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Elastic interactions between anisotropically contracting circular cells
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We study interactions between biological cells that apply anisotropic active mechanical forces on an elastic
substrate. We model the cells as thin disks that along their perimeters apply radial, but angle-dependent forces
on the substrate. We obtain analytical expressions for the elastic energy stored in the substrate as a function of
the distance between the cells, the Fourier modes of applied forces, and their phase angles. We show how the
relative phases of the forces applied by the cells can switch the interaction between attractive and repulsive, and
relate our results to those for linear force dipoles. For long enough distances, the interaction energy decays in
magnitude as a power law of the cell-cell distance with an integer exponent that generally increases with the
Fourier modes of the applied forces.
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I. INTRODUCTION

Mechanical forces influence the biological function at the
cellular level. This is demonstrated most clearly in the ex-
perimental result that the differentiation of stem cells and
their further fate depend on the mechanical properties of their
environment [1–3]. There is much current research also on the
effects of mechanical forces on cell division [4,5], embryonic
development [6], wound healing [7], cancer metastasis [8,9],
cardiac beating [10], and more. Specifically, living cells apply
forces on their environment [11]. The elastic properties of
this environment largely affect the forces applied by the cells
[12–18], the transmission of forces through the medium [19],
their projected area [20,21], and interactions between distant
cells [22,23]. Cells connect to the extracellular matrix at
focal adhesions, which are positioned on their surface. At
these focused points cells apply on their mechanical environ-
ment contractile forces, which are roughly directed toward
the center of the cell. Traction-force-microscopy experiments
provide quantitative measurements showing that for cells on
two-dimensional surfaces these forces are distributed along
their perimeter and less in the area of contact between the
cell and the substrate [24–29]. More recent experiments have
measured such traction forces also in three-dimensional ge-
ometries of cells surrounded by biological gels [4,30–32]. For
a review of the biological aspects of traction force generation,
see [33].

In order to develop a theoretical framework, it was sug-
gested that on a course-grained scale, the mechanical activity
of each cell may be modeled as a contractile force dipole
[34–36]. A linear force dipole is a pair of opposing point
forces of the same magnitude applied at some distance one
from the other [34,37,38]. Each active cell generates a defor-
mation field in the medium around it, which is in turn felt
by distant cells, leading to a mechanical interaction [39,40].
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We previously studied spherically contracting cells in a three-
dimensional elastic medium. We focused first on the effects of
the nonlinear material properties of the medium [41,42]. We
then introduced a mean-field approximation for interactions
with neighboring cells [43], and subsequently considered the
full geometry of deformations induced by two spherical cells
[44]. For the latter case we identified an interaction mecha-
nism that originates from shape regulation, and which does
not exist for cells that do not regulate their mechanical activity
due to the mechanical forces they sense [45,46]; see also [47].

Cells typically have irregular shapes and irregular internal
structures, thus active traction forces are distributed in a very
anisotropic manner around each cell. In this article we con-
sider cells that adhere to the surface of an elastic substrate, and
study how their anisotropic contractility influences interac-
tions between distant cells. Actual cells have irregular shapes,
and we defer the study of cell anisotropy to future work.
Here, instead we limit ourselves to symmetric cells and focus
on the effects of their anisotropic contractility on cell-cell
interactions. Section II describes our theoretical framework
for describing the anisotropic displacement field generated
by circular cells on an elastic substrate, and subsequently
the interaction energy between them. In Sec. III we present
our results for this interaction energy for different Fourier
modes of anisotropic active forces. We find that for large
enough distances, the interaction energy decays algebraically
with distance with an integer exponent, which generally grows
with the Fourier mode. In Sec. IV we discuss our results, and
specifically show how the relative phases of the Fourier modes
in the two cells may cause the interaction energy to switch
sign between attractive and repulsive. Section V provides
concluding remarks and outlook for future work.

II. METHODS

A. Theoretical framework

We consider two active disks each of radius R0 lying on
the surface of a semi-infinite elastic solid with linear Hookean
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FIG. 1. Two active disks lying on a semi-infinite medium. We
use a right-handed polar coordinate system for the left disk 1 and
a left-handed one for the right disk 2. Angles γ1 and γ2 are the
phases of the Fourier components of the active forces, fi(θ ) =
Cn,i cos [ni(θi − γi )]. In the figure n1 = 3, n2 = 2.

behavior defined by bulk modulus K and shear modulus G. We
denote the distance between the centers of the disks by d; see
Fig. 1. Each disk is adhered to the surface of the underlying
material along the disk’s perimeter and applies there radial
active forces on the substrate in an azimuthal distribution f (θ )
which is not necessarily isotropic. While the nature of such
an active disk is similar to that of a linear force dipole, there
are several important differences between them. First, even
though cell contractility typically does not produce a propul-
sive force, and cell propulsion requires additional processes,
here we consider also the case where the net force applied by
an active disk is nonzero, namely the azimuthal distribution
of active forces may include also a monopole component.
Similarly, in our description, each cell’s contractility may
contain higher order multipole components, beyond the dipole
moment that is contained in a linear force dipole.

