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Information transmission of mean and variance coding in integrate-and-fire neurons
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Neurons process information by translating continuous signals into patterns of discrete spike times. An
open question is how much information these spike times contain about signals which modulate either the
mean or the variance of the somatic currents in neurons, as is observed experimentally. Here we calculate
the exact information contained in discrete spike times about a continuous signal in both encoding strategies.
We show that the information content about mean modulating signals is generally substantially larger than
about variance modulating signals for biological parameters. Our analysis further reveals that higher information
transmission is associated with a larger proportion of nonlinear signal encoding. Our study measures the
complete information content of mean and variance coding and provides a method to determine what fraction of
the total information is linearly decodable.
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I. INTRODUCTION

The fundamental units of computation in the brain are
spikes, which are binary all-or-none events generated by
neurons in response to currents. These input currents reflect
sensory or internal signals. For instance, these signals can
modulate the average input current or vary its amplitude (see
Fig. 1). How much information the spike trains carry about
the arriving signals and whether variance or mean changes
are more efficiently conveyed is currently an open question.
evidence suggests that both mean [2–4] and variance mod-

ulation [2,3,5,6] may be present in neurons. To understand
how the coding strategies of current mean modulation (MM)
and variance modulation (VM) operate and which capabilities
of encoding incoming signals in spikes they provide, it is
crucial to determine their information coding efficiency. This
question is important not only because it will help clarify
intra- and cross-areal communication in the brain but because
the answer to it will shed light on the basics of analog-to-
binary information transmission.

A major feature of a cortical circuits across different
species is a state of balanced excitatory and inhibitory in-
puts [7–10]. Mean modulating signals can arise from a
transient imbalance between excitation and inhibition. This
may be the case if excitation and inhibition are not equally
tuned to a sensory stimulus [11,12] or if they are cotuned
but inhibition is delayed [13–15]. In these cases, the mean
somatic current in the respective neurons is modulated by the
stimulus, and the net current change averaged across neurons
is representative of the stimulus. For example, it has been
shown in orientation-selective neurons in cat visual cortex
that different orientations correspond to different levels of
the average subthreshold voltages. This orientation tuning is
generated by an imbalance between excitatory and inhibitory
conductances [16].

In contrast, variance modulating signals may arise when
excitation and inhibition are equally stimulus tuned [17] and
tightly correlated at the same time [7,8,18]. In this case,

external signals modulate the current and voltage fluctua-
tions [2,19]. For instance, experimental studies in cat visual
cortex have measured the power of γ -range (25–70 Hz)
membrane fluctuations in response to the presentation of
moving gratings in the receptive field of the considered neu-
rons [20,21]. In this case, sensory information is encoded in
the envelope of γ -band voltage fluctuations suggesting that
the stimulus modifies the variability of the somatic input.
A similar stimulus-tuned fluctuation strength in the θ -band
(6–10 Hz) has been found in hippocampal place cells [22].
Moreover, the sensitivity to input fluctuations rather than
mean changes has been shown in experimental studies on
pyramidal neurons [23,24].

The properties of mean and variance modulations are of-
ten described in terms of linear response functions. These
functions describe the linear filter properties of a neuron (see
Ref. [25] for a review). Theoretical studies examining the
leaky integrate-and-fire (LIF) and exponential integrate-and-
fire (EIF) neuron models could obtain the linear response
functions for mean and variance modulations analytically
either over the full frequency range [26,27] or for the limit of
infinitely high frequencies [28,29]; furthermore, more general
semianalytic algorithms to obtain response functions were
introduced [30]. The response functions generally have dif-
ferent functional shapes for variance and mean modulations
and further depend on the spike initiation time (zero for
LIF neurons and finite for EIF neurons) and steady-state
characteristics [31]. In particular, for variance modulations,
linear response functions in the LIF model can have finite
response amplitudes even in the limit of infinitely high fre-
quencies when white background noise is assumed [26].
This finding is supported by an in vitro study showing that
neurons can respond to step changes in the input variance
almost instantaneously [6]. For mean modulations, in contrast,
white-noise background leads to a low-pass form of the linear
response function [26]. This suggests that mean and variance
coding strategies may use different mechanisms to convey
information.
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FIG. 1. Encoding signals by modulating either the mean or the
variance of somatic input currents. An external signal s(t ) arrives
at the excitatory (exc) and inhibitory (inh) neurons of an encoding
neural circuit. These respond with a signal-dependent firing rate
ν0[1 + s(t )]. We consider a neuron that receives inputs from this
circuit. Depending on the number and type (exc vs inh) of its synaptic
inputs, two cases can occur. In the first case (top, mean modulation),
signal modulated exc currents are larger than their inh counterparts,
thereby generating a net somatic current in individual neurons whose
mean follows the signal s(t ) (thin red trace). In the second case
(bottom, variance modulation), the exc and inh signal-modulated
currents are balanced. The resulting somatic current has a signal-
dependent variance (thin blue trace). Other signal-independent exc
and inh inputs contribute to a background (not shown). More details
can be found in Sec. III A and Sec. S1 in Ref. [1].

On the other hand, there are some similarities between the
coding channels. For example, correlated noise background
results in a finite amplitude of the linear response functions
for both mean and variance modulations at high frequencies
in the LIF model. In EIF neurons, the responses decay to zero
in all cases [28]. Overall, theoretical considerations show that
neural responses can have small or high-frequency cutoffs, de-
pending on electrophysiological parameters, modulation type,
and noise parameters. Experimental studies of neocortical
neurons have shown that the linear response functions for
both MM and VM generally have a low-pass form, but their
frequency cutoffs are located at high frequencies of a few
hundred hertz [2,3,32–34].

While linear response theories can anticipate the amplitude
and phase of the rate response approximately, translating
these findings into specific predictions about coding efficiency
remains a challenge. In order to quantitatively compare mean
and variance coding strategies, it is necessary to find reli-
able information estimates in both coding schemes. Yet the
previously available information-theoretic methods have only
provided a lower or upper bound for the information con-
tent [35]. The lower bound, which is computed using linear
signal reconstruction, has often been used for information
estimates [36–42]. However, it is still unclear how much of
the total information is captured by the linear estimates used
in these studies.

In the present work, we determine the exact information
content of spike trains about mean and variance modulating
signals in LIF and EIF neurons in the fluctuation-driven,
subthreshold regime, which has been demonstrated to well
describe properties of cortical activity [43,44]. Hereby we use

a recently proposed method [45] to calculate the exact infor-
mation content of spike trains per spike as well as a function of
frequency. We perform our analysis for three different firing
rates that are tuned and represented by three different noise
levels. We find that spikes carry in general more information
about MM signals than about VM signals when nonzero noise
correlation times are assumed. Higher noise correlation times
increase the information content in MM but decrease that of
VM coding. Furthermore, we find that a finite spike initiation
time, as incorporated in EIF models [46], limits the infor-
mation containing frequency bandwidth in both modulation
schemes, in agreement with linear response studies [28,30].

