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In the course of development, sleep, or mental disorders, certain neurons in the brain display spontaneous
spike-burst activity. The synaptic plasticity evoked by such activity is here studied in the presence of spike-
timing-dependent plasticity (STDP). In two chemically coupled bursting model neurons, the spike-burst activity
can translate the STDP related to pre- and postsynaptic spike activity into burst-timing-dependent plasticity
(BTDP), based on the timing of bursts of pre- and postsynaptic neurons. The resulting BTDP exhibits exponential
decays with the same time scales as those of STDP. In weakly coupled bursting neuron networks, the synaptic
modification driven by the spike-burst activity obeys a power-law distribution. The model can also produce
a power-law distribution of synaptic weights. Here, the considered bursting behavior is made of stereotypical
groups of spikes, and bursting is evenly spaced by long intervals.
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I. INTRODUCTION

Certain cells in the brain (for instance thalamocortical
[1–3], midbrain dopaminergic [4,5] and cortical [6–8] neu-
rons) exhibit spike-burst activity during development [9,10],
sleep [1,2], and mental disorders [3]. Such an activity be-
haves experimentally as a multi-time-scale phenomenon, with
a slow process (burst) modulating a fast, repetitive, firing
(spike) pattern. Several computational studies focused on
the mechanisms producing spike-burst activity [11], on the
dynamical synchronization in the coupled bursting neurons
[12,13], and so on [14–17]. In particular, such a spike-burst
activity is necessary to drive synaptic plasticity [9,10], whose
study may help in understanding the modification and for-
mation of synaptic weights. Recently, a lot of interest has
been paid in experiments [18–21] and theories [22,23] of
burst-timing synaptic plasticity.

Neural synapses have distinct properties of plasticity.
In particular, spike-timing-dependent plasticity (STDP) was
widely validated in experiments [24–28] and received much
theoretical attention in recent years [29–33]. STDP is highly
sensitive to correlations between pre- and postsynaptic fir-
ings [32,33], which contribute to learning, memory, and de-
velopment [28,34,35], and could play an important role in
synaptic modification evoked by neural spike-burst activity.
Although self-organization of neural network through STDP
has been extensively investigated in many computational stud-
ies [29–31], the synaptic modifications of neural networks
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instructed by spike-burst activity in the presence of STDP are
not yet understood.

In this paper we cover this lack of knowledge, and study
the role of spike-burst activity in instructing synaptic modifi-
cations, and in evolving the network structure through STDP.
In particular, since it is experimentally known that synaptic
conductance is weak during early development [36,37] and
deep sleep [38,39], we here focus on unveiling (both nu-
merically and analytically) the role of spike-burst activity in
weakly coupled neurons. Our results may provide hints on the
mechanism of distribution of synaptic weights.

II. MODEL

A. Coupled bursting neurons

We start by considering N coupled bursting neurons with
chemical synapses. The model is composed of integrate-and-
fire-or-burst (IFB) neurons [40], which are constructed by
adding a slow variable to a classical integrate-and-fire model
neuron. The IFB model can be easily used to control the
timing of spike-burst activity for our research needs.

The dynamics of the membrane potential Vi of neuron i
(1 � i � N) is described by the following equations [40]:

C
dVi

dt
= Iapp

i − IL
i − IT

i

+
N∑

j=1, j �=i

gAi jWi j (V
E − Vi )δ

(
t − t j

sp

)
, (1)

dhi

dt
=

{
−hi/τ

−
h (Vi > V h)

(1 − hi )/τ+
h (Vi < V h)

. (2)
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FIG. 1. The cosinusoidal applied current Iapp
i with φi = 0 and the

membrane potential Vi for a single neuron i.

In Eq. (1), the currents include a cosinusoidal applied
current, Iapp

i = I0cos(2π f t + φi ); a constant conductance
leakage current, IL

i = gL(Vi − V L ); a low-threshold Ca2+

current, IT
i = gT mihi(Vi − V T ); and a coupling current∑N

j=1, j �=i gAi jWi j (V E − Vi )δ(t − t j
sp). In Eq. (2), a slow vari-

able hi represents the inactivation of the low-threshold Ca2+

conductance, which involves T -type Ca2+ channels and pro-
duces the transmembrane current IT

