coated microspheres subjected to nonuni-
form fields show that the main mechanism behind their dis-
placement is the action on the induced dipole [26]. In this case,
when the motion is driven by the force on the induced dipole,
the particle displacement is known as “dielectrophoresis”
(DEP).

(2) “Electrorotation” (ROT) is the particle rotation due to a
rotating electric field. ROT of metal particles results from the
combination of counterfield rotation originated by the action
on the induced dipole, and cofield rotation that arises from
the ICEO flow around the particle [27]. This cofield rota-
tion vanishes for metal spheres much larger than the Debye
screening length of the electrolyte (around 10–100 nm for
aqueous electrolytes). Therefore, ROT of metal microspheres
is counterfield and driven by the action on the induced dipole,
in agreement with experimental results [26,28,29]. However,
ROT of metal cylinders is affected by both mechanisms [30]
and one goal of the present work is the evaluation of the
relative importance between them. For example, approximate
analytical solutions for the electrorotation of perfectly po-
larizable spheroids are found in Ref. [31] and the results
therein show that, theoretically, the two mechanisms have the
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FIG. 1. Metal cylinder subjected to an ac electric field.

same relative influence for prolate spheroids. The study for
polarizable spheroids has been recently extended to arbitrary
applied electric fields in Ref. [32].

(3) The orientation of a non-spherical particle in an electric
field with constant direction is known as “Electro-orientation”
(EOr). Several experimental works show that metal nanowires
tend to align with the applied electric field [33,34]. For low
frequencies, EOr is mainly induced by ICEO flow around
the particle [35,36], while at high frequencies the motion is
originated by the torque on the induced dipole [33]. Ref. [31]
includes solutions for the electro-orientation of polarizable
spheroids with arbitrary aspect ratio, but it uses an approx-
imate boundary condition of the EDL charging to obtain
analytical solutions. One goal of the present work is to find
numerical solutions for EOr of metal nanowires, as used in
experiments, using the exact EDL charging boundary condi-
tion.

In this work we study theoretically the electrokinetic mo-
tion induced in a metal cylinder immersed in an electrolyte.
We consider two cases, the rotation of the cylinder when
subjected to a rotating electric field and the orientation of the
cylinder in an AC field with constant direction. The rotational
motion originated by the ICEO mechanism can be calculated
by using the Lorentz reciprocal theorem, while the motion
due to the induced dipole is calculated from the cylinder
polarizability. These calculations are carried out with two dif-
ferent approaches under the thin-double-layer approximation:
analytical methods for slender cylinders, and 3D numerical
computations using finite elements for the general case. Pre-
vious work [33] focused on slender cylinders and presented
2D axisymmetric numerical calculations of the rotation due to
dipole and an analytical solution of nanowire rotation due to
dipole and ICEO flow. In the present manuscript, we analyze
the rotation of finite cylinders due to both mechanisms using
3D numerical calculations and improve the slender-body ap-
proximation with an expansion up to second order of the small
parameter.

II. THEORY

Let us consider a metal cylinder with radius b and length
2a immersed in a 1:1 symmetric electrolyte as, for instance,
potassium chloride. The cylinder rests on the ZX plane and
its axis is aligned with the Z axis, as shown in Fig. 1(a). The
metal cylinder is subjected to an external ac electric field of
amplitude E0 and angular frequency ω, as shown in Fig. 1(b).

In EOr experiments, the electric field is given by

E(t ) = E0Re[(cos θuz + sin θux )eiωt ], (1)

where Re[. . . ] stands for real part and u j for unit vector of j
coordinate. In ROT experiments, the electric field is

E(t ) = E0Re[(uz − iux )eiωt ], (2)

corresponding to an anticlockwise rotating electric field
within the ZX plane of Fig. 1(b).

As usual in electrokinetics problems, we assume that the
electric potential and the ionic concentrations satisfy the
Poisson-Nernst-Planck (PNP) equations [37]. Also, we con-
sider the approximation of small applied electric potential,
which in the present problem can be written as E0R � kBT/e,
where R is a typical particle dimension and kBT/e the ther-
mal voltage (≈25 mV at room temperature). The weak-field
approximation guarantees that charge convection is negligible
and the electrical problem can be solved independently, with
its solution then inserted into the mechanical problem [24]. In
addition, we assume that the Debye length is much smaller
than typical dimensions of the cylinder. This allows us to
apply the thin-double-layer approximation, which is usually
valid for micron-sized particles. Under these approximations,
the electric potential can be written as φ(r, t ) = Re[�(r)eiωt ],
where the potential phasor �(r) satisfies Laplace’s equation in
the bulk electrolyte,

∇2� = 0, (3)

with boundary condition on the surface of the particle,

σ
∂�

∂n
= iωCDL(� − V ), (4)

where σ is the electrolyte conductivity, CDL is the EDL
capacitance, V is the potential of the metal particle, and the
normal derivative is taken from the particle to the electrolyte.
From symmetry we will take V = 0 in our case. An estimate
of the EDL capacitance is given by CDL = ε/λD, where ε

is the liquid permittivity and λD, the Debye length. The
boundary condition expresses the charge conservation on a
perfectly polarizable surface: the current arriving from the
bulk charges the EDL capacitor. Therefore, we have assumed
that the voltage across the EDL is below the threshold voltage
to induce Faradaic reactions. We have also assumed that the
frequency is small enough ω � σ/ε to consider the diffuse
layer is in quasiequilibrium [38].