In order to understand the mechanisms determining infor-
mation content, we compare the information per frequency
with linear response functions and a measure of linearly
decodable information. While we find that the linear response
often serves as a proxy for the frequency filtering in the
transmitted information, there are significant nonlinear ef-
fects induced by nonlinearites in the spike cross-correlation
functions that escape the linear response formalism if the
signal strength is increased. Finally, analyzing how much of
the full information is linearly decodable, we find that the
fraction of linearly encoded information is generally smaller
for higher information content. However, this relation can be
offset by nonlinearities at very low frequencies that occur in
exponential integrate-and-fire neurons and variance coding.
As another important type of nonlinear encoding we identify
higher harmonics in the spike cross-correlation functions.

II. RESULTS

We consider the spike response of neurons whose input
current mean or variance is modulated by the signal (see
methods Sec. III A). The total mutual information Itot about
the stimulus conveyed by the resulting neural spikes is given
by

Itot = −
∑

R

PR log2 PR +
〈∑

R

PR|s log2 PR|s

〉
S

, (1)

where PR is the probability of encountering a response R
and PR|s is the conditional probability of encountering the
response R, given that the signal s is presented. 〈〉S denotes
the average over different signals. We can now express the
mutual information Itot as a function of angular frequency ω

following the considerations in Ref. [45]:

Itot (ω) = −1

2
log2

[
1 − Ccross(ω)

Cauto(ω)

]
, (2)

whereby Cauto(ω) is the autocorrelation function of the spike
trains and Ccross(ω) is the cross-correlation function of spike
trains from different trials where the same signal was pre-
sented (see also Sec. III D). Let us note that Ccross(ω) is equiv-
alent to the Fourier-transformed peristimulus time histogram
(PSTH) autocorrelation function [45,47].

In our considerations, s is a stochastic signal character-
ized by its amplitude σs, its dominant, central frequency
�0, and its correlation time τs. Moreover, a stationary back-
ground noise is incorporated as an Ornstein-Uhlenbeck pro-
cess parametrized by amplitude σn that determines the firing
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FIG. 2. Linear response theory reveals the role of response func-
tions for information transmission. We start by considering the
stimulus and its power spectrum (top). We denote the latter by 1©.
The signal power spectrum has a central frequency �0 (�0 = 0
corresponds to an Ornstein-Uhlenbeck process), and its width is
determined by τs [see Eq. (9)]. Here we show an example of a narrow
signal power spectrum for illustration. Next we encode the signal in
either the mean (MM left, red) or the variance of the somatic current
(VM right, blue). The functions 2©- 4© describe the responses and their
correlations evoked by mean or variance coded signals, respectively.
Displayed from top to bottom are linear response function 2©, linear
approximation to the trial averaged spike cross-correlation function
3©, and the linear approximation to the spike autocorrelation function
4©. The resulting information Itot (ω) and its linear approximation
Ilin (ω), as given by Eq. (2) and (5), are shown for MM and VM
(upper and lower curves in bottom plot). For clarity, we place boxes
around the quantities we display.

rate, and correlation time τn (τn = 0 means white noise; see
also Sec. III B).

To uncover the functional dependencies of the mutual in-
formation, we first introduce an approximation based on linear
estimates for both auto- and cross-correlation. This enables
us to explore how signal features and neuronal dynamics—
in particular the linear response function χ—determine the
information content by means of closed-form analytical solu-
tions (for white noise; see Fig. 2).

We start by considering the numerator in Eq. (2). Using
linear kernel approximations, the cross-correlation function in
the Fourier domain ( 3© in Fig. 2) is given by the product of the
amplitude squared linear response |χ (ω)|2 ( 2©) and the signal
power spectrum Sss(ω) ( 1©) [38,48] (see also Sec. III):

Ccross(ω) ≈ Clin
cross(ω) = |χ (ω)|2Sss(ω). (3)

The relevant regions of χ (ω) determining information
transmission are given by the shape of the signal’s power
spectrum. To elaborate on this further, let us consider a

signal power spectrum which is constant everywhere
(“white”). Then, according to Eq. (3), |χ (ω)|2 will be relevant
to the information content across all frequencies. On the other
hand, if the power spectrum is peaked around frequency �0,
then only the values |χ (ω ≈ �0)|2 will be relevant for the
information content (cf. Fig. 2).

Next we address the denominator in Eq. (2). A linear
approximation of the spike autocorrelation function ( 4©) is
given by [48]

Cauto(ω) ≈ C0
auto(ω) + |χ (ω)|2Sss(ω). (4)

Here C0
auto(ω) denotes the spike autocorrelation function in

the absence of a signal. Note that C0
auto(ω) converges to the

firing rate ν0 in this state for high frequencies ω → ∞ (cf.
methods Sec. III F). Furthermore, the power spectrum Sss(ω)
decays with 1/ω2 for large ω such that Clin

auto(ω) also converges
to ν0 in the high-frequency limit. The influence of the signal
on Clin

auto(ω) is restricted to frequencies that are present in the
signal.

The fully linearized information estimate Ilin(ω) for the
mutual information is

Itot (ω) ≈ Ilin(ω)

= −1

2
log2

[
1 − |χ (ω)|2Sss(ω)

C0
auto(ω) + |χ (ω)|2Sss(ω)

]
. (5)

We recognize that in cases where Ccross(ω) � Cauto(ω), we

can expect to find that Ilin(ω) ≈ Clin
cross (ω)

2C0
auto(ω) log(2)

, highlighting the
importance of the cross-correlation function. In this linear
regime (small σs) we can also assume that Clin

cross(ω) is a good
approximation to the cross-correlation function and basic
properties of the mutual information can be derived from the
properties of known linear response functions [26–30]. How-
ever, outside the linear regime nonlinear coding phenomena
emerge that cannot be explained using linear responses alone
(cf. Fig. 5).

For completeness, let us note that the linearly decodable
information is introduced in Sec. II C. It will be used to
determine the fraction of transmitted information that can be
reconstructed using a linear decoder.

A. Comparing information transmission in mean
and variance coding

We are now ready to analyze and compare the information
content conveyed by leaky integrate-and-fire neurons via the
mean and variance coding strategies. For this analysis, we
quantify the full information content I tot = 1

2πν

∫ ∞
0 Itot (ω)

and its linear approximation I lin = 1
2πν0

∫ ∞
0 Ilin(ω). These

quantities represent the respective information per spike (in
bits per spike). We find that the mean channel invariably
outperforms the variance channel when small to moderate
central signal frequencies are considered (Fig. 3). For signals
with power at larger frequencies the assumption of white-
noise background can change this picture in LIF neurons
(see Fig. 4). The general finding holds across a broad set of
signal strengths [Figs. 3(A) and 3(D)], noise strengths and
firing rates [Fig. 3(B) and 3(E)], and different noise time
constants [Figs. 3(C) and 3(F)]. Mean coding outperforms
variance coding by as much as two orders of magnitude for
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(A) (D)

(B) (E)

(C) (F)