i . The characterization
of the activation of IT

i , mi = H (Vi − V h), and H (·) is the
Heaviside step function. In addition, C denotes the mem-
brane capacity per unit area; gL and gT are the conductances
for leakage and T -type Ca2+ channels; V L and V T are the
corresponding reversal potentials; V h is responsible for the
activation of burst; τ+

h and τ−
h set the durations of the burst

and hyperpolarization.
In Eq. (1), the

∑N
j=1, j �=i gAi jWi j (V E − Vi)δ(t − t j

sp) stands
for the currents received by the neuron i through the synapses
from neurons j at their spike time t j

sp. All neurons are consid-
ered to be excitatory, and the reversal potentials V E for all the
excitatory synapses are 0 mV. A simplified synaptic coupling
of δ function is adopted. The parameter g is the synaptic
conductance, reflecting the coupling strength. Ai j (i �= j) is
an element of the adjacency matrix: Ai j = 1 when a synaptic
connection exists from neuron j to i, and Ai j = 0 otherwise.
Wi j (i �= j) accounts for the synaptic strength from neuron j
to i, when the synapse exists (i.e., when Ai j = 1). Synaptic
strengths are subject to a STDP rule, which will be described
in the following subsection.

Each neuron i integrates the currents and inputs coming
from the connected neurons j. When the potential Vi reaches
the threshold value V θ , the neuron i emits a spike, and then
the membrane potential is reset to the value V reset. In our
simulations, we adopted the same parameter values as those in
Ref. [40], which models relay neurons according to empirical
observations. The parameters are given by C = 2 μF/cm2,
I0 = 0.35 μA/cm2, f = 0.002 KHZ, gL = 0.035 mS/cm2,
gT = 0.07 mS/cm2, τ−

h = 20 ms, τ+
h = 100 ms, V h =

−70 mV, V L = − 75 mV, V T = 120 mV, V θ = −50 mV, and
V reset = −60 mV.

The burst timing is determined by the cosinusoidal applied
current Iapp

i [40]. As shown in Fig. 1, burst firings emerge in
the ranges of large Iapp

i close to the maximum I0. The period
of burst has the same value as that of Iapp

i (i.e., 1/ f ). The

FIG. 2. Schematic illustration of the STDP modification func-
tion. Namely, synaptic strength Wi j from neuron j to i strengthens
when the postsynaptic neuron i fires action potentials after presynap-
tic neuron j spikes (i.e., �ti j � 0), and weakens in the contrary case.
STDP is modeled by exponential functions.

initial phase angle φi ∈ [−π, π ) determines the starting time
of a burst. As a consequence, the temporal order of pre- and
postsynaptic bursts is determined by the difference of initial
phase angles in paired neurons.

B. STDP

The STDP rule of synaptic weights (schematically rep-
resented in Fig. 2) captures actually the effects of temporal
order of paired pre- and postsynaptic spikes [24,29], which in
its turn determines whether the synapse is potentiated or de-
pressed. The modification �Wi j of synaptic weight Wi j from
postsynaptic neuron j to presynaptic neuron i is approximated
by exponential functions of the time interval �ti j between
post- and presynaptic spikes [32], described by

�Wi j =
{

A+e−�ti j/τ+ (�ti j � 0)
−A−e�ti j/τ− (�ti j < 0)

(3)

The parameters A+, A−, τ+, and τ− account for the exponen-
tial properties of the STDP.

In our simulations, we model the STDP behavior by intro-
ducing internal variables Pi(t ) and Mi(t ) linked to the firing
activity for each neuron i, and satisfying τ+ dPi

dt = −Pi, and
τ− dMi

dt = −Mi.
Every time the neuron i fires an action potential at time

t, Pi(t ) is incremented by A+ and Mi(t ) is decremented by A−.
The synaptic weights Wi j for all the connected neurons j to the
neuron i are modified according to Wi j → Wi j + Pj (t ). If the
change makes Wi j > 1, Wi j is set back to the maximal weight
1. Meanwhile, the synaptic weights Wji are updated according
to Wji → Wji + Mj (t ). If this change makes Wji < 0, Wji is
set to the minimal weight 0. Here, the parameters are given by
A+ = 0.004, A− = 0.002, τ+ = 35 ms, and τ− = 40 ms.