With respect to the mechanical problem, the Reynolds
number is small enough so that the fluid velocity v and
pressure p satisfy Stokes and continuity equations

η∇2v = ∇p, ∇ · v = 0, (5)

where η is the liquid dynamic viscosity. The boundary condi-
tion on (b.c.) the surface of the particle is written as

v = vs + U + � × r, (6)

where U is the velocity of the particle center of reaction, �

is the particle angular velocity, r is the displacement from the
reaction center to a point on the particle surface, and vs is the
Helmholtz-Smoluchowski slip velocity. The latter is given by
vs = −(ε/η)ζEs for a thin double layer in quasi-equilibrium
on a perfectly polarizable metal surface [39]. Here ζ is the
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zeta potential i.e., the potential drop in the diffuse layer, and
Es is the tangential electric field just outside the EDL. We are
interested in the time-averaged velocity, which can be written
using phasors as [20]

vs = −ε�

4η
∇s|� − V |2, (7)

where ∇s is the tangential gradient operator, and � is a
parameter that relates the induced ζ potential to the total EDL
voltage � − V . In the ideal case, ζ = V − � and � = 1.
Experimental observations show that � < 1 and sometimes
very much smaller [40].

Since particle inertia is negligible, the balance of forces
and torques determines the translational velocity U and the
angular velocity �. It is convenient to describe the velocity
field as the result of two distinct contributions: the flow
generated by a translating and rotating particle and the flow
generated by the slip velocity on a stationary particle. In this
way, the equilibrium of forces and torques for cylinders can
be written as

ηM · U = 〈(p · ∇)E〉 +
∫

Sp

TH · dS, (8)

ηN · � = 〈p × E〉 +
∫

Sp

r × TH · dS, (9)

where 〈. . . 〉 stands for time average, TH is the hydrody-
namic stress tensor for the velocity field originated by the
slip velocity on a stationary particle, Sp is a surface that
encloses the particle with its double layer, and M and N are,
respectively, the translation and rotation tensors [41]. Notice
that for cylinders there is no coupling between translation and
rotation since they are orthotropic bodies [41]. In our case, the
spatially homogeneous electric fields given by Eqs. (1) and
(2) do not produce a translational velocity for cylinders. The
angular velocity can be written as � = �DEP + �ICEP, with

�DEP = η−1N−1 · 〈p × E〉,
�ICEP = η−1N−1 ·

∫
Sp

r × TH · dS, (10)

where the subscripts DEP and ICEP refer, respectively, to
particle rotation due to torque on the induced dipole or due
to ICEO flow around the particle.

A. Angular velocity due to induced dipole

Using phasors, the dipole induced on the cylinder can
be written as p = αzEz + αxEx, where Ez and Ex are, re-
spectively, the applied electric field components parallel and
perpendicular to the cylinder axis, and αz and αx are the
corresponding polarizabilities. The time-averaged DEP torque
is then given by

τe = 1
2 Re[p × E∗] = 1

2 Re[αzEzE
∗
x − αxExE∗

z ]uy, (11)

where asterisk (∗) stands for complex conjugate. For the EOr
case,

τe = 1
2 Re[αz − αx]E2

0 cos θ sin θuy, (12)

and for the ROT case,
τe = − 1

2 Im[αz + αx]E2
0 uy, (13)

where Im[. . . ] means imaginary part.

We obtain �DEP dividing the electrical torque by the rota-
tional viscous friction coefficient around Y axis.

B. Angular velocity due to ICEO flow

We will show in this section that �ICEP can be expressed as
a certain surface integral of the slip velocity vs on the particle
surface thanks to the Lorentz reciprocal theorem [42].

As mentioned above, the fluid velocity on the particle
surface Eq. (6) can be decomposed as the sum of two flows
which are solutions of the Stokes equations: the flow induced
by the slip velocity on the stationary cylinder (problem 1)
and the flow generated by a translating and rotating particle
(problem 2). Let T1 and T2 be, respectively, the hydrodynamic
stress tensors that arise from the solutions of these two prob-
lems. Application of the Lorentz reciprocal theorem [41,43]
results in∫

n · [T1 · (U + � × r)]dS =
∫

n · (T2 · vs)dS, (14)

where the integrations are performed over the particle surface
and n is a unit vector normal to the particle.