FIG. 3. Information capacity of mean and variance coding in
leaky integrate-and-fire neurons. (A) Information increases mono-
tonically as signal strength grows for both mean (MM, red circles)
and variance coding (VM, blue crosses). The dashed lines denote
the respective linear approximations I lin, and circles denote nu-
merical simulations of I tot . The information is an approximation
linear function of the signal strength for smaller σs and sublinear
for larger σs. This finding is conserved for alternative values of
the central signal frequency �0 (inset). (B) Increasing the noise
amplitude while keeping the signal strength constant reduces the
information content for both modulations. The normalized noise
strengths σ̂n = σ̂ (1)

n , σ̂ (2)
n , σ̂ (3)

n are increasing with equal increments
and chosen to produce the three different firing rates ν1 ≈ 12 Hz,
ν2 ≈ 17 Hz, and ν3 ≈ 22 Hz for each τn (see Sec. III G). (C) Noise
time constant τn has opposing effects: It reduces information for
VM but increases it for MM. [(D)–(F)] The information channel
ratio β tot = I tot

MM/I tot
VM (solid lines and symbols) and β lin = I lin

MM/I lin
VM

(dotted lines) obtained from (A)–(C). We find that the information
content is higher for MM signals across a wide parameter regime: All
curves lie above β tot = 1 (thin, dashed line). The information content
for MM and VM becomes more similar for high σs and increasing
noise σ̂n [(D) and (E)]. Larger noise correlation times favor mean
coding (F). We use the same color and symbol code throughout the
article. For parameters, see Table I.

small signal strengths [Fig. 3(D)]. For large signal strengths,
the information contents of the two channels become more
similar. Figure 3(B) shows that increasing noise variance
(i.e., increasing firing rates) have a reducing effect on the

(A)

(B)

(C)

(D)

FIG. 4. Spike initiation time reduces information content for
mean coding and has less effect on variance coding. (A) The informa-
tion content for mean [red lines (circles)] and variance coding [blue
lines (crosses)] for LIF neurons with nonwhite-noise background
saturates to a finite value as the central signal frequency grows.
Mean encoded information content for large signal frequencies �0

and white background noise decays to zero (dashed line). (B) In EIF
neurons, we also observe that mean coding has higher information
content. Information content in both channels decays as the central
signal frequency grows regardless of noise correlation time. Local
maxima exist for VM in both LIF and EIF spiking models at small
�0. (C) Mean coding carries more signal information for finite
noise correlation times (gray line). If the noise is white, then the
ratio β tot = I tot

MM/I tot
VM will cross 1, and variance will overtake mean

coding for sufficiently large �0 in LIF neurons. (D) In EIF neurons,
mean coding has higher information transmission regardless of noise
correlation times. For both neuron models, increasing �0 reduces the
ratio β tot and favors VM coding. Same color and symbol code as in
Fig. 3.

information content in both coding strategies. This is consis-
tent with the decay of the linear response function [Eq. (23)]
for large noise strength in the MM case. However, because of
previously described effects of stochastic resonance, the in-
formation is not expected to be a monotonic function of noise
strength [26] and local maxima may exist. Figure 3(E) reveals
that increasing noise also reduces the gap between variance
and mean coding. Furthermore, we find that increasing the
noise time constant strongly diminishes the information in
the variance channel while boosting it in the mean channel
[Fig. 3(C)]. As a consequence, we see that Fig. 3(F) reports a
growing advantage of MM over VM coding for larger noise
time constants. We did not find a marked dependence of the
information on the signal correlation time (see Fig. S1 and S2
in Ref. [1]).

In the linear regime of small signal strengths, we find
that the linear information approximation closely resembles
the full information content, but for large signal strengths

032420-4



INFORMATION TRANSMISSION OF MEAN AND VARIANCE … PHYSICAL REVIEW E 99, 032420 (2019)

the linear approximation overestimates the full information
content [Fig. 3(A)]. This estimation error is mainly caused
by underestimations of the firing rate and the damping of
response amplitudes when the dynamic range of the rate re-
sponses becomes large (cf. Fig. S11 in Ref. [1]). Interestingly,
for VM information transmission does not saturate at high
signal strengths, even though a considerable overmodulation
[s(t ) < −1] can be expected to occur frequently.

B. The influence of neuronal dynamics and signal structure
on information content

To investigate the impact of neuronal dynamics we use the
exponential integrate-and-fire model which offers to control
the spike initiation time (see method Sec. III C). We chose
this model because it well fits the dynamics of cortical
pyramidal neurons and stellate cells and is computationally
efficient [49,50]. In Fig. 4, we present a direct comparison
between the leaky and the exponential integrate-and-fire mod-
els, which we refer to as LIF and EIF, respectively. We find
that the results for the EIF model generally resemble those
obtained for the LIF model (cf. Fig. 9). However, EIF neurons
transmit less information in the mean channel but have a
similar information content in the variance channel compared
to LIF neurons. Moreover, we find that crucial differences
between the EIF and LIF model appear when the signal’s
central frequency increases.

The LIF model converges to finite information contents for
large signal frequencies if the noise is temporally correlated in
both the mean and variance channels [Fig. 4(A)]. However, if
noise is white, then mean coding’s information declines with
growing frequency. This behavior is reproduced at different
signal strengths [see inset to Fig. 4(A)]. This is in agreement
with the fact that in the given regime the response functions of
LIF neurons remain finite in the high-frequency limit [26,51].
Figure 4(C) indicates that for white-noise background in the
limit of a large central signal frequency, variance modulation
can be more beneficial for LIF neurons. This echoes the
hypothesis by Silberberg et al. [6] that variance modulation
evokes stronger signal encoding responses. Studying the in-
formation ratio of mean and variance coding [Fig. 4(C)] for
nonwhite noise (light gray), we find that mean coding is a
more efficient coding strategy by approximately two orders
of magnitude.

In Fig. 4(B) and in its inset we recognize that the informa-
tion content in EIF neurons declines with the central signal
frequency for both mean and variance coding schemes—in
accordance with the known 1/ω decay of the linear response
functions in both cases [28]. Interestingly, we find that mean
coding still outperforms variance coding by approximately
one order of magnitude [see also Fig. 4(D)], but we notice
that both coding schemes become more similar as the central
signal frequency increases.

Overall, we find that mean coding outperforms variance
coding, except for the case of LIF neurons with white back-
ground noise and high-frequency signals. However, because
postsynaptic potentials always possess finite decay times
noise currents cannot be perfectly white [27]. In cases where
finite correlation times in the noise are present (even if they
are as small as 5 ms), we observe that mean coding provides

higher information transmission also in LIF neurons. Interest-
ingly, in the EIF model, which incorporates the finite spike
initiation times as generated by the sodium channel dynamics
in cortical neurons [46], we find a consistent advantage of
mean over variance coding for both white and nonwhite
noise. Therefore we conclude that mean coding has higher
information transmission capabilities in biologically plausible
settings. Comparing the values for information content and
responsiveness to fast signals in LIF and EIF neurons, we
emphasize the importance of spike initiation dynamics for
information transmission. In particular, a finite spike initiation
time introduces cutoffs for information carrying frequencies.

C. Proportion of linearly encoded information decreases
with total information

The information content that can be decoded linearly is
given by [35,52]

Ild (ω) = −1

2
log2

[
1 − |Ssr (ω)|2

Sss(ω)Cauto(ω)

]
� Itot (ω). (6)

Again, we define I ld = 1
2πν

∫ ∞
0 Ild (ω) � I tot. This infor-

mation estimate has been used in numerous studies [36–42]
and represents a lower bound for the total information con-
tent [35]. It is given by the mutual information of the signal
and a response-based linear signal reconstruction. Nonlinear
signal-response correlations cannot be captured by Eq. (6)
and are equivalent to noise from an information transmission
perspective.