III. RESULTS

For weakly coupled bursting neurons a weak synaptic
coupling strength g is considered in our model. We focus
on the role of the temporal interval of pre- and postsynaptic
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FIG. 3. The resulting BTDP modification function, i.e., the
amount �Wi j of synaptic modification as a function of the interburst
interval �Ti j after a simulation time of 2000 ms. Each synaptic
weight is initialized at 0.5, and g = 0.02. For comparison, we also
report the analytical result 4�Wi j produced by 2000/(1/ f ) = 4
“nearest-neighbor” pairings of burst firings, where the theoretical
�Wi j are given by Eqs. (4) and (5). Here Ri = Rj = 8/31 KHZ and
Tb = 31 ms are approximately obtained by the simulations.

bursts in instructing synaptic weights during the evolution
towards their maximal value 1 (or minimal value 0), which
will be attained asymptotically. To unveil self-organization
and emergent properties during such evolution, we simulate
the networks for a time of 2000 ms, i.e., when almost all
evolved weights are still far away from their maximal or
minimal values (this way avoiding boundary effects). The
obtained statistic results do not depend qualitatively on the
simulating time, as long as the weights are kept well away
from their maximal or minimal values.

A. Effect of interburst interval

We focus on the case in which the coupling signal from
synapses is very weak (weakly coupled networks). As a con-
sequence, the spike-burst activity of the coupled neuron is al-
most independent on the coupling, and the temporal interval of
pre- and postsynaptic bursts is approximately constant during
the coupling course. First, we concentrate on the strong effects
of the fixed interburst intervals on synaptic modifications in a
two-neuron network with a synapse. The STDP related to pre-
and postsynaptic spike activity is translated into burst-timing-
dependent plasticity (BTDP), based on the timing of bursts
of pre- and postsynaptic neurons. As shown in Fig. 3, �Wi j

exhibits an exponential decay as a function of the interburst
interval �Ti j , where the interval �Ti j is defined as the bursting
time difference between post- and presynaptic neurons i and j.
Remarkably, the decaying times have the same values τ+
(when �Ti j > 0) and τ− (when �Ti j < 0) as those of STDP.

Second, we move to analytic calculations. During the time
Tb of a burst, the pre- and postsynaptic firing rates r j and

ri are deemed to be approximated by the constant values Rj

and Ri, respectively. Further, one estimates that the synaptic
strengths are not close to their lower or upper limits and
considers only the amount of synaptic weight induced by a
“nearest-neighbor” pairing of bursts in pre- and postsynaptic
neurons j and i. Pre- and postsynaptic neurons are assumed to
start the bursts at the time t = 0 and t = �Ti j , respectively.

When the burst of the presynaptic neuron precedes that of
the postsynaptic neuron (i.e., �Ti j > 0), the synaptic weight is
strengthened. The amount of synaptic potentiation (�Wi j > 0)
can be calculated as

�Wi j = A+
∫ �Ti j+Tb

�Ti j

dtiri(ti )

×
∫ Tb

0
dt jr j (t j )e

−(ti−t j )/τ+

= A+τ 2
+RjRi(e

Tb/τ+ + e−Tb/τ+ − 2)e−�Ti j/τ+

= kPe−�Ti j/τ+ (�Ti j > 0), (4)

where kP = A+τ 2
+RjRi(eTb/τ+ + e−Tb/τ+ − 2).

Similarly, the depression (�Wi j < 0) of synaptic weight
when the burst of the postsynaptic neuron precedes that of the
presynaptic neuron (i.e., �Ti j < 0) is given by

�Wi j = −A−
∫ Tb

0
dt jr j (t j )

×
∫ �Ti j+Tb

�Ti j

dtiri(ti)e
−(t j−ti )/τ−

= −A−τ 2
−RjRi(e

Tb/τ− + e−Tb/τ− − 2)e�Ti j/τ−

= −kDe�Ti j/τ− = −kDe−|�Ti j |/τ− (�Ti j < 0), (5)

where kD = A−τ 2
−RjRi(eTb/τ− + e−Tb/τ− − 2).

Clearly, Eqs. (4) and (5) verify the simulated exponential
decays of the synaptic modification, with decaying times τ+
(when �Ti j > 0) and τ− (when �Ti j < 0) as a function of
the interburst interval. Figure 3 indeed allows the reader to
appreciate the consistency between simulation and analytical
results. Moreover, one can see from Eqs. (4) and (5) that
the impact of bursting (e.g., the burst duration Tb and the
pre- and postsynaptic firing rates Rj and Ri) on the synaptic
modification �Wi j is reflected by the strengths kP and kD of
the exponential functions.