In the present case we are interested in the particle rotation
induced by the ICEO slip velocity on the cylinder surface
originated by the homogeneous fields of Eqs. (1) and (2).
Therefore, we choose U = 0 and � = �ICEPuy. Since this is a
torque-free problem,

∫
r × (n · T1)dS = − ∫

r × (n · T2)dS,
and Eq. (14) can be transformed into

−
∫

r × (n · T2)dS · �ICEPuy =
∫

n · (T2 · vs)dS. (15)

And solving for �ICEP,

�ICEP =
∫

n · (T2 · vs)dS∫
(x(n · T2)z − z(n · T2)x )dS

. (16)

Up to here T2 is the hydrodynamic stress tensor corresponding
to the cylinder rotating with angular velocity �ICEP. However,
since the fluid equations are linear, we can now choose T2 to
be the one corresponding to a rotating cylinder with � = 1.
According to Eq. (16), the rotation velocity generated by the
ICEO flow can be calculated from the solution of the slip
electro-osmotic velocity on the particle and the hydrodynamic
stress tensor generated by a rotating cylinder. Therefore,
thanks to the reciprocal theorem, we avoid to solve the liquid
velocity field that arises from the electro-osmotic velocity.
Note that the denominator in Eq. (16) corresponds to the
viscous friction coefficient around Y axis.

III. MATHEMATICAL METHODS

The rotational particle motion given by previous equations is
obtained by using analytical methods in the case of slender
cylinders [33,35,36] and 3D numerical calculations in the
general case. In both methods it will be convenient to consider
the total electrical potential as the sum of the potentials �a

and �b corresponding, respectively, to the potentials gen-
erated by the applied electric field along the cylinder axis
Ea = E0aeiωt uz and perpendicular to the axis Eb = E0beiωt ux

(see Fig. 1).
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A. Slender particle approximation

The results presented in this section are an improvement of
previous analytical expressions [33] since the induced linear
charge is expanded up to second order.

1. Electrical potentials �a and �b

The applied electric field along the axial direction (Ea =
E0aeiωt uz) induces a distribution of charges on the cylinder.
Using slender-body approximation, the electric potential out-
side the cylinder can be written in cylindrical coordinates
(ρ, z) as the sum of the applied electric potential plus the
potential created by an effective linear charge density λ(z)
along the Z axis [44–46]:

�a = −E0az + 1

4πε

∫ a

−a

λ(z′)√
(z − z′)2 + ρ2

dz′. (17)

We imagine that the nanowires are cylinders with rounded
ends with a 	 b, so that we can apply this slender-body
approximation. The boundary condition Eq. (4) at the cylinder
surface, ρ = b, is

iωCDL�a|ρ=b = σ
∂�a

∂ρ

∣∣∣∣
ρ=b

. (18)

Substitution of Eq. (17) into Eq. (18) leads to an integral
equation for λ(z), which can be solved numerically [47].
Here we proceed analytically by doing an expansion of the
linear charge [46] in powers of the small parameter 1/ ln(a/b)
(a/b 	 1),

λ(z) ∼ λ1(z)

ln(a/b)
+ λ2(z)

[ln(a/b)]2
+ λ3(z)

[ln(a/b)]3
+ . . . , (19)

and the integrals are approximated asymptotically. We expand
λ(z) up to second order in this work. The details are provided
in Appendix A. The induced dipole pz and the potential on the
cylinder surface are, respectively,

pz =
∫ a

−a
zλ(z)dz = 4πεa3E0a

3 ln(a/b)
�

[
1 + 0.947039

ln(a/b)
�

]
, (20)

�a(b, z)

= − E0az

1 + iω̃b ln(a/b)

{
1 + 1 − ln[2

√
1 − (z/a)2]

ln(a/b)
�

}
,

(21)

where � = iω̃b ln(a/b)/[1 + iω̃b ln(a/b)] and ω̃b = ωCDL

b/σ is a nondimensional frequency.
For ω̃b 	 1/ ln(a/b), �a(b, z) tends to zero so that the

cylinder is equipotential and behaves as a perfect conductor.
For ω̃b � 1/ ln(a/b), �a(b, z) tends to −E0az, i.e., the applied
potential, and the cylinder behaves as a perfect insulator with
the polarizability going to 0. The characteristic frequency
given by the slender-body approximation is in dimensional
form ωRC = σ/bCDL ln(a/b), while the order of magnitude
for the polarizability is |αz| ∼ 4πεa3/3 ln(a/b) [33].

The electrical potential �b is generated by the applied
electric field Eb = E0beiωt ux. Neglecting edge effects, the
electric potential near the slender cylinder, that satisfies the
b.c. iωCDL�b = σ (∂�b/∂ρ) at ρ = b, is written in polar

coordinates (ρ, φ) as [33]

�b = −E0bρ cos φ +
(

iω̃b − 1

iω̃b + 1

)
E0bb2 cos φ

ρ
. (22)

From this expression the induced dipole perpendicular to the
cylinder axis is [33]

px = 4πεE0bab2 iω̃b − 1

iω̃b + 1
. (23)

This dipole px is of the order of (b/a)2 ln(a/b) smaller than
pz.

2. Induced rotations

The time-averaged torque on the induced dipole [Eq. (11)]
in the slender approximation is τe = 1

2 Re[αzEzE∗
x ]uy, where

αz = 4πεa3

3 ln(a/b)
�

[
1 + 0.947039

ln(a/b)
�

]
, (24)

and the torque on px has been neglected because αx is of the
order of (b/a)2αz.