As a result of the application of the active forces, the un-
derlying substrate deforms and forces are transduced from one
disk to the other. We shall consider the interaction energy that
we define here as the difference between the work performed
by two interacting active disks in the system described above
and the sum of self-energies of two similar separate systems
each of which includes only one such active disk. In the
case we consider here of disks on a semi-infinite solid we
expect the situation to be different than for three-dimensional
spherical cells, in which in the absence of regulation, inter-
action energies vanish [44,45]. This is since for disks the
displacement fields are not purely volume- or shape-changing
anymore, as is the case for isotropically contracting spheres.
We restrict our present analysis to the case of radial forces.
One can extend our work in a straightforward manner to
consider active disks that apply also azimuthal forces, and
analyze that situation using a similar method to what we
employ here for the case of radial forces. However, for the
sake of brevity we do not include that in the present article.

Since we assume linear elastic response of the substrate, by
superposition we decompose the anisotropic force distribution
that each disk generates into its Fourier components, and

x

y

z

F

FIG. 2. Point force F on the surface of the semi-infinite medium
applied in the direction of the x axis.

consider the interaction between two disks i = 1, 2 applying
radial forces per unit length on their perimeters of the form
fi(θi) = ∑

n Cn,i cos[ni(θi − γn,i )]; see Fig. 1. Here θi are the
polar angles for each disk, and γn,i are the phases of all
modes. Note that live cells apply only contractile (inward)
forces. However, for our mathematical analysis, which treats
each mode separately, we show in Fig. 1 a single Fourier
component on each disk, and those single modes have both
positive and negative forces since overall each mode has to be
balanced. The total force f (θ ) that a cell applies is the sum of
multiple such modes and is always strictly positive (inward).
This is typically obtained by having a positive n = 0 mode.

We shall find the displacement fields created by each of the
active disks and then sum them to get the total displacement,
and subsequently from that we will obtain the interaction
energy. We use a separate cylindrical coordinate system for
each active disk with origin at its center. To simplify the calcu-
lations, we use the conventional right-handed polar coordinate
system for active disk 1, on the left, while for active disk 2 on
the right we will use a left-handed coordinate system; namely
the angle θ2 grows with rotation in a clockwise direction; see
Fig. 1.

B. Displacement generated by active disk

To evaluate the interaction energy, we use the fact that it
equals the additional work that is performed by the active
disks in the presence of their neighbors. Since our active disks
apply forces only on the surface of the underlying solid and
since work is given by an integral of total displacement times
external force at the point of application of that force, we
are only interested in the displacement on the surface of the
semi-infinite solid. Furthermore, to simplify our theoretical
framework we limit ourselves to active forces that are purely
coplanar with the free surface; see Fig. 2. Real cells on a flat
substrate apply forces, which have also a component normal
to the plane [48–52]. However, in this article we would like
to construct a preliminary theoretical setup for understanding
cell-cell interactions, thus we will limit ourselves to active
disks applying only in-plane traction forces. Therefore, we
will only be interested in the displacements in the same plane,
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and may neglect the displacements in the direction normal to
the surface.

The displacement field in the substrate must satisfy me-
chanical equilibrium, which we write in terms of the displace-
ment field �u as [53]

1

1 − 2ν
∇∇ · −→u + ∇2−→u = 0, (1)

where ν = 3K−2G
2(3K+G) is the Poisson ratio of the medium. Due to

the linearity of Eq. (1) in the case of our Hookean medium,
we may use the superposition principle, namely, we will
decompose the angle-dependent forces created by the active
disks to a system of point forces, solve the displacement field
created by each of them, and finally sum the displacements to
find the resultant total displacement field. We will start with
the Cerrutti Green’s function [54] for the displacement field
due to a point force applied on the surface and in a direction
tangent to the surface. Experiments often exhibit finite-depth
effects, or out-of-plane traction forces [48–52]. However, for
simplicity we assume the elastic medium is semi-infinite; see
Fig. 2. Our theoretical framework can be extended to include
also the finite thickness of the substrate, and out-of-plane
active forces applied by the cells. However, we defer that to
future work and limit ourselves here to the simplest case. For
a force F applied at the origin and directed along the x axis
(see Fig. 2), the displacement is given by [54,55]

ux = F

4πG

[
1

ρ
+ x2

ρ3
+ (1 − 2ν)

{
1

ρ + z
− x2

ρ(ρ + z)2

}]
,

(2)

uy = F

4πG

[
xy

ρ3
− (1 − 2ν)

xy

ρ(ρ + z)2

]
, (3)

uz = F

4πG

[
xz

ρ3
− (1 − 2ν)

x

ρ(ρ + z)

]
, (4)

where ρ2 = x2 + y2 + z2. Since we are interested in plane
displacements (ux, uy), we will ignore Eq. (4). And since we
are interested in the displacements on the surface, we will
set z = 0 in Eqs. (2) and (3). For an active disk of radius
R0 applying a radial force per unit length f (θ ) along its
perimeter, Eqs. (2) and (3) yield

dux = f (θ )R0dθ
1

2πG
√

x2 + y2

(
1 − ν

y2

x2 + y2

)
, (5)

duy = f (θ )R0dθ
νxy

2πG(x2 + y2)3/2
, (6)

where dux and duy are the displacements created by the force
applied along the arc R0dθ . Here we assume that all the elastic
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FIG. 3. Coordinate system used to evaluate the displacement at
point B on the surface of active disk 2 as a result of the application
of a radial point force F at point A on the boundary of active disk 1.

response is due to the substrate. That is, we ignore the elastic
resistance to deformation of each cell due to the forces applied
by the other cell.