B. Power-law distributions in weakly coupled networks

Next, we study the distributions of probability densities of
synaptic modifications and weights in weakly coupled net-
works with unidirectional and weighted connections (namely,
Ai j and Aji, as well as Wi j and Wji are independent), consistent
with the properties of chemical synapses. In our simulations,
the initial phase angle φi is chosen randomly and indepen-
dently for each i from a uniform distribution between −π

and π . Additionally, each initial synaptic weight is picked
randomly and independently from a uniform density on [0, 1].
The total probability is counted in a bin 0.002 of synaptic
modification (or synaptic weight) near �W (or W ).

The results, presented in Fig. 4 for an Erdős-Rényi (ER)
random network [41], do not depend substantially on the
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FIG. 4. Power-law fit of the middle part of probability distribu-
tion densities of synaptic modifications, for ER networks of different
size N and connection probability 0.6. Data refer to both the synaptic
potentiation (i.e., �W > 0) and depression (i.e., �W < 0). The solid
line indicates the scale-free property with an approximate exponent
of −1. g = 0.0005.

specific choices of initial conditions and used bins. The
synaptic modification obeys a power-law distribution p(�W )
∼| �W |−1 for both synaptic potentiation (i.e., �W > 0) and
depression (i.e., �W < 0). Remarkably, such a scaling is
the same for different size networks and for any network
structures (not shown).

In the course of neural development, the initial synaptic
weights are very weak and can be approximated as being
zero [36,37]. When all initial weights are set to zero, the
synaptic weight W follows a power-law distribution p(W ) ∼
W −1, shown in Fig. 5. Once again, such a scaling is the
same for different network sizes and different connecting
topologies (not shown), indicating that the system organizes
into a scale-free state. It is well known that STDP can lead to
a bimodal distribution with synaptic strengths clustering both
around zero and at the maximum synaptic weight [32,42].
The bimodal distribution of synaptic weights may appear in
our model for long enough evolving time because most of
the synaptic weights reach their maximal value 1 or remain
at their minimal value 0. If most of synaptic weights do not

FIG. 5. Same as in Fig. 4, but for power-law fit of synaptic
weights, with initial weights being zero.

reach the maximal value 1, the same power-law distribution
as in Fig. 5 emerges for different evolving time (not shown).

Let us now focus on the theoretical analysis of p(�W )
and p(W ). The value of φi completely determines the burst
timing of neuron i in weakly coupled networks. Since each
φi is a random number chosen uniformly from −π to π , the
distribution of interburst intervals �T is also uniform in the
range of 1

f -period time from −1/2 f to 1/2 f . In all the pairs of
pre -and postsynaptic neurons with interburst interval �T > 0
(i.e., �W > 0), the probability that the pair j and i has an
interburst interval �Ti j smaller than the certain �T is given
by P(0 < �Ti j < �T ) = �T

1/2 f = 2 f �T .
According to Eq. (4), the probability that the synaptic

potentiation is larger than the value �W = kPe−�T/τ+ can be
written as

P(�W < �Wi j < kP ) = −2 f τ+ln(�W/kP ).

The probability density p(�W ) can then be calculated as
p(�W ) = − dP(�W <�Wi j<kP )

d (�W ) . One gets

p(�W ) = 2 f τ+(�W )−1 (�W > 0). (6)

Similarly, for �W < 0, one can obtain the probability density
p(�W ) as

p(�W ) = 2 f τ− | �W |−1 (�W < 0). (7)

When all the initial synaptic weights are 0, one gets W = �W
and so the probability density p(W ) is naturally given by

p(W ) = 2 f τ+W −1 (W > 0). (8)

One easily sees that all the distributions of probability
densities follow a power-law scaling with an exponent of −1
in Eqs. (6)– (8), in perfect agreement with the simulations
reported in Figs. 4 and 5. The conclusion of our theoretical
analysis is that the essential ingredient to have a power-law
scaling is an approximately fixed and uniform distribution of
interburst intervals, resulting from weak connections in the
network.