The EOr torque is obtained when E0a = E0 cos θ and E0b =
E0 sin θ [Eq. (12)] τe = 1

2 Re[αz]E2
0 cos θ sin θ uy. This torque

tends to align the cylindrical particle with the applied field.
The ROT torque is obtained when E0a = E0 and E0b = −iE0

[Eq. (13)] τe = − 1
2 Im[αz]E2

0 uy. The ROT torque is negative,
which means that the particle rotates in the opposite direction
to the rotating applied field (counterfield rotation).

The angular velocity due to this electrical torque on the
induced dipole is obtained from the balance with the viscous
friction γ� = τe. The viscous coefficient γ for a slender
cylinder up to the same order of approximation is [48,49]

γ = 8πηa3

3 ln(a/b)

[
1 + 11/6 − ln 4

ln(a/b)

]
, (25)

so that the electrically induced angular velocity is

�DEP = ε

4η

[
1 + 0.447039

ln(a/b)

]−1

× Re

{
�

[
1 + 0.947039

ln(a/b)
�

]
E0aE∗

0b

}
. (26)

The rotation due to the induced charge electro-osmotic
flow around the cylinder is obtained from the expressions
of �a [Eq. (21)] and �b [Eq. (22)] on the cylinder surface.
The time-averaged electro-osmotic slip velocity on the surface
of the particle is proportional to (�a + �b)∇s(�a + �b)∗
[Eq. (7)]. The terms �a∇s�

∗
a and �b∇s�

∗
b do not generate

rotation because of symmetry. For a slender body only the
contribution of �a∇s�

∗
b is required [33,36,50]. Therefore, the

rotation is due to the slip velocity generated by the induced ζ

potential due to the field along the axis actuated by the field
perpendicular to the axis. The slip velocity proportional to this
term is

vrot
s = −(ε�/2η)Re

[
2E∗

0b�a

1 − iω̃b

]
sin φuφ. (27)

Using the reciprocal theorem and the slender-body ap-
proximation, Solomentsev and Anderson [50] provided the
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following angular velocity expression for cylinders

�ICEP = −
∫ 1
−1 f (s)ṽ(s)ds∫ 1

−1 s f (s)ds
, (28)

where s = z/a,

f (s) = s(2 ln(a/b) + 1 − 2 ln(2
√

1 − s2)

4[ln(a/b)]2
, (29)

and ṽs is obtained by averaging ux · vrot
s over φ,

ṽs = −(ε�/2η)Re

[
2E∗

0b�a

1 − iω̃b

]
. (30)

The result is

�ICEP

= ε�

2η
Re

{
E0aE∗

0b

(1 − iω̃b)[1 + iω̃b ln(a/b)]

[
1 + 0.947039

ln(a/b)
�

]}
.

(31)

For electro-orientation (E0a = E0 cos θ and E0b = E0 sin θ )
the angular velocity is positive and the particle tends to align
with the field. For electrorotation (E0a = E0 and E0b = −iE0)
the angular velocity results in positive values and the particle
rotates in the same direction of rotation as the electric field
(cofield rotation).

B. Finite elements

The computation of the EOr and ROT of nonslender cylin-
ders requires of 3D numerical simulations. The electrical and
mechanical problems were solved using the commercial finite
element solver COMSOL. The electrical potentials �a and �b

satisfy Eq. (3) with b.c. on the particle surface given by Eq. (4)
and with b.c. on outer surface far from the particle �a = −z
and �b = −x, respectively. The fluid velocity and pressure
generated by a rotating cylinder around Y axis satisfy Eqs. (5)
with b.c. on the particle surface v = uy × r and with no slip
b.c. on outer surface far from the particle.

Once the potentials �a and �b are obtained, the polariz-
abilities αz and αx are calculated by taking into account that
the dipole moment of a charge distribution is equal to the
following integration on a spherical surface that encloses the
charges [51]

p = 3ε

∮
�′(r)dSn, (32)

where �′ is the potential generated by the charge distribution,
which is the perturbation to the applied potential �′ = � +
E0 · r. The angular velocity �DEP is obtained dividing the
electrical torque by the viscous friction coefficient γ com-
puted in the hydrodynamic problem.

The angular velocity due to ICEO is obtained by the
surface integration of vs given in Eq. (16), with the hydro-
dynamic stress tensor T2 of the rotating cylinder around Y
axis. The slip velocity is proportional to ∇s(�a�

∗
a + �a�

∗
b +

�b�
∗
a + �b�

∗
b ), but only the crossed terms produce rota-

tion. In EOr, �a = aE0 cos θ�̃a, �b = aE0 sin θ�̃b, so that
∇s(�a�

∗
b + �b�

∗
a ) = 2E2

0 cos θ sin θ∇sRe[�̃a�̃
∗
b]. While in

ROT, �a = aE0�̃a, �b = −iaE0�̃b, so that ∇s(�a�
∗
b +

�b�
∗
a ) = −2E2

0 ∇sIm[�̃a�̃
∗
b]. Therefore, ∇s(�̃a�̃

∗
b ) is in-

serted into Eq. (16), and the real part provides the EOr angular
velocity while the imaginary part the ROT angular velocity.