In order to evaluate the displacement field created by
a single active disk we first rewrite the displacement field
created by a point force in cylindrical coordinates with origin
at the center of that active disk. Namely, as shown in Fig. 3,
we assume a force per unit length f1(θ1), applied at point
A on the perimeter of disk 1 at orientation θ1 with respect
to η̂—the axis between the centers of the disks. We then
evaluate the contribution of that force to the displacement at
point B, that is located on the perimeter of disk 2, namely
on the surface of the medium, z = 0, at a distance r =√

d2 + R2
0 − 2dR0cosθ2 from the center of disk 1, and with

a polar angle β = arcsin (R0sinθ2/r) in disk 1. Thus for the
effect of point A on the displacement at point B, we should
substitute in Eqs. (2) and (3) above,

x = R0 − r cos (θ1 − β ), (7)

y = −r sin (θ1 − β ). (8)

From Fig. 3 and Eqs. (7) and (8) it follows that

dur = −dux cos(θ1 − β ) − duy sin(θ1 − β ), (9)

duθ = −dux sin(θ1 − β ) + duy cos(θ1 − β ). (10)

Here dur and duθ are the radial and tangential displacements
of point B with respect to the origin O1 due to the force f R0dθ

applied by the azimuthal range dθ around point A; see Fig. 3.
We substitute Eqs. (5) and (6) in Eqs. (9) and (10) and get

dũr = − f̃ (θ1)
2(r̃2 + 1) cos (θ1 − β ) − r̃[2 + ν + (2 − ν) cos (2(θ1 − β ))]

4π [r̃2 − 2r̃ cos (θ1 − β ) + 1]3/2
dθ1, (11)

dũθ = − f̃ (θ1)
[r̃2(1 − ν) − r̃(2 − ν) cos (θ1 − β ) + 1] sin(θ1 − β )

2π [r̃2 − 2r̃ cos (θ1 − β ) + 1]3/2
dθ1, (12)

where we have defined the dimensionless displacement ũr =
ur
R0

, ũθ = uθ

R0
, dimensionless force per unit length f̃i(θi ) = fi (θi )

GR0

and dimensionless position r̃ = r
R0

. In order to evaluate the
total displacement at point B by superposition we integrate
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the contributions from all point forces f (θ1)dθ1 along the
perimeter of active disk 1:

�̃u =
∫ 2π

0

�dũ, (13)

with vector notation: �̃u = (ũr

ũθ

)
, �dũ = (dũr

dũθ

)
.

C. Interaction energy

We compute the interaction energy from the additional
work performed by each of the two active disks due to
the presence of the neighboring active disk. To evaluate the
interaction energy, we subtract from the total work the sum
of the work that the same active disks would perform if there
were no neighboring disks around them:

	E = E −
2∑

i=1

E (i)
0

= 1

2

[
2∑

i=1

∫
Li

(�ui,tot · �fi )dLi −
2∑

i=1

∫
Li

(
�u(i)

0 · �fi
)
dLi

]

= 1

2

2∑
i=1

∫
Li

((
�ui,tot −�u(i)

0

) · �fi
)
dLi, (14)

where E is the total elastic energy stored in the medium for
two interacting active disks and E (i)

0 is the self-energy of active
disk i, i.e., the elastic energy of a system that consists only of
this active disk. In addition, �ui,tot is the total displacement at
the perimeter of active disk i, �fi is the force applied by it, �u(i)

0

is the displacement that the force �fi applied by active disk i
would create in absence of the neighboring active disk, Li is
the perimeter of active disk i, and dLi is the coordinate along
it. From the last expression we see that the interaction energy
is related to the product of the force applied by each disk
multiplied by the displacement generated on the surface of
that disk by the other disk. The coefficient 1

2 in Eq. (14) may
be explained in the following way [43]: Each of the active
disks eventually applies some force �f dθ at each point along
its edge, and the total displacement at that point is eventually
�u. We can think of an adiabatic process during which this
force was built linearly in time over a duration T such that
at any time 0 < t < T the force is given by �g(t )dθ = t

T
�f dθ .

Then, by linearity of the medium, the displacement was built
at the same rate. Namely, the displacement field at any time t
is given by �ω(t ) = t

T �u. Thus the work done in this process of

building the force �f and the displacement �u is

dW =
∫ u

0
�g(t )dθ d�ω(t )

= 1

T 2

∫ T

0
tdt · �f R0dθ ·�u = 1

2
�f R0dθ ·�u. (15)

We now define the nondimensional interaction energy as
	Ẽ = 	E

GR3
0

and rewrite Eq. (14) as

	Ẽ = 1

2

[
2∑

i=1

∫
2π

(
�̃ui,tot − �̃u(i)

0

) · �̃fidθi

]
. (16)

Note that 	Ẽ in not normalized by the self-energy E0 but
by the typical energy scale in the system, which we con-
struct from the shear modulus of the substrate and the disk
radius. According to Eq. (16) only the displacements along the
perimeters of the active disks are relevant to the computation
of the interaction energy. The total displacement around active
disk i is

�̃ui,tot = �̃ui + �̃u ji = �̃u(i)
0 + �̃u ji. (17)

Here �̃ui is the self-displacement created by disk i at its
perimeter, while the displacement �̃u ji is created at the same
region by the neighboring disk j. We consider the case that

the forces �̃fi applied by the active disks do not depend on
the presence of neighboring disks. Thus the self-displacement
created by each active disk does not depend on the presence
of neighboring disks, i.e., �̃ui = �̃u(i)

0 . Substitution of Eq. (17) in
Eq. (16) leads to [56]:

	Ẽ = 1

2

[
2∑

i=1

∫
2π

(
�̃ui,tot − �̃u(i)

0

)�̃fidθi

]

= 1

2

2∑
i=1

∫
2π

�̃u ji · �̃fidθi

= 1

2

[∫
2π

�̃u21 · �̃f1dθ1 +
∫

2π

�̃u12 · �̃f2dθ2

]
. (18)

In the general case of a system of N active disks Eq. (18)
reads

	Ẽ = 1

2

∑
i

∫
2π

∑
j �=i

�̃u ji · �̃fidθi =
∑
i �= j

1

2

∫
2π

�̃u ji · �̃fidθi. (19)

So, an alternative way of writing the interaction energy is

	Ẽ =
∑
i �= j

	Ẽi j, (20)

where

	Ẽi j = 1

2

∫
2π

�̃u ji · �̃fidθi (21)

is the interaction energy of active disk i with active disk j,
or formulating it another way, it is the amount of additional
work that active disk i performs in the presence of active disk

j. Since �f is in the radial direction, the product �̃u ji · �̃fi in
Eq. (20) becomes ur f so we need only the radial part of the
total displacement. However, note that we need the component
of the displacement that is directed toward the center of disk
i, which when analyzed in the coordinate system of disk j has
both radial and azimuthal components there. It is important to
emphasize that Ẽi j and Ẽ ji have different physical meanings
and are generally not necessarily equal.

The interaction energy between two active disks is 	Ẽ =
	Ẽ12 + 	Ẽ21. We use Eq. (21) to compute the interaction
energies 	Ẽ12 and 	Ẽ21. To evaluate the integral in Eq. (21)
we first need to transform the displacement field generated by
disk j from its coordinate system to the coordinate system of
disk i. The transformation is done by multiplying the vector
d�̃u j , Eqs. (11) and (12) by the appropriate rotation mat-
rix B( ji). Here j and i in the superscript denote the original
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FIG. 4. Transformation of the coordinate system (r1, θ1) to the
coordinate system (r2, θ2).

and the target coordinate systems, respectively. For the system
depicted in Fig. 4 the rotation matrix B( ji) is given by

B(12) = B(21) =
(−cos(θ1 + θ2) sin(θ1 + θ2)

sin(θ1 + θ2) cos(θ1 + θ2)

)
, (22)

where the first equality follows from our choice of left- and
right-handed coordinate systems; see Fig. 4. The resultant
displacement field is

�̃u12 =
(−cos(θ1 + θ2)ũr + sin(θ1 + θ2)ũθ

sin(θ1 + θ2)ũr + cos(θ1 + θ2)ũθ

)
. (23)

Since the forces applied by each of the active disks are
directed in the radial direction, it follows from Eq. (21) that
we only need the first, radial component in Eq. (23). The
interaction energy 	Ẽ21 then becomes

	Ẽ21 = 1

2

∫ π

−π

(�̃u12 · �̃f2) dθ2

= 1

2

∫ π

−π

[−cos(θ1 + θ2)ũr

+ sin(θ1 + θ2)ũθ ] f̃2(θ2)dθ2. (24)

As mentioned above, the interaction energy 	Ẽ21 depends
only on the radial part of the displacement �̃u12; see Eqs. (22)
and (23). The angle θ1 in this expression originally belongs to
the rotation matrix B( ji) [see Eqs. (22) and (23)] and will be
replaced by the following expressions in terms of θ2:

r̃ =
√

d̃2 + 1 − 2d̃ cos θ2, (25)

sin (θ1) = sin θ2

r̃
, (26)

cos (θ1) = d̃ − cos θ2

r̃
, (27)

where we have introduced the dimensionless distance between
the cells d̃ = d/R0. In order to get 	Ẽ21 using Eq. (24) we
need to compute ũr and ũθ , which are the radial and tangential
(with respect to O1) components of the displacement field cre-
ated by active disk 1 along the perimeter of active disk 2. We
evaluate them by using trigonometric relations for sin (θ − β )
and cos (θ − β ) in Eqs. (11)–(13) and then substituting the
following relations:

r̃ =
√

d̃2 + 1 − 2d̃ cos θ2, (28)

sin (β ) = sin θ2

r̃
, (29)

cos (β ) = d̃ − cos θ2

r̃
, (30)

which follow from the cosine theorem for the geometry of
the system of two active disks, as shown in Fig. 3. See
also Eqs. (25)–(27). We integrate over θ1 in accordance with
Eqs. (11)–(13) and substitute the results that do not depend
on θ1 anymore in Eq. (24) that includes instances of θ1 that
come from the rotation matrix B(21); see Eqs. (22)–(24). In
order to complete the coordinate transformation from (r1, θ1)
to (r2, θ2) we allow the same procedure that we employed for
β to these remaining instances of θ1. Namely, we substitute in
Eq. (24) sin θ2/r̃ and (d̃ − cos θ2)/r̃ for sin(θ1) and cos(θ1),
respectively, in accordance with Fig. 4 and with Eqs. (25)–
(27). After substitution and integration over θ2 we evaluate the
expression for 	Ẽ21. In the same manner we evaluate 	Ẽ12

and then in accordance with Eq. (20) we sum 	Ẽ21 and 	Ẽ21

to get the expression for the total interaction energy in this
system.