To assess the fraction of information that is encoded lin-
early, we define the information linearity index λld = I ld

I tot � 1.
Figures 5(A) and 5(B) show that λld drops with increasing
signal strength in most cases and approaches 1 for vanishing
σs. This is in line with the intuition that small signals are
encoded linearly and that nonlinearities arise progressively
as the signal grows. However, a crucial observation can be
made: In EIF neurons, variance coding of high-frequency
signals leads to local minima of λld as a function of the
signal strength [Fig. 5(B)]. For low �0 the curves are found
to be similar in both neuron models and share a feature: The
fraction of linearly encoded information remains considerably
higher when variance modulations are used rather than mean
modulations. This is not an obvious finding because the signal
strength σs in both cases equivalently describes the signal-
driven modulation depth [of the input’s mean or variance;
see Eqs. (7) and (8)] and conceptually the linearly decodable
information Eq. (6) stems from a linearization in σs [52].

Taking another point of view, from Figs. 5(C) and 5(D) it
becomes evident that the main determinant for the linearity
is given by the total information itself. Here a visualization
of pooled data from both coding schemes and neuron models
[(C) LIF and (D) EIF] demonstrates that data points are dis-
tributed around a decaying curve in the I tot-λld plane. Again
an aberrant dependency is found for variance coding in EIF
neurons at high signal frequencies (Fig. 5, light blue dots). The
exceptional behavior emphasizes the importance of the spike
initiation time for the responsiveness of neurons to high fre-
quencies and is analyzed in more detail in Figs. 6(B) and 6(D).
For LIF neurons, higher signal frequencies generally decrease
the linearity (at a given information) in mean coding and
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(A)

(B)

(C)

(D)

FIG. 5. Linearity of encoding is a function of the total informa-
tion. The fraction of linearly decodable information is measured by
λld = I ld/I tot . (A) As a function of increasing signal strength the
deviations from linearity increase faster for mean coded (MM, red
circles) than for variance coded signals (VM, blue crosses) in LIF
neurons. (B) The situation is different for EIF neurons. As shown
here, for VM the fraction of nonlinearly encoded information can be
a nonmonotonic function of the signal strength. For MM the curves
are similar to those in LIF neurons. [(C) and (D)] Many simulated
data points are shown together (see Table I). The two different values
for the central signal frequency �0 are shown as different shades
of red circles and blue crosses. For LIF neurons, the linearity λld is
predominantly a function of the total information I tot that appears
to be the same for MM and VM (circles and crosses). The effect
of increased central signal frequencies tends to be opposite for VM
and MM: Higher frequencies (lighter colors) increase λld in variance
coding and decrease it in mean coding (C). For EIF neurons, high
values of �0 are related to clear reductions of the linearity λld within
variance coding (D). The effect is illustrated in Fig. 6 and yields
to deviations in the overall dependence of total information and its
linearly decodable fraction. In all plots the thin, dashed line denotes
λld = 1 where exact information and lower bound coincide.

increase that of variance coding. In EIF neurons the effect
of higher signal frequencies is generally de-linearizing, in
accordance with experimental work [53,54]. Additionally, we
find that larger noise amplitudes and firing rates lead to a more
linear encoding (Fig. S3(A) and S3(B) of Ref. [1]), which
is in line with previous reports [48,55,56]. In contrast, larger
noise correlation times increase the contribution of nonlinear
encoding. This effect is most pronounced in mean coding [see
Figs. S3(C) and S3(D)].

D. Different types of nonlinearities are dominant in mean
and variance codes

We now want to point out the origins and differences
of encoding nonlinearities in mean and variance coding and
the two neuron models. For this purpose we use the devia-
tion of the total information content Itot (ω) and the linearly

(A) (B)

(C) (D)

(E) (F)

FIG. 6. Nonlinearities are observed as higher harmonics and
as contributions at low frequencies. Both columns show the
information-relevant, frequency-resolved functions for a rather high
signal frequency �0 = 2.54 × 2πkHz and σs = 0.5. The left column
represents data from LIF neurons and the right column from EIF
neurons. Main plots in the left column represent MM (red) and
insets corresponds to VM (blue); vice versa in the right column
where insets refer to MM. (A) Nonlinearities manifest themselves in
differences of the total information Itot (ω) (dark colors) and its linear
counterpart Ild (ω) (light). Here nonlinearities are higher harmonics
of the signal frequency and are clearly visible as local maxima at
multiples of �0 in mean coding. As shown in the inset, variance
coding does not possess these nonlinearities at σs = 0.5. (B) In
EIF neurons, instead of higher harmonics prominent nonlinearities
are present at very low frequencies in the information for VM.
Smaller contributions at these frequencies are also present in the
linearly decodable information but are much smaller. For mean
modulations none such nonlinearities are observable (inset). [(C)
and (D)] The shape of the information and its lower bound can
well be traced back to the respective cross-correlation functions.
Accordingly, nonlinear contributions are reflected in differences of
Ccross(ω) and |Ssr (ω)|2/Sss(ω) (cf. Sec. III F). [(E) and (F)] The
autocorrelation functions show clear signal-dependent deflections in
(E) and are almost unchanged in comparison to the steady state
in (F). This is in agreement with the different sizes of the cross-
correlation functions in (C) and (D) that reflect the impact of the
signal. The autocorrelation functions do not have much influence on
the information in the shown examples. Parameters are as shown in
Table I.

decodable information Ild(ω) as a nonlinearity measure—the
larger the differences the more relevant are nonlinear compo-
nents for information transmission at a given frequency.

We identify two major types of nonlinearities that are
most prominent in different signal modulations and neuron
models. For LIF neurons we find higher harmonics to be the
major type of nonlinear encoding, in particular when mean
modulations are used [Figs. 6(A) and 6(C)]. Here higher
harmonics are contributions to the information at frequencies
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that are multiples of the central signal frequency (see also in
Fig. S11 in Ref. [1]) and stem from the equivalent higher
harmonics in the cross-correlation function [Fig. 6(C)]. At a
given signal strength higher harmonics are much stronger in
MM. This is in accordance with the faster drop of λld as a
function of σs as shown in Fig. 5(A). However, at a given
information they can be expected to be equally present in VM
as Fig. 5(C) and Figs. S3(A) and S3(C) in Ref. [1] suggest.

The finite spike initiation time that is part of the expo-
nential integrate-and-fire model gives rise to another type of
nonlinearity at very low frequencies for high central signal
frequencies. Contributions at low frequencies can principally
be understood in a linear picture: EIF neurons are low-pass
filters whose response function is highest at low frequencies.
Therefore, even if the signal power is relatively small at low
frequencies, the response function can compensate for that
and can produce contributions to the cross-correlation at these
frequencies close to 0. This gives an intuition for the origin
of the small contributions to Ild and |Ssr (ω)|2/Sss(ω) that are
seen for both modulations [Fig. 6(B) and 6(D)]. However, for
variance coding we also find contributions that are consider-
ably higher than these linear ones [Fig. 6(B)]. They may be
explained by higher-order interactions of similar frequencies
that are each close to �0 as previously described for second-
order response characteristics [56]. Higher harmonics can also
be observed in EIF neurons but are significant only when the
total information is high.