For each cylinder case a convergence test was performed.
The 3D discretization was chosen with the compromise of
small numerical error and reasonable computational time.
To reduce the computational effort, the symmetries of the
electrical and hydrodynamic problems were employed so that
the domain of computation was reduced to an octant. Details
are given in Appendix B. The error committed by the 3D
calculations of the polarizability was estimated by comparison
with the results of the 2D axisymmetric problem of the axial
polarizability. The latter is a 2D numerical calculation so that
the axial polarizability can be obtained with high precision by
increasing the number of elements with still small computa-
tional time. Thus we have an estimate of the error committed
by the 3D mesh in the electrical problem. The polarizability αz

was obtained with an error smaller than 0.5% for the different
values of β ≡ b/a studied. The estimate of the error commit-
ted in the hydrodynamic problem is done from comparison
with the rotational viscous coefficient [the denominator in
Eq. (16)] given in the literature for slender cylinders [52].
The rotational viscous coefficient γ was obtained within 0.5%
difference with that given in Ref. [52] for β = 0.04.

IV. RESULTS

The results are presented in nondimensional form.
The nondimensional polarizabilities are defined as A =
αz/(4πεa3) and B = αx/(4πεa3). The nondimensional signal
frequency is defined as ω̃ = ωCDLa/σ , which is different to
previous nondimensional frequency ω̃b = ω̃b/a. The nondi-
mensional angular velocity is defined as �̃ = η�/(εE0zE0x ),
so that for EOr it is �̃ = η�/(εE2

0 cos θ sin θ ) and for ROT it
is �̃ = η�/(εE2

0 ). The nondimensional viscous coefficient is
γ̃ = γ /ηa3. For the DEP cases, the nondimensional angular
velocities are

�̃EOr = 2π

γ̃
Re[A − B], �̃ROT = −2π

γ̃
Im[A + B]. (33)

Appendix C provides the numerical values of γ̃ computed in
this work for the different cases analyzed.

The results for slender cylinders are calculated for β ≡
b/a = 0.04, which was the nanorod slenderness in previous
experiments [30,33,34]. The other cases, with greater β, are
only obtained numerically. Figure 2 presents the comparison
between the polarizabilities calculated numerically and an-
alytically for β = 0.04 as functions of the nondimensional
frequency ω̃ = ωCDLa/σ . We can see that numerical and
analytical values of B, the polarizability perpendicular to the
axis, are very close. However, the polarizability along the
long axis A presents a greater discrepancy between analytical
approximation and numerical results (difference less than
14%). This difference should be ascribed to the fact that
in the analytical approximation of A the small parameter is
1/ ln(a/b) rather than b/a, so the approximation converges
slowly.

Figure 3 shows the imaginary part of the polarizabilities
as a function of nondimensional frequency ω̃ = ωCDLa/σ for
two cases β ≡ b/a = 0.5 and β = 0.04. The ROT angular
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FIG. 2. Comparison between analytical and numerical polariz-
abilities for β = 0.04. Polarizabilities A and B as a function of
nondimensional frequency ω̃ = ωCDLa/σ .

velocity due to the torque on the dipole is proportional to the
imaginary part of −(A + B). The sign of rotation is negative
meaning that the rotation is in opposite direction to the electric
field rotation, i.e., counterfield rotation. We can see that for
a slender cylinder of β = 0.04 the ROT angular velocity is
given mainly by Im[A], the polarizability along the long axis.

Figure 4 shows the real part of the polarizabilities as a
function of nondimensional frequency for two cases β = 0.5
and β = 0.04. The real part of A − B is proportional to the
EOr angular velocity due to the torque on the dipole. The sign
is positive meaning that the torque tends to align the cylinder
axis with the field. We can see that for β = 0.04 the EOr
angular velocity is given mainly by Re(A) for ω̃ > 10, the
polarizability along the long axis. At low frequencies, though,
Re(A) is very small and negative but the EOr angular velocity
is positive due to the contribution of the dipole perpendicular
to the axis.

Figure 5 presents EOr and ROT angular velocities due
to dipole torque as functions of nondimensional frequency
for a cylinder with β = 1 (diameter equal to height), and a
cube with the same height than the cylinder (edge equal to
2). EOr and ROT velocities are proportional to Re[A − B]
and −Im[A + B], respectively. The cube cannot rotate in EOr
since A = B but it can rotate in ROT. Cylinders with aspect
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FIG. 3. Imaginary part of polarizabilities as a function of nondi-
mensional frequency ω̃ = ωCDLa/σ for slenderness β = 0.5 (a) and
β = 0.04 (b). Also plotted is Im[A + B] proportional to the angular
velocity of rotation in ROT.

ratio close to unity show small EOr rotation and their ROT
angular velocity is counter-field.