III. RESULTS

A. Interaction between single Fourier modes

If we take f1(θ1) = A1 cos[n(θ1 − γ1)] and f2(θ2) =
A2 cos[m(θ2 − γ2)], then from Eqs. (11) and (12) we get

(dũr )n = −a1 cos[n(θ1 − γ1)]
{2(r̃2 + 1) cos(θ1 − β ) − r̃[2 + ν + (2 − ν) cos(2(θ1 − β ))]}

4π [r̃2 − 2r̃ cos(θ1 − β ) + 1]3/2
dθ1, (31)

(dũθ )n = −a1 cos[n(θ1 − γ1)]
[r̃2(1 − ν) − r̃(2 − ν) cos (θ1 − β ) + 1] sin (θ1 − β )

2π [r̃2 − 2r̃ cos (θ1 − β ) + 1]3/2
dθ1. (32)

Here ai = Ai
GR0

is the dimensionless magnitude of the force, and the subscript n indicates the harmonic mode of the force. After
substitution of Eqs. (28)–(30) in Eqs. (31) and (32) we get

(dũr )n = a1 cos[n(θ1 − γ1)]
ϕ

2κ
dθ1, (33)

(dũθ )n = a1 cos[n(θ1 − γ1)]
ψ

κ
dθ1, (34)
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with

ϕ ≡ (2 + ν)(1 + d̃2) − 2d̃ (d̃2 + 3) cos (θ1)

+ d̃2(2 − ν) cos (2θ1) + 2d̃2 cos (θ1 − θ2)

− 2d̃ (2 + ν) cos (θ2) + 4(1 + d̃2) cos (θ1 + θ2)

− 2d̃ (2 − ν) cos (2θ1 + θ2)

− 2d̃ cos (θ1 + 2θ2) + (2 − ν) cos (2θ1 + 2θ2), (35)

ψ ≡ [d̃ sin (θ1) − sin (θ1 + θ2)][−2 − d̃2 + ν

+ d̃2ν + d̃ (2 − ν) cos (θ1) + 2d̃ (1 − ν) cos (θ2)

− (2 − ν) cos (θ1 + θ2)], (36)

and

κ ≡ 2π

√
1 + d̃2 − 2d̃ cos (θ2) [2 + d̃2 − 2d̃ cos (θ1)

− 2d̃ cos (θ2) + 2 cos (θ1 + θ2)]3/2. (37)

On substitution of these expressions in Eq. (13) and in-
tegration with respect to θ1 we find the displacement field �̃u(1)

n ,

where the superscript 1 corresponds to the active disk that
created it. In order to simplify the resultant expressions we
solve for the case d̃ � 1 of active disks separated by a
distance which is substantially larger than their radius. Further
substitution in Eq. (24) gives

	Ẽ21,nm = 1

2

∫ π

−π

[− cos(θ1 + θ2)(ũr )(1)
n

+ sin(θ1 + θ2)(ũθ )(1)
n

]
cos(mθ2)dθ2. (38)

Here 	Ẽ21,nm is the amount of additional work that active
disk 2 performs due to the presence of active disk 1 if they
apply radial forces f̃2(θ2) = a2 cos[m(θ2 − γ2)] and f̃1(θ1) =
a1 cos[n(θ1 − γ1)], respectively.

B. Isotropic forces

As a demonstration of this procedure we take a simple case,
in which the forces applied by the active disks are isotropic,
i.e., n = m = 0 and thus f̃1(θ1) = f̃2(θ2) ≡ 1. In this case
Eqs. (11) and (12) become

dũr = −{2(r̃2 + 1) cos (θ − β ) − r̃[2 + ν + (2 − ν) cos (2(θ − β ))]}
4π [r̃2 − 2r̃ cos (θ − β ) + 1]3/2

dθ, (39)

dũθ = − [r̃2(1 − ν) − r̃(2 − ν) cos (θ − β ) + 1] sin (θ − β )

2π [r̃2 − 2r̃ cos (θ − β ) + 1]3/2
dθ. (40)

Here the symmetry of the applied forces results in the cancel-
lation of uθ , and moreover ur does not depend on β. Thus we
cancel β in Eq. (39), substitute it in Eq. (13) and get

ũr = − (1 − ν)

π r̃(1 + r̃)
[(1 + r̃2)K (k) − (1 + r̃)2E (k)], (41)

which is consistent with [54]. Here K (k) and E (k) are the
complete elliptic integrals of the first and the second kind,
respectively [57]:

K (x) =
∫ 1

2 π

0

√
1 − x2 sin2 θdθ, (42)

E (x) =
∫ 1

2 π

0

dθ√
1 − x2 sin2 θ

, (43)

and k = 2
√

r̃
1+r̃ . Since both active disks apply the same forces

that do not depend on the phases γ1 and γ2, the total in-
teraction energy equals 	E = 2	E21 where 	E21 is given
by Eq. (24). Since Eqs. (28)–(30) have to be substituted in
Eq. (41), the resultant expression becomes too cumbersome
to be integrated analytically in accordance with Eq. (13).
For higher modes (n, m > 0) the equations become even
more complicated and analytic solutions for the integrals in
Eqs. (13) and (24) are not known. To overcome this difficulty,
we approximate for large separations d̃ � 1 the expressions
for �dũ and �̃u(12) using a Taylor series expansion to leading
order in the inverse distance 1/d̃ .