IV. CONCLUSION AND DISCUSSION

In summary, we numerically and theoretically investigated
the synaptic plasticity evoked by the spike-burst activity in
the presence of STDP. It was found that STDP is translated
into BTDP, exhibiting exponential decays with the same time
scales as those of STDP. Significantly, the resulting BTDP
is not a new type of synaptic plasticity, but an expression
of STDP induced by spike-burst activity. In weakly coupled
bursting neuron networks, the synaptic modification driven
by the spike-burst activity obeys a power-law distribution. In
particular, our model can initially form power-law distribution
of synaptic weights in weakly coupled networks, although
a power-law distribution has been observed under STDP
without bursting neurons in the literature [29]. Our results
enlighten simple computational principles at the basis of the
organization of synaptic weights in the presence of spike-burst
activity.

Often, it is assumed that the synaptic weight distribution
is exponential in certain brain areas [29]. Furthermore, some
experimental results point towards a log-normal distribution
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[43,44]. However, statistical tests [45] have revealed that a
power-law distribution cannot be excluded at least for cor-
texL2(1), cortexL2(2), cortexL5(2), hippocampus, and cere-
bellum [29,42]. The stable power-law-like weight (or degree)
distribution was observed by using STDP in some modeling
studies [29,46–48]. Developing neural network is generated
and modified by neural electrical activity, molecular cues,
and gene expression [36]. Modern investigations have shown
that neural electrical activity, characterized by spontaneous
spike bursts in developing networks, plays an important role
in forming synaptic weights during early and subsequent
development [37,49]. Therefore, our results provide hints on
the developing mechanism for the power-law distribution of
synaptic weights. Indeed, the synaptic conductance is exper-
imentally weak during early development [36,37], which is
consistent with the hypothesis of weakly coupled networks
adopted in our model. The time points and periods of distinct
developmental processes (e.g., neurogenesis, migration, dif-
ferentiation, synaptogenesis, apoptosis) differ in most species
due to large differences in gestation periods [49,50]. Although
the different structural developments of the cerebral cortex are
more complex and are not well known during early stages, the
hypothesis that synaptic weights are small and play a negli-
gible role in the network dynamics during early development,
which is considered in our model, cannot be all rejected on
empirical grounds for all the species. Namely, the hypothesis
is likely appropriate for certain species or local brain areas.
Additionally, the maximal synaptic weight is selected as 1 and
our simulating time is adopted by a short period (2000 ms), in
order to reduce the calculation time. Selecting a large enough
maximal weight, one can simulate the evolution of the net-
work for a long enough time (corresponding to a long biolog-
ical development time), and get the same qualitative results.

In our model, the considered bursting behavior is made of
stereotypical groups of spikes, and bursting is evenly spaced
by long intervals. The phase angles related to starting times
of bursting are randomly and uniformly chosen in the region
[−π, π ), which produces a random and uniform starting times
of bursting for all the neurons. Since the resulting BTDP
exhibits an exponential decays with the same time scales as
those of STDP, the power-law distribution of synaptic weights
arising from BTDP applies also to STDP for periodic spiking
(no bursting) neurons with random and uniform firing times
(the theoretical analysis is the same as for BTDP in the paper).

It has been recently found that a periodic spatiotemporal
spiking pattern (with randomly and uniformly chosen phase
ordering) can give rise to a power-law distribution with an ap-
proximate exponent −1 in the middle part of the distribution
[51], which is in full agreement with our result.

In our study, we considered only the initial weight change
in weakly coupled networks, corresponding to the early stages
of development. With the development of neurons, synaptic
conductance maybe becomes large so that the connections of
neural networks become strong. Strongly coupled networks
will feature a strong interplay between structure and dynam-
ics through STDP, possibly nonuniform distributions of the
interburst intervals, and maybe richer distributions of synaptic
weights. In addition, removal and rewiring of synapses is here
not considered. Further investigations along these lines are
expected to produce more realistic neural network structures
and synaptic weight distributions.

Yet, our model studies the role of spike-burst activity
in synaptic modification in weakly coupled networks. The
resulting BTDP provides a simple computational principle for
organizing synaptic weights driven by spike-burst activity in
the presence of STDP. In particular, during sleep characterized
by spike-burst neural activity, it has been experimentally
found that memory is consolidated [38,52,53]. Our model and
computational principle may provide a useful tip for the un-
derstanding of such sleep-dependent memory consolidation,
which is still an unaddressed functional issue regarding the
mechanism of synaptic modification.
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