Figure 6 depicts the nondimensional ICEP angular ve-
locities in EOr and ROT for cylinders with β = 0.04, 0.5, 1
and a cube as functions of frequency. The value of � is
equal to one. In all cases, �ICEP in EOr shows two limiting
values: orientation with the applied field at low frequencies
and negligible orientation at high frequencies. With respect to
�ICEP in ROT, it happens at intermediate frequencies, around
the relaxation frequency, and it is several times smaller than
�ICEP in EOr. The function shows a single maximum for
slender cylinders, β = 0.04, which represents cofield rotation.
As can be seen, the angular ICEP velocity from β = 1 to
β = 0.04 increases as β decreases, i.e., it is greater for slender
objects. Figure 6 a shows EOr and ROT angular velocities
due to ICEO flow �ICEP as functions of ω̃ for β = 1 and
for a cube with semiedge equal to 1. The angular velocity
in ROT is mainly negative for β = 1, which corresponds to
counter-field rotation. For the cube and because of symmetry,
�ICEP is zero, both for EOr and ROT cases. In this respect, it is
similar to the case of a metal sphere that has also �ICEP equal
to zero for both the EOr and ROT cases [20]. Figure 6(b) plots
�ICEP versus ω̃ for β = 0.5. It can be seen that �ICEP for EOr
case is much greater than for ROT case. Figure 6(c) compares

032603-6



ELECTROKINETICS OF METAL CYLINDERS PHYSICAL REVIEW E 99, 032603 (2019)

FIG. 4. Real part of polarizabilities as a function of nondimen-
sional frequency ω̃ = ωCDLa/σ for slenderness β = 0.5 (a) and
β = 0.04 (b). Also plotted is Re[A − B] proportional to the angular
velocity of rotation in EOr.

numerical and analytical results for �ICEP versus ω̃ for β =
0.04. The results present a good agreement (difference less
than 3.6%). The agreement is better than for the correspond-
ing comparison of �DEP and β = 0.04. We ascribe this to the
fact that the ICEP angular velocity is relevant at low frequen-
cies where the numerical solution of the electric potential is
close to the analytical solution: The potential is close to the
applied potential.

Figure 7 plots the angular velocities due to ICEO flow
around the particle (� = 1) and to the torque on the dipole for
β = 0.04. For EOr the angular velocities have the same sign
and, therefore, the rod tends to align with the applied electric
field at all frequencies. For ROT, the angular velocities go in
opposite directions: the ROT due to dipole is counter-field
while that due to ICEO flow is cofield. For the comparison
with the experiments, the total angular velocity is written as
� = �DEP + ��ICEP, where in experiments the parameter
� is smaller than one [20,33]. We can estimate the value
of � in the experiments of Ref. [33] by comparison with
the present calculations. The ratio between � in EOr at low
frequency (which is given by the ICEO torque) and � in EOr
at high frequency (which is given by the dipole torque) is
calculated numerically and compared with the same ratio from
the experimental results, i.e., �rnum = rexp, with r the ratio

FIG. 5. EOr and ROT angular velocities due to dipole torque for
a cylinder with β = 1 and a cube as functions of nondimensional
frequency ω̃.

between ICEP and DEP angular velocities. The comparison
provides an estimated value of � ≈ 0.1 for σ = 5 mS/m.
Notice that in the experiments the nanowires, because of
their mass density, are close to the bottom of the device
exhibiting Brownian motion. Therefore, we have assumed that
the nanowire interaction with the bottom wall is the same for

FIG. 6. Angular velocity due to ICEO flow as a function of
frequency for cylinders with b/a = 0.04, 0.5, 1.0 and a cube.
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FIG. 7. Angular velocities due to dipole torque, �̃DEP, and to
ICEO around the nanowire, �̃ICEP, as a function of frequency for
β = 0.04.

low and high frequencies and can be factored out. To provide
some actual numbers, the characteristic frequency given by
the maximum rotation in ROT is ω̃ ≈ 10. This leads to a
signal frequency f = 10σ/(2πCDLa) = 38 kHz, for KCl in
water with conductivity σ = 5 mS/m, nanowire semilength
a = 5 μm, and estimating the double layer capacitance by
Debye-Huckel expression CDL = ε/λD. The maximum nondi-
mensional angular velocity in dipole torque ROT is �̃ ≈ 0.15.
This leads to � = 0.15εE2

0 /η = 10.5 rad/s for a rotating
electric field with amplitude E0 = 104 V/m.

Figure 8 presents the real part of polarizabilities as a func-
tion of frequency for a cylinder with β = 4.0. It has a diameter
four times greater than its height so that the cylinder resembles
a disk rather than a rod. Also plotted is Re[A − B], which
is proportional to the angular velocity of rotation in EOr. It
is negative for all frequencies which means that the cylinder
orients with its symmetry axis perpendicular to the applied

FIG. 8. Real part of polarizabilities A and B as a function of fre-
quency for β = 4.0. Also plotted is Re[A − B], which is proportional
to the EOr angular velocity.

FIG. 9. Imaginary part of polarizabilities A and B as a function
of frequency for β = 4.0. Also plotted is Im[A + B], which is
proportional to the ROT angular velocity.

field. Figure 9 plots the imaginary part of polarizabilities as
a function of frequency for a cylinder with β = 4.0. Also
plotted is Im[A + B], which is proportional to the angular
velocity in ROT. In this case, the cylinder rotates counterfield.