To demonstrate this in our n = m = 0 example, we set
a1 = a2 = 1, substitute Eqs. (28)–(30) in Eqs. (39) and (40),

approximate the result to leading order in 1/d̃ and obtain

dũr = − 1

16d̃3π
[4d̃ (1 − ν)

+ (8d̃2 + 5 − 6ν) cos (θ1) + 4d̃ (1 + ν) cos (2θ1)

+ 3(1 + 2ν) cos (3θ1) + 8 cos (θ1 − 2θ2)

+ 8d̃ cos (θ1 − θ2) + 8(1 + ν) cos (2θ1 − θ2)

+ 8(1 − ν) cos (θ2)]dθ1, (44)

dũθ = − 1

16d̃3π
[(8d̃2(1 − ν) − 1 + 3ν) sin(θ1)

+ 4d̃ (1 − 2ν) sin (2θ1) + 3(1 − 3ν) sin (3θ1)

+ 8(1 − ν) sin (θ1 − 2θ2) − 8d̃ (1 − ν) sin (θ1 − θ2)

+ 8(1 − 2ν) sin (2θ1 − θ2)]dθ1. (45)

Note that in spite of the fact that θ2 is present in Eqs. (44) and
(45), dũr and dũθ are the radial and azimuthal displacements
in the coordinate system of active disk 1. In order to rewrite
them in the coordinate system of active disk 2 one has to
multiply them by the rotation matrix B(12); see Eq. (22). We
integrate Eqs. (44) and (45) according to Eq. (13) and get

ũr = − (1 − ν)(d̃ + 2 cos(θ2))

2d̃3
, (46)

ũθ = 0. (47)

Substitution of Eqs. (46) and (47) in Eq. (23) gives the
expressions for the displacement field created by active disk 1
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TABLE I. Coefficients Fnm for computation of the interaction energy; see Eqs. (51) and (52).

m\n 0 1 2 3 4 5 6 7 8 9

0 1
4

1
4

3
8

15
32

35
64

315
512

693
1024

3003
4096

6435
8192

109395
131072

1 1
4

1
4

1
8

3
32

5
64

35
512

63
1024

231
4096

429
8192

6435
131072

2 3
8

1
8

1
16

3
64

5
128

35
1024

63
2048

231
8192

429
16384

6435
262144

3 15
32

3
32

3
64

9
256

15
512

105
4096

189
8192

693
32768

1287
65536

19305
1048576

4 35
64

5
64

5
128

15
512

25
1024

175
8192

315
16384

1155
65536

2145
131072

32175
2097152

5 315
512

35
512

35
1024

105
4096

175
8192

1225
65536

2205
131072

8085
524288

15015
1048576

225225
16777216

6 693
1024

63
1024

63
2048

189
8192

315
16384

2205
131072

3969
262144

14553
1048576

27027
2097152

405405
33554432

7 3003
4096

231
4096

231
8192

693
32768

1155
65536

8085
524288

14553
1048576

53361
4194304

99099
8388608

1486485
134217728

8 6435
8192

429
8192

429
16384

1287
65536

2145
131072

15015
1048576

27027
2097152

99099
8388608

184041
16777216

2760615
268435456

9 109395
131072

6435
131072

6435
262144

19305
1048576

32175
2097152

225225
16777216

405405
33554432

1486485
134217728

2760615
268435456

41409225
4294967296

rewritten in the coordinate system of active disk 2. In order
to evaluate the interaction energy we only need the radial
component of that field:

(ũ12)r = (1 − ν)(d̃ + 2 cos (θ2))(d̃ cos (θ2) − 1)

2d̃3
√

d̃2 − 2d̃ cos (θ2) + 1
. (48)

The interaction energy in accordance with Eq. (24) is

	Ẽ21 = −π (1 − ν)

2d̃3
. (49)

Due to the symmetry of the system, 	Ẽ12 = 	Ẽ21, thus
	Ẽ = 2	Ẽ21, and in dimensional form we have

	E = −π (1 − ν)GR3
0

A1

GR0
× A2

GR0

(
R0

d

)3

. (50)

This interaction energy clearly scales with the typical energy
scale GR3

0 in the system. It depends on the product of the
dimensionless force magnitudes ai = Ai

GR0
, and decays alge-

braically with the dimensionless distance d̃ = d
R0

between
the disks. We get 	E < 0, which means that isotropically
contracting active disks will be attracted to each other. We
will later show that for higher modes, 	E may be positive
or negative depending on the phases γ1, γ2. Since the forces
applied by the active disks in this case (n = m = 0) are

isotropic, the resultant interaction energy does not include γ1

and γ2, while for any other modes of the forces, the interaction
energy will depend on them.

C. Higher modes

We find that the dimensionless interaction energies 	Ẽnm

between any modes n and m of the dimensionless forces
f̃1(θ1) = a1 cos [n(θ1 − γ1)] and f̃2(θ2) = a2 cos [m(θ2 − γ2)]
have the general form,

	Ẽnm = − πa1a2

d̃ |n−1|+|m−1|+1
[(2 − ν)Fnm cos(nγ1 + mγ2)

+ νHnm cos(nγ1 − mγ2)], (51)

where the coefficients Fnm, Hnm are given in Tables I and II for
the first 10 modes. In dimensional form this is given by

	Enm = −πGR3
0

A1

GR0
× A2

GR0

(
R0

d

)|n−1|+|m−1|+1

× [(2 − ν)Fnm cos(nγ1 + mγ2)

+ νHnm cos(nγ1 − mγ2)], (52)

where fi(θi ) and thus Ai have dimension of force per unit
length.