For completeness, we also show the respective autocor-
relation functions in all cases [Figs. 6(E) and 6(F)]. The
size of signal-dependent modulations of the autocorrelation
depends on the size of the cross-correlation. The shape of the
autocorrelation seems not crucial to understand fundamental
characteristics of information transmission.

III. METHODS

A. Mean and variance modulated currents

Throughout our article, we use the following definitions for
the mean and variance modulated currents IMM(t ) and IVM(t )
(examples of these currents are shown in Fig. 1, and details
are given in Sec. S1 of Ref. [1]):

IMM(t ) = μ[1 + s(t )] + ξσn,τn (t ), (7)

IVM(t ) = μ +
√

1 + s(t )ξσn,τn (t ). (8)

Here μ is a constant input current and ξσn,τn is the noise
part of the current. The signal s(t ) has standard deviation σs

which reflects how much the signal contributes to the current
mean (for MM) or variance (for VM) relative to the steady
state, and σs is therefore called signal strength. We further
set IVM(t ) = μ whenever s(t ) � −1, which is equivalent to
the assumption of a threshold for activation in the presynaptic
encoding population. Let us give some intuition for our defi-
nitions and discuss why we think they are appropriate for the
comparison between the mean and variance coding strategies.
First, in the unperturbed stationary state, when no signal is
present [s(t ) = 0], both currents are equivalent [μ + ξσn,τn (t )].
In this state the current mean is μ and its variance is given by
the variance of ξσn,τn . Second, we define the signal amplitude

in MM relative to the steady-state mean μ, which gives rise
to the term μ[1 + s(t )]. Equivalently, the modulation of the
variance relative to its steady-state value is represented by√

1 + s(t )ξσn,τn , whereby the square root accounts for the fact
that the noise variance is modulated rather than the standard
deviation.

We consider Gaussian colored noise currents ξσn,τn (t ) that

have a temporal autocorrelation 〈ξ (t )ξ (t + h)〉 = σ 2
n

2τn
e−|h|/τn

with correlation time τn. For τn > 0 this describes an
Ornstein-Uhlenbeck process [57–59] and corresponds to the
assumption of exponential synapses [29]. The limit τn → 0
represents instantaneous synapses and in this limit the noise
current becomes Gaussian white noise with autocorrelation
〈ξ (t )ξ (t + h)〉 = σ 2

n δ(h) [29]. Whenever τn = 0 we refer to
this case.

All neurons in a population receive currents modulated
by the signal s(t ) but have individual noise sources ξ (t )
which are independent across trials and across neurons. We
assume independent noise sources because very weak cross-
correlations have been found in cortical circuits [60,61].

B. Signal properties

The signals s(t ) are stationary Gaussian processes with
finite correlation time τs > 0 and standard deviation σs. We
want to emphasize that whereas Gaussian processes are a
common choice, the Gaussian property is not required for the
exact information calculations [45] (stationary inputs yield in-
dependent, normal distributed spike train Fourier coefficients
as we show in Sec. S2 and Fig. S5 to S9 of Ref. [1]). In fact,
we note that the VM current input Eq. (8) does not generally
follow a normal distribution as demonstrated in Eq. (S6) of
Ref. [1].

The signals’ temporal structure is controlled via its power
spectrum’s width and height. The power spectrum is given by
(depicted in Fig. 2, top)

Sss(ω) =
{

σ 2
s τs

1 + [τs(ω + �0)]2 + σ 2
s τs

1 + [τs(ω − �0)]2

}
. (9)

The maximum of Sss(ω) is well approximated by the central
frequency �0 within the range of parameters that we use (see
Table I). The temporal autocorrelation function of s(t ) is given
by

〈s(t )s(t + h)〉 = σ 2
s e−|h|/τs cos(�0h). (10)

Note that σs represents the standard deviation of the mean or
variance modulation irrespective of τs.

C. Spiking models

Here we use the current based LIF and EIF neuron models
to describe voltage dynamics and spike generation. Both
models have proved to reproduce key properties of cortical
pyramidal neurons [46,49,59]. The voltage v(t ) across a cell’s
membrane in the LIF and EIF models are given by [46]

τmv̇ = −v(t ) + R I (t ) (11)

and

τmv̇ = −v(t ) + �T exp

[
v(t ) − θ

�T

]
+ R I (t ), (12)
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TABLE I. Signal and noise parameters used in simulations and for figures. The column Parameter range lists all values that were sampled
in the simulations for the respective parameter. The figure columns represent the parameters that were used to produce the respective figure
(sorted by subplots if present). Varied parameters used in inset figures are annotated in the plot themselves. Each σ̂ (m)

n was chosen to realize a
fixed firing rate νm as explained in Sec. III G and shown in Fig. 7, 8. *This value is not included for the EIF model.

Parameter Fig. 3 Fig. 4 Fig. 5

Parameter (unit) range A,D B,E C,F A,C B,D A B C D Fig. 6

σs [1] [0.05, 0.15, 0.25, 0.5, 0.75, 1, 2] – 0.15 0.15 0.15 0.15 – – All but 0.05 All but 0.05 0.5
�0 (2πkHz) [0, 0.25, 0.51, 1, 2.54, 7.11∗ ] 0 0 0 – – (0, 2.54) (0, 2.54) (0, 2.54) (0, 2.54) 2.54
σ̂n [1] [σ̂ (1)

n , σ̂ (2)
n , σ̂ (3)

n ] σ̂ (2)
n – (σ̂ (1)

n , σ̂ (3)
n ) σ̂ (2)

n σ̂ (2)
n σ̂ (2)

n σ̂ (2)
n All All σ̂ (2)

n

τn (ms) [0, 2.5, 5, 10] (0, 5) (0, 5) – (0, 5) (0, 5) 10 10 All All 5
τs (ms) [10, 20, 30] 20 20 20 20 20 20 20 20 20 20

respectively. Here τm is the membrane time constant, and R
denotes the cell’s input resistance. The input current I (t ) is ei-
ther mean modulated [IMM(t )] or variance modulated [IVM(t )]
(see Sec. III A). All voltages are given relative to the neuron’s
equilibrium potential E = 0. In the LIF model, a spike is
generated at times ti when the membrane voltage reaches the
spike threshold θ . In the EIF model, spikes are generated when
v(t ) crosses θ + 50 mV. Immediately after spiking the voltage
is set to reset potential Vr in both models where it remains
for a refractory period τr . The exponential term in Eq. (12)
represents the spike initiation dynamics governed by sodium
currents. In the limit of instantaneous spike generation, �T →
0, the LIF and EIF models are equivalent [46].

Spike trains are expressed as r(t ) = ∑
i δ(t − ti ) with firing

times ti, and the firing rate is defined as the trial or population
average

ν(t ) = 〈r(t )〉. (13)

Throughout this article we use the following parameters:
τm = 10 ms, R = 40 M� and Vr = 0 mV, θ = 15 mV, in
accordance with experimental findings [49,58,62]. For the LIF
model, we chose τr = 0 ms [27,51,63]. For the EIF model, it
is τr = 5 ms and �T = 1.5 ms [49,64].