Figure 10 shows angular velocities due to dipole torque
and to ICEO flow around the particle (� = 1) as a function
of frequency for a cylinder with β = 4.0, i.e., diameter equal
to four times height. The EOr torque due to ICEO flow tends
to align the cylinder symmetry axis with the applied electric
field, �ICEP > 0. Interestingly, the EOr torque due to dipole
tends to align the cylinder symmetry axis perpendicular to the
applied field, �DEP < 0. Therefore, if the �-factor is not too
small (� > 0.25), it would be possible to observe a change
in orientation by changing the frequency. With respect to the
ROT, �DEP is counterfield while �ICEP is very small and
changes from counterfield to cofield increasing frequency.
To give some actual values, the signal frequency for maxi-
mum rotation in ROT due to dipole is f = 0.6σ/(2πCDLa) =

FIG. 10. Angular velocities as a function of frequency in EOr
and ROT due to dipole torque and to ICEO flow for a cylinder with
β = 4.0.
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2.3 kHz, for KCl in water with conductivity σ = 5 mS/m,
cylinder semiheight a = 5 μm, and estimating the double
layer capacitance by Debye-Huckel expression CDL = ε/λD.
The maximum angular velocity in dipole torque ROT is � =
0.3εE2

0 /η = 21 rad/s for a rotating electric field with ampli-
tude E0 = 104 V/m. For ROT, we have implicitly assumed
that the cylinder symmetry axis rotates in the plane of the
applied field. In ROT experiments, it may be possible that
the cylinder axis gets out of this plane because of electro-
orientation tends to align the axis perpendicular to the applied
field. This is beyond the scope of the present calculations. See,
for instance, Ref. [32] for ROT of oblate spheroids rotating
around their symmetry axis, i.e., the symmetry axis is parallel
to the axis of electric field rotation.

V. CONCLUSIONS

We have studied numerically and analytically the rotation
induced on uncharged metal cylinders immersed in electrolyte
by AC electric fields. The induced electrical rotation of a
metal nanowire in solution is originated by both the electrical
torque on the induced dipole and the hydrodynamic torque on
the particle due to induced charge electro-osmotic flow around
the particle. For the general case, we have employed 3D
numerical simulations using finite elements, while for slender
cylinders we have used analytical solutions. The results of
both methods are in good agreement for the slender case. The
error of the analytical approximation is below 14% for the
polarizability and below 4% for the ICEP angular velocity for
a cylinder aspect ratio of b/a = 0.04. The cylinder rotation
induced by the ICEO mechanism was calculated by using
the Lorentz reciprocal theorem, while the rotation due to the
induced dipole was calculated from the cylinder polarizability.

In EOr due to dipole torque, slender cylinders align their
symmetry axis with the electric field, while short cylinders
align their symmetry axis perpendicular to the field. In EOr
due to ICEO flow, all cylinders align their symmetry axis with
the applied field. In ROT due to dipole torque, all cylinders
show counterfield rotation. In ROT due to ICEO flow, slender
cylinders show cofield rotation while short cylinders show
mainly counterfield rotation. For cylinders with aspect ratio
close to one, the induced angular velocities are small, except
for the ROT case due to dipole. For comparison, a cube only
shows angular velocity different from zero for ROT due to
dipole torque, which is the same behavior of metal spheres.
The short cylinder with β = 4 shows alignment of its sym-
metry axis with the field due to ICEO flow but perpendicular
orientation due to dipole torque. Since EOr due to ICEO is
negligible at high frequencies, it could be possible to observe
a change in orientation with frequency in experiments. Finally,
the computations of the present work estimate a �-factor
around 0.1 for the experiments given in Ref. [33].
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APPENDIX A: LINEAR CHARGE ON A SLENDER
CYLINDER

The applied electric field Ea = E0aeiωt uz induces a dis-
tribution of charges on the cylinder. Using slender-body ap-
proximation, the electric potential outside the cylinder can be
written as [44–46]

�a = −E0az + 1

4πε

∫ a

−a

λ(z′)√
(z − z′)2 + ρ2

dz′, (A1)

where λ(z) is an effective linear charge density placed along
the cylinder axis. For an applied ac field, this induced charge
λ(z) is complex, creating in-phase and out-phase perturbed
potentials. The bulk current arriving at the cylinder surface
(ρ = b) charges the double layer capacitance, which provides
an integral equation for λ(z):

iωCDL�a|ρ=b = σ
∂�a

∂ρ

∣∣∣∣
ρ=b

. (A2)

First, the radial derivative of potential at ρ = b is approxi-
mated as

∂�a

∂ρ

∣∣∣∣
b

= − 1

4πε

∫ a

−a

λ(z′)b
((z − z′)2 + b2)3/2

dz′ ≈ − λ(z)

2πεb
,

(A3)
neglecting terms of the order of (b/a)2. Notice that this
relation between the electric field radial component and the
linear charge density is essentially the application of Gauss’s
law. The integral equation for λ(z) becomes

4πεE0az = 2λ(z)

iω̃b
+

∫ a

−a

λ(z′)√
(z − z′)2 + b2

dz′, (A4)

where ω̃b = ωCDLb/σ is a nondimensional frequency. To
proceed analytically [46], the linear charge is expanded as

λ(z) ∼ λ1(z)

ln(a/b)
+ λ2(z)

(ln(a/b))2
+ λ3(z)

(ln(a/b))3
+ . . . (A5)