TABLE II. Coefficients Hnm for computation of the interaction energy; see Eqs. (51) and (52).

m\n 0 1 2 3 4 5 6 7 8 9

0 − 1
4 − 1

4 − 3
8 − 15

32 − 35
64 − 315

512 − 693
1024 − 3003

4096 − 6435
8192 − 109395

131072

1 − 1
4

1
4

3
8

15
32

35
64

315
512

693
1024

3003
4096

6435
8192

109395
131072

2 − 3
8

3
8

15
16

105
64

315
128

3465
1024

9009
2048

45045
8192

109395
16384

2078505
262144

3 − 15
32

15
32

105
64

945
256

3465
512

45045
4096

135135
8192

765765
32768

2078505
65536

43648605
1048576

4 − 35
64

35
64

315
128

3465
512

15015
1024

225225
8192

765765
16384

4849845
65536

14549535
131072

334639305
2097152

5 − 315
512

315
512

3465
1024

45045
4096

225225
8192

3828825
65536

14549535
131072

101846745
524288

334639305
1048576

8365982625
16777216

6 − 693
1024

693
1024

9009
2048

135135
8192

765765
16384

14549535
131072

61108047
262144

468495027
1048576

1673196525
2097152

45176306175
33554432

7 − 3003
4096

3003
4096

45045
8192

765765
32768

4849845
65536

101846745
524288

468495027
1048576

3904125225
4194304

15058768725
8388608

436704293025
134217728

8 − 6435
8192

3003
4096

45045
8192

765765
32768

4849845
65536

101846745
524288

468495027
1048576

3904125225
4194304

15058768725
8388608

436704293025
134217728

9 − 109395
131072

109395
131072

2078505
262144

43648605
1048576

334639305
2097152

8365982625
16777216

45176306175
33554432

436704293025
134217728

1933976154825
268435456

63821213109225
4294967296

032418-7



ROMAN GOLKOV AND YAIR SHOKEF PHYSICAL REVIEW E 99, 032418 (2019)

d

FIG. 5. Nondimensional interaction energy 	Ẽ between two
active disks applying radial forces f̃1 ≡ 1 and f̃2 = cos(mθ2) with
0 � m � 4 vs the nondimensional distance d̃ between their centers.
Dashed lines represent the exact numerical solution and solid lines
represent the analytical approximation of Eq. (51). The value of
Poisson’s ratio was set to ν = 0.45.

In the special case of m = 0 we get the following expres-
sion for the dimensionless interaction energy as a function of
d̃ and γ1:

	Ẽn0 = − a1a2π

d̃ |n−1|+2
(1 − ν)Ln cos(nγ1), (53)

with a single coefficient Ln. Similarly, when n = 0 we get

	Ẽ0m = − a1a2π

d̃ |m−1|+2
(1 − ν)Lm cos(mγ2). (54)

In order to incorporate these results in Tables I and II we set
Fn0 = −Hn0 = Ln/2 and F0m = −H0m = Lm/2, and this takes
care of the coefficient (1 − ν) that includes Poisson’s ratio.

Figure 5 shows the normalized interaction energy 	Ẽ
computed numerically (exact) and analytically (approximate)
vs the normalized distance d̃ between two active disks apply-
ing forces f̃1(θ1) = 1 and f̃2(θ2) = cos(mθ2) for 0 � m � 4.
The analytical expressions were computed using Eq. (51)
and Tables I and II. As seen in the figure, for large d̃ the
approximation of the interaction energy to the leading term is
enough to capture the rate of the decay of interaction energy
with d̃ . As seen in Eq. (51) the interaction energy decays
with distance as d̃−q where q = |m − 1| + |n − 1| + 1 is an
integer number, which grows with the order of the term for
n, m > 0. When the distance between the active disks is small,
a good approximation requires additional terms, and thus the
numerical solution may be more practical.

IV. DISCUSSION

A. Dependence on phase angles

The interaction between cells depends not only on the
Fourier modes n or m that represent the wavelength of the
anisotropy of contraction around each cell. Here we show how
the interaction energy depends also on the relative phases of
these undulations. This is formally given by Eq. (51), but more
pictorially, in Fig. 6 we demonstrate the dependence of the
interaction energy on the phase angle. Specifically, we show
a pair of disks with an isotropic contractile force (m = 0) on
disk 2, and a simple anisotropic force (n = 3) on disk 1. We

ΔE30 < 0

ΔE30 > 0

γ1 = 1
3
π

γ1 = 0

ΔE30 = 0

γ1 = 1
6
π

FIG. 6. System of two active disks applying forces that result in
the interaction energy given by Eq. (53), demonstrating the change
of sign of the interaction energy, 	Ẽ30 as the phase angle γ1 changes.

show different phase angles γ1 of the force on disk 1 that give
repulsive (positive), attractive (negative), and zero interaction
between the disks.

As one may expect, the interaction energies are generally
periodic in the phases γ1, γ2 since the forces are periodic;
phase angles γ1 = 2π

n and γ2 = 2π
m are equivalent to γ1 =

γ2 = 0. Indeed, all terms in Eq. (51) include the functions
cos(nγ1 ± mγ2). Since both functions and their derivatives
are continuous and since for any n, m > 0, the coefficients
Fnm, Hnm are positive, extremum points for any 	Enm will
appear at {γ1 = k1

π
n , γ2 = k2

π
m } with integer k1 and k2, where

local maxima correspond to k1 + k2 = 2s and local minima
to k1 + k2 = 2s + 1 with s integer; see Fig. 7. It may also be
seen that for some values of γ1 and γ2 the interaction energy
is positive while for other values it will become negative. In
other words, in some orientations the active disks will attract
while in other orientations they will repel. The exact position
of the 	Enm = 0 lines in the (γ1, γ2) plane depends on the
expressions for Fnm and Hnm and thus will be different for
every n and m. In addition, as seen from Eq. (51) the value
of Poisson’s ratio ν also affects the position of the 	Enm = 0
lines in the (γ1, γ2) plane.