D. Spike correlation functions

Here we introduce the spike auto- and cross-correlation
functions in the Fourier domain. The autocorrelation function
is given by

Cauto(ω) = lim
T →∞

〈r̃n(ω)r̃∗
n (ω)〉trn , (14)

where r̃n(ω) is the Fourier transform of the spike train in
trial n. The signal and noise traces in trials 1, . . . , N are
independent and averaging 〈〉trn occurs over all trials. One
noteworthy property of Cauto is that its high-frequency limit
is equal to the average firing rate, limω→∞ Cauto(ω) = ν.

The spike cross-correlation function is defined analogously
as

Ccross(ω) = lim
T →∞

〈r̃n(ω)r̃∗
m(ω)〉trn �=m . (15)

Here the averaging occurs over pairs of trials m and n which
originate from the presentation of the same signal s(t ). Ex-
ample correlation functions can be seen in Figs. 6 and S11
of Ref. [1]. For completeness, let us note that we use the

following definition of the Fourier transform F :

F[ f (t )] = f̃ (ω) =
∫ T

0
f (t )e−iωt dt, (16)

and define power spectra as

Sxy(ω) = lim
T →∞

〈x̃(ω)ỹ∗(ω)〉, (17)

in terms of the angular frequency ω = 2π f . In the limit T →
∞ of large recording lengths, the correlation functions corre-
spond to the spike auto- and cross-spectrum, respectively.

E. Previous upper bound estimates for the mutual information

Here we recapitulate the upper bound for the frequency
resolved mutual information as introduced in Ref. [35] and
make an interesting observation. The upper bound is given by

Iub(ω) = − 1
2 log2

[
1 − γr1r2 (ω)

]
, (18)

whereby

γ 2
r1r2

= lim
T →∞

|〈r̃1(ω)r̃∗
2 (ω)〉|2

|〈r̃1(ω)〉|2|〈r̃2(ω)〉|2 , (19)

with spiking responses r1, r2 to the same signal. We iden-
tify |〈r̃1(ω)r̃∗

2 (ω)〉| = Ccross(ω) and |〈r̃1(ω)〉|2 = |〈r̃2(ω)〉|2 =
Cauto(ω) using standard stationarity assumptions and the re-
lations from methods Sec. III D. Given these identities, we
recognize that the upper bound Eq. (18) and exact informa-
tion Eq. (2) are equivalent, I tot = Iub, under the stationarity
assumptions made for deriving Eq. (2) [45] (see Sec. S3 and
Fig. S10 in Ref. [1] for more details).

F. Linear approximations to correlation functions

Assuming that the signal s(t ) is only a weak perturbation
to the input current, we can apply linear response theory to
approximate the auto- and cross-correlation functions. The
dynamics of the noise averaged firing rate in the Fourier
domain are then described by [48]

〈r̃(ω)〉noise = 2πν0δ(ω) + χ (ω)s̃(ω). (20)

Here χ (ω) represents the linear response functions χMM(ω)
and χVM(ω) for mean modulating and variance modulation,
respectively. The linear approximation to the spike cross-
correlation of two neurons that share a weak signal s(t ) on
top of a noise background is given by Eq. (3). Each spike
train’s autocorrelation function is approximated by Eq. (4).
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Let us note here that the latter approximation does not strictly
derive from the linear approximation Eq. (20) for the rate
modulation [48].

Inserting Eq. (3) and (4) into Eq. (2) yields the linear infor-
mation approximation Ilin as given in Eq. (5). We used it to
dissect the parameter dependencies of the neural information
content (Figs. 2–4).

For completeness, the quantities discussed above for the
LIF model with white-noise background (τn = 0) are given
by [26,51]

ν−1
0 = τm

√
π

∫ �∗

V ∗
r

es2
[1 + erf(s)]ds, (21)

C0
auto(ω) = ν0

|Diωτm (�∗)|2 − e2δ|Diωτm (V ∗
r )|2

|Diωτm (�∗) − eδeiωtrDiωτm (V ∗
r )|2 , (22)

χMM(ω) = ν0
μ

σn

iωτm

iωτm − 1

× Diωτm−1(�∗) − eδDiωτm−1(V ∗
r )

Diωτm (�∗) − eδeiωtrDiωτm (V ∗
r )

, (23)

χVM(ω) = ν0
iωτm(iωτm − 1)

2 − iωτm

× Diωτm−2(�∗) − eδDiωτm−2(V ∗
r )

Diωτm (�∗) − eδeiωtrDiωτm (V ∗
r )

, (24)

where �∗ = (�/R−μ)√
2σn

and V ∗
r = (Vr/R−μ)√

2σn
and Da(x) denotes

the parabolic cylinder function.

G. Numerical simulations

Here we provide details on how we generated the signal
and noise traces, produced the spike trains, and obtained
the correlation functions in our numerical simulations. We
simulated white noise by drawing independent numbers from
N (0, 1/

√
�t). To generate the traces of signal and noise for

τn > 0, we used the algorithm from Ref. [65].
Parameters were chosen to produce cortical firing statis-

tics [43,58,66–68]. This was done by setting three different
target firing rates and a target range of coefficients of variation
and then tuning the parameters accordingly. In particular,
we adjusted the noise strengths σn and μ for each noise
correlation time τn and each neuron model such that the three
different firing rates where realized by three different values of
σn at fixed μ. Following this experiment-driven approach we
obtained for each τn three values of σn corresponding to the
firing rates ν1, ν2, ν3 that we denote by σ̂ (1)

n , σ̂ (2)
n , σ̂ (3)

n , respec-
tively. These firing rates measured in the steady state are ν1 =
(11 ± 1.1) Hz, ν2 = (16.8 ± 0.6) Hz, ν3 = (21 ± 0.4) Hz for
the LIF model and ν1 = (10 ± 1.2) Hz, ν2 = (16.3 ± 0.8) Hz,
ν3 = (20.7 ± 0.8) Hz for the EIF model. The values of the
coefficient of variation are between 0.6 and 0.9. The values
for σn and firing statistics can be found in Figs. 7 and 8. All
sampled parameters and those used for the figures are given
in Table I. In Table II, the numerical values of σn and μ at the
different τn are listed (see also Fig. 7 and 8).

After obtaining the signal modulated currents, we next
iteratively solved Eq. (11) and (12) via the Euler method with
time discretization width �t = 0.02 ms. The resulting spike
times were discretized at 0.1 ms (sampling frequency 10 kHz).
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FIG. 7. Noise strength and constant input current in the LIF
model were chosen to yield spiking statistics in agreement with
experimentally recorded firing statistics. The spiking statistics are
shown for the signal-free case (σs = 0). (A) For each noise corre-
lation time τn one value of μ (olive squares, right axis) and three
equidistant values of σn (different symbols, left axis) were chosen
and resulted in the spiking statistics shown in (B) and (C). As follows
from (B), for each τn one value of σn can be assigned to one of
three firing levels. These are denoted by σ (1)

n , σ (2)
n , σ (3)

n (cf. Figs 3
and 5) and correspond to the firing rates ν1, ν2, ν3 as explained in
Sec. III G of the main article. Panel (C) confirms that all chosen
parameters yield values of CVISI in between 0.6 and 0.8. The firing
statistics are in agreement with the targeted values which are reported
experimentally [43,66–68].