Here we will expand λ up to second order.
The first order of λ(z) is obtained by evaluating asymptot-

ically the integral for b � a [46],∫ a

−a

λ(z′)√
(z − z′)2 + b2

dz′ ∼ 2λ(z) ln(a/b), (A6)

and solving Eq. (A4). The first order of λ(z) is [33]

λ1(z)

ln(a/b)
= 2πεE0az

iω̃b

1 + iω̃b ln(a/b)
. (A7)

To obtain the second order, the expansion of λ(z), with λ1

already determined, is substituted in Eq. (A4):

2z = 2z

1 + iω̃b ln(a/b)
+ λ̃2

iω̃b[ln(a/b)]2

+
∫ a

−a

dz′√
(z − z′)2 + b2

{
λ̃1(z′)

ln(a/b)
+ λ̃2(z′)

[ln(a/b)]2

}
, (A8)
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FIG. 11. Reduced polarizability αz3 ln(a/b)/4πεa3 versus re-
duced frequency ω ln(a/b)CDLb/σ for b/a = 0.0025. The slender-
body approximation is shown for the first and second order in
1/ ln(a/b).

where λ̃ = λ/2πεE0a. The integral of λ1 is evaluated exactly
and then approximated up to order (b/a)2:

∫ a

−a

z′√
(z − z′)2 + b2

dz′ ≈ −2z + z ln

[
4(a2 − z2)

b2

]
. (A9)

The leading approximation for the integral of λ2 is identical
to that for λ1, Eq. (A6). After solving for λ2, the linear charge
up to second order is

λ(z) = 2πεE0az

ln(a/b)
�

{
1 + 1 − ln[2

√
1 − (z/a)2]

ln(a/b)
�

}
, (A10)

where � = iω̃b ln(a/b)/[1 + iω̃b ln(a/b)]. The potential on
the cylinder surface is obtained taking into account the b.c.
Eq. (A2),

�a(b, z) = − λ(z)

2πεiω̃b
= − E0az

1 + iω̃b ln(a/b)

×
{

1 + 1 − ln[2
√

1 − (z/a)2]

ln(a/b)
�

}
. (A11)

The polarizability is the induced dipole for E0a = 1

αz =
∫ a

−a
zλ(z)dz = 4πεa3

3 ln(a/b)
�

[
1 + 0.947039

ln(a/b)
�

]
. (A12)

Figure 11 compares the real and imaginary parts of the polar-
izability for β = 0.0025 as obtained using the slender-body
approximation in the first and second order in the expansion
and using finite elements. The figure depicts the reduced po-
larizability αz3 ln(a/b)/4πεa3 versus the reduced frequency
ω ln(a/b)CDLb/σ . The convergence is slow [since it is an
expansion in terms of 1/ ln(a/b)], nonetheless, the slender
approximation provides the correct trends and proper order
of magnitude for the polarizability.

X 
Y 

Z 

=  =0 
 
= =  =0 

FIG. 12. Boundary conditions on planes of symmetry for
electrical and hydrodynamic problems.

APPENDIX B: DETAILS OF NUMERICAL
COMPUTATIONS

The symmetries of the electrical and hydrodynamic prob-
lems together with the linearity of both problems allow us to
reduce the domain to an octant. Figure 12 shows the domain
with the boundary conditions.

The potential �a, generated by an electric field applied
along the cylinder axis, is axisymmetric. It shows odd sym-
metry with respect to the plane z = 0 and even symmetry for
the other two planes, x = 0 and y = 0.

The potential �b, generated by an electric field applied
along the X axis, shows odd symmetry with respect to the
plane x = 0 and even symmetry for the other two planes,
y = 0 and z = 0.

When the cylinder is rotating around the Y axis with
angular velocity equal to one, the boundary condition on the
surface of the cylinder is that the velocity is equal to uy × r.
The velocity field generated by the rotating cylinder when its
axis coincides with the Z axis has the following symmetries:

(a) The plane y = 0 presents even symmetry for the veloc-
ities vx and vz and odd symmetry for vy. In this case, the flow
at one side of the plane is a mirror image of the flow at the
other side.

(b) The planes z = 0 and x = 0 present odd symmetry
for the tangential velocities and even symmetry for the nor-
mal velocities. This symmetry is dictated by the fact that
changing the sign of angular velocity changes the sign of
the velocity field because of the linearity of equations. How-
ever, this is equivalent to rotating the system 180o around Z
axis.

APPENDIX C: NONDIMENSIONAL VISCOUS
COEFFICIENT

The following table shows the nondimensional viscous
coefficient γ̃ for the different cylinders and the cube analyzed
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β γ̃

0.04 3.2295
0.5 18.013
1.0 48.064
4.0 1029.7
cube 60.996

in this work. It was calculated numerically as
∫

[x(n · T2)z −
z(n · T2)x]dS, the denominator of Eq. (16). These values of
the viscous coefficient are used to compute the nondimen-
sional angular velocities as given by Eq. (33).

The value of γ̃ for β = 0.04 differs from the formula given
in Ref. [52] (valid for slender rods) in less than 0.5%. This is
the maximum error we estimate for the other cases.
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