To obtain the spike autocorrelation function, we generated
256 000 independent spike trains of 4-s length. The autocor-
relation function was calculated using Eq. (14) by averaging
over all trials. To calculate the cross-correlation function, we
generated 4000 trials for each of 64 different stimuli s(t )
with varying, independent noise trajectories (256 000 trials in
total; each trial 4 s). We evaluated all pairs |r̃k

i (ω) · r̃k
j (ω)|2

for the same stimulus trajectory sk (t ) and averaged across
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(A)

(B)

(C)

FIG. 8. Noise strength and constant input current in the EIF
model were chosen to yield spiking statistics in agreement with
experimentally recorded firing statistics. The spiking statistics are
shown for the signal-free case (σs = 0). (A) For each noise corre-
lation time τn one value of μ (olive squares, right axis) and three
equidistant values of σn (different symbols, left axis) were chosen
and resulted in the spiking statistics shown in (B) and (C). As follows
from (B), for each τn one value of σn can be assigned to one of three
firing levels. These are denoted by σ (1)

n , σ (2)
n , σ (3)

n (cf. Figures 9)
and correspond to the firing rates ν1, ν2, ν3 as explained in Sec. III G
of the main article. (C) confirms that all chosen parameters yield
values of CVISI in between 0.6 and 0.9. The firing statistics are in
agreement with the targeted values which are reported experimen-
tally [43,66–68].

trials to obtain Ck
cross(ω). We repeated this procedure for all

64 independent stimuli and obtained the cross-correlation
function as 1

64

∑64
k=1 Ck

cross(ω). All correlation functions were
smoothed with a Hanning window function with a width of
5 Hz. To obtain I tot and I ld, we used cutoffs of ωmax =
3�0 + 3 × 2πkHz and ωmax = 8 × 2πkHz in the integration
over frequencies, respectively. We note that for long spike

TABLE II. Values of σn corresponding to σ̂n = [σ̂ (1)
n , σ̂ (2)

n , σ̂ (3)
n ]

and μ for the different τn. Parameters σ̂n were chosen equidistantly
and in order to produce three different, fixed firing rates at given CVisi

and constant input current μ. The values can also be seen in Figs. 7
and 8.

LIF EIF

τn [σ̂ (1)
n , σ̂ (2)

n , σ̂ (3)
n ] μ [σ̂ (1)

n , σ̂ (2)
n , σ̂ (3)

n ] μ

(ms) (pA
√

ms) (pA) (pA
√

ms) (pA)

0 [200, 250, 300] 300 [350, 500, 650] 300
2.5 [95, 130, 165]

√
5 330 [175, 300, 425]

√
5 300

5 [40, 70, 100]
√

10 350 [100, 200, 300]
√

10 310
10 [20, 45, 70]

√
20 365 [75, 175, 275]

√
20 330

trains (T � τs, τn), it is equivalent to average the information
content over stimuli or to first obtain the stimulus averaged
cross-correlation function and then compute the respective
information (we chose the latter). We used the same procedure
to determine the signal-response cross-spectrum Ssr (ω) of
Eq. (6) in order to calculate the linearly decodable information
by first evaluating the Fourier transforms of s(t ) and r(t ).
Also let us note that the source code underlying our results
is available online under [69].

IV. DISCUSSION

In this work, we studied the information about mean
and variance modulating signals contained in spike trains.
Modulations of the mean somatic current due to a transient
break in the excitation-inhibition balance have been reported
in a number of areas, among which are auditory, visual, and
barrel cortex [11,12,14–16]. Similarly, experimental observa-
tions revealed that simultaneous modulation in the excitatory
and inhibitory activity [7,8,11,17,18,21] can induce signal-
dependent changes in the strength of the somatic fluctuations.
The encoding of sensory or internal signals via mean or
variance modulations has been addressed experimentally [3,6]
and theoretically in the linear regime [2,26,63]. These studies
pointed to the possibility that variance modulation may be
faster or more efficient in signal encoding if it occurred on
a white-noise background. However, no comparative evalua-
tion of the information transmission properties of mean and
variance coding has existed beyond the linear regime. While
the experimental level has been the focus of many studies, a
number of mechanistic and computational questions related
to how mean and variance modulating signals are represented
at the spike level have remained open. In particular: How
many bits per spike are transmitted by mean and variance
modulating signals? Does it make a difference whether a
particular signal is encoded in the mean or variance? Is the
information encoding linear?

Here we tackled these questions by calculating the mutual
information between the signal and the resulting spike trains
and revealed a number of features. First, mean coded signals
have a larger information capacity than variance coded signals
in almost all cases we considered. It is always the case
when noise has temporal correlations (see Figs. 3, 4, and 9).
Only if white background noise and signals with very high
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(A) (B)

(D) (E)

(C)

(F)

FIG. 9. Information capacity of mean and variance coding in exponential integrate-and-fire neurons. In (A), (B), and (C) information for
mean coding (red circles) and variance coding (blue crosses) is shown for EIF neurons as a function of signal and noise strength and firing
rate and noise correlation time (see Fig. 3 for comparison to LIF neurons). (A) Information increases monotonically as a function of the signal
strength. (B) Increasing the firing rate through increased noise has a reducing effect on the information content for both modulations. (C) The
effects of increasing noise correlation time are opposite for mean and variance coding: I tot

MM increases with τn, while I tot
VM decreases. [(D)–(F)]

The information ratio β tot = I tot
MM/I tot

VM corresponding to (A)–(C). All curves lie above the line β tot = 1 and accordingly the information
transmission for MM is consistently larger than for VM. From (D) follows that mean and variance coding become more similar for high σs.
Panel (E) indicates that variance coding is less impacted by increasing noise strength and firing rate. (F) Larger noise correlation times favor
mean coding. Parameters are σs = 0.15 [(B) and (E), (C) and (F)], �0 = 0, σ̂n = σ̂ (2)

n [(A) and (D), (C) and (F)], τs = 20 ms.

frequencies are assumed do we find an advantage of variance
modulation in information transmission for LIF neurons. This
is in agreement with the respective response functions [26]
and with the findings of Silberberg et al. [6]. However, the
white noise is not biologically plausible because postsynaptic
potentials have finite, nonzero correlation times. Analyzing
the EIF spiking model, we observed an advantage of mean
coding over variance coding regardless of signal and noise
parameters. It is important to note that our results are not
limited to the linear regime but are valid across all considered
signal strengths.

Second, our results show that variance and mean encod-
ing are mechanistically different in the way they operate.
While variance coding remains largely linear at large signal
strengths, mean coding exhibits large nonlinear contributions
already at small to moderate signal strengths (see Fig. 5
and 6). However, if the degree of linearity is compared at
similar values of information, then one finds it to be similar
for both coding schemes.

Previous work comparing the mean and variance encod-
ing capabilities, both theoretical and analytical, has almost
exclusively focused on comparing the amplitude of the re-
spective linear response functions [2,3,6,26,30]. In this study,
we computed the exact information content conveyed by the
two coding channels. Using the linear theory of Eq. (5),
we were able to connect features of linear response func-

tions with information transmission capabilities (cf. Fig. 2):
Linear response functions describe signal-dependent rate
modulations—as measured by the PSTH—which determine
the spike cross-correlation function Eq. (3) and therefore
are critical to information content. We found that the re-
sponse functions for leaky and exponential integrate-and-
fire neurons [26,30] can often predict well the qualitative
parameter dependence of information transmission even for
larger signal strengths. However, the detailed functional form
of the information content cannot be derived from linear
responses only but can have significant nonlinear contribu-
tions, which can be captured with the exact method used in
this work.

Furthermore, let us note that for this study, we chose
the spiking model parameters such that the irregular
spiking statistics reproduces features of cortical record-
ings [43,58,66–68] and selected the exponential and leaky
integrate-and-fire models which have been proven to be ac-
curate for live cortical neurons [46,49,59]. We did this to
ensure that the information content we predict is relevant for
the in vivo and in vitro situations encountered in experiments.
As a consequence, we recover similar information values
ranging from 0.1 to 10 bits/spike as in previous experimental
studies [35]. We generalized these findings by exploring many
“what if” scenarios by varying the firing rate, noise correlation
statistics, signal strengths, and spiking mechanisms.
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Experiments revealed that the statistics of the input cur-
rents, both background and signal dependent, vary consider-
ably across brain regions and depend on the brain state [70].
This indicates that the range of time constants and other
parameters that we considered is likely to be realized either
in different brain states or brain regions. Differences in in-
formation content which we report may be indicative of the
different computational capabilities in these brain regions. For
example, our results revealed that stronger signals lead to
vanishing differences between the mean and variance coding
(Fig. 3). This indicates the possibility of a regime where
the variety in neurotransmitter time constants [71,72] can be
optimized either for maximizing the information content for
either mean and variance encoding, or this content can be
minimized to enable more complex information transforma-
tions. Similarly, our results in Figs. 4(A) and 4(B) indicate
the existence of local optima for variance coding for specific
signal frequencies. Since the location of these optima depends
on neuronal spiking mechanism and background noise, they
could be targeted by a brain region by enhancing those synap-
tic time constants from the available pool that best match the
properties of the signal.

We recognize that the results of our study may differ—
in particular quantitatively—when other neuron models with
different response properties are considered (cf. Ref. [73]).
Experimental studies suggest that neural response properties
are diverse in in vivo and in vitro situations [2,3,32–34]. In
particular, there is experimental work suggesting that some
cortical neurons are indeed more sensitive to input fluctuations
than to mean changes [23,24]. We would like to emphasize
that our results can be tested in vitro by injecting mean and
variance modulated currents with the properties of interest
into current-clamped neurons. The mutual information can
then be computed according to Eq. (2) from trials with re-
peated and varying signals.

Our results not only provide insights into the coding prop-
erties of single neurons but also can also shed light on the
mechanisms of network level coding. In a recurrent network
of N neurons where each neuron fulfils the stationarity and
finite memory conditions the information-relevant features
are represented in the N × N correlation matrix of the spike
trains’ Fourier coefficients of these neurons. The diagonal
elements of this matrix mirror single neuron encoding which
can be understood using our results. This provides a first-
order approximation of how mean and variance coding strate-
gies impact network-level coding. The off-diagonal elements
which are determined by cross-neural correlations, such as
noise correlations, can further reduce or increase the net-
work’s information content [47]. A fruitful direction for future
studies would be to evaluate how recurrent feedback and
noise correlations alter the information content in mean and
variance coding.

Regarding our investigations of the linearly decodable
portion of the transmitted information, we close an impor-
tant gap left by previous studies. Previously, it was hard
to calculate the full information content because few reli-
able methods existed [45]. While estimating the linear in-
formation contribution is very tractable and many studies
have addressed this by means of a lower bound for the
information [4,21,33,35,36,40–42], measuring the nonlinear

components or the complete information content had been
significantly more challenging. A procedure has been put
forward to estimate the nonlinear contributions to neural
coding through a linearity index defined as the ratio of the
signal-response coherence Ssr (ω) and the square root of the
response-response coherence [Eq. (19)] [53,54,74]. Studies
using this method indicated that an increasing signal strength
leads to stronger nonlinear contributions [37,53], which is in
agreement with our results, in particular for mean coding.
However, measurements of the linearly encoded information
content have not been attempted and the information transmis-
sion capabilities of variance encoding have not been addressed
to the best of our knowledge. Furthermore, we demonstrated
that an information estimate that was previously understood
as an upper bound coincides with the exact information (see
Sec. III E).

Our results show that variance and mean encoding have
different properties regarding the linearity of the code they uti-
lize to transmit information. The encoding linearity is mostly
a function of the total information itself for both coding
schemes across a wide range of time constants and signal and
noise strengths (an exception being variance coding in the
EIF model). However, variance coding, in contrast to mean
coding, remains largely linear even for high signal strengths
with an linearity index above 70% (see Fig. 5). Another
difference between both the coding schemes and neuron mod-
els lies in the kind of nonlinearities that they predominantly
feature. We identify higher harmonics as the major source
of nonlinearities for LIF neurons. They can be observed in
mean coding already at rather small signal strengths. In EIF
neurons the most prominent nonlinearities are introduced at
low frequencies when the signal is centered around high
frequencies. This is best seen for variance modulation (Fig. 6)
and probably results from the nonlinear interaction of similar
frequencies present in the signal. In both coding channels, we
have observed a linearizing effect of increased noise or firing
rate which has been described earlier [48,53,55].

The differences of LIF and EIF models in producing
nonlinearities in cross-correlation functions are based on the
spike initiation mechanism. In fact, the spike initiation time
�T not only influences the linear response function but
will also impact higher-order response functions, especially
at high frequencies, that are causal for nonlinear response
characteristics [56]. Our findings suggest that the finite spike
initiation time of neurons can facilitate the appearance of
low-frequency power in the cross-correlation function, or,
equivalently, PSTH, that stems from high-frequency variance
modulations. This could be an interesting starting point for
the investigation of neural signals that possess low-frequency
power with unknown causes.

Let us note that in a given network in vivo, both encoding
schemes are likely used in parallel because modulations of the
excitation and inhibition due to arriving signals often occur
simultaneously but are not perfectly balanced [10,21]. To eval-
uate the neural codes used in this situation, it is necessary to
assess how mean and variance modulations interact intracel-
lularly and on the network level. For example, simultaneously
recording the changes of excitatory and inhibitory inputs in
nearby neurons (as in Ref. [13]) as a function of sensory inputs
in vivo could help to assess the amount of variance and mean
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coding present in the intact brain. In our present study, how-
ever, we treated mean and variance encoding individually and
studied them separately. Generalizing the present results and
exploring how mean and variance coding arise and interact
in a recurrent network may lead to further insights into the
mechanisms of neural coding.

We have provided a comprehensive analysis of mean and
variance coding capabilities and assessed their linear and
nonlinear components. Our work provides insight into the
information transmission capacities of variance coding that
have not been addressed before and shows how different
parameters of the neural system influence the performance
of mean and variance codes. Importantly, these results for
information content are exact and therefore provide good
references for future studies. The method we used to compare

full and linearly decodable information is transferable to the
investigation of other neural codes. In particular, they can be
applied to experimental data—by evaluating the respective
spike correlation functions—and do not rely on the knowledge
of the specific code being used, which often is unknown.
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