B. Comparison to linear force dipoles

We mentioned earlier that we focus here on linear
(Hookean) elasticity and small deformations. This allows us to
use the superposition method for the force and displacements
fields. Any force distribution fi(θi ) may be written as a
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-0.448

-0.352

-0.256

-0.160

-0.064

0.032

0.128

0.224

0.320

0.416

(b)

(c)

(a)

γ1

γ2

0 π/n 2π/n

2π/nπ/n0

0

π/m

2π/m

0

π/m

2π/m

FIG. 7. (a) Typical plot of the interaction energy 	Ẽnm between
two anisotropic modes n, m > 0. Here n = m = 1 and ν = 0.45.
Thick black lines correspond to 	Ẽnm = 0; blue dots correspond to
local maxima (	Ẽnm > 0, i.e., repulsion); red dots to local minima
(	Ẽnm < 0, i.e., attraction). (b) and (c) Mutual orientations of active
disks with n = m = 2 at the local maxima (b) and minima (c) of the
interaction energy 	Ẽ22.

multipole expansion using the Fourier series:

fi(θi ) =
∑

n

{Cn,i cos[n(θi − γn,i )]}. (55)

Mode n = 2 in this series is related to the linear force
dipole, since it has an axis along which the forces concen-
trate. The interaction energy between two linear force dipoles
separated by a distance d and oriented at angles γ1 and γ2

γ1 γ2

R0

R0

R0

R0

γ1 γ2

R0 R0

(b)

(c)

γ1 γ2

R0

R0

(a)

FIG. 8. Analogy of active disks to linear force dipoles. (a) Pair
of linear force dipoles. (b) Pair of active disks applying mode n = 2
with phase angles γ1 and γ2. (c) Analogous system, in which each
disk is replaced by two orthogonal linear force dipoles.

with respect to the axis between them [see Fig. 8(a)] is given
by [40]

	E = − F 2R2
0

4πGd3
{2(1 − ν)[1 + 3(cos 2γ1 + cos 2γ2)]

+ 15ν cos (2(γ1 − γ2)) + (2 − ν) cos (2(γ1 + γ2))},
(56)

where each linear force dipole consists of two point forces F
separated by a distance 2R0. The interaction energy we obtain
from Eq. (52) for two disks applying only the m = n = 2
mode is

	E = −πR4
0A1A2

16Gd3
{(2 − ν) cos [2(γ1 + γ2)]

+ 15ν cos [2(γ1 − γ2)]}. (57)

These two expressions (56) and (57) have the same 1/d3

dependence on distance, but a different dependence on the
relative orientations γ1, γ2. To make the connection between
the two cases, we note that mode n = 2 of an active disk
includes not only a concentration of two opposing contractile
(inward) forces, but also a pair of extensile (outward) forces;
see Fig. 8(b). Thus we compare each n = 2 active disk not
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(a) (b) (c)

FIG. 9. Approximation of linear force dipole by superposition of
n = 0 and n = 2 modes. (a) n = 0 (blue) and n = 2 (red) modes in
the same coordinate system. (b) Result of the superposition of both
modes. (c) The analogous linear force dipole.

to a contractile linear force dipole, but to a combination of
two orthogonal linear force dipoles, one applying contraction
forces and another applying expansion forces; see Fig. 8(c).
We evaluated the interaction energy between two such dou-
ble force dipoles using Eq. (56). We find that the angular
dependence exactly matches that in the interaction between
two n = 2 active disks as given by Eq. (57). The prefactors
are matched if we set the magnitude of the force distributions
to A1 = A2 = 4F

πR0
.

We can also perform a comparison between our active
disks and the previously studied linear force dipoles from the
opposite perspective. Namely, to consider the combination of
Fourier modes on a disk that best describes a linear force
dipole, and compare the interaction energies obtained from
each of the two models. We describe a linear force dipole by
adding the isotropic mode n = 0 to the mode n = 2 on the
disk in order to cancel the outward part of the radial force in
the n = 2 mode. Namely we take fi(θi) = A0 + A2 cos[2(θi −
γi )]}; see Fig. 9. We note that in this case the spatial decay
of the contributions to the interaction energy is identical
for all four interaction terms (0,0), (0,2), (2,0), and (2,2),
since 	E ∝ d−q with q = |n − 1| + |m − 1| + 1. Using our
far-field approximation Eq. (52), we get the following full
dependence on the phase angles γ1 and γ2:

	E = 	E00 + 	E20 + 	E02 + 	E22

= − πR4
0

16Gd3

{
8(1 − ν)A2

0

+ 12(1 − ν)A0A2[cos (2γ1) + cos (2γ2)]

+ A2
2[15ν cos (2(γ1 − γ2))

+ (2 − ν) cos (2(γ1 + γ2))]
}
. (58)

We obtain a very similar angular dependence as for the
interaction between linear force dipoles. However, for this to
perfectly match the expression for the interaction between two
linear force dipoles (56), we would need to set A2 = 2A0 =
2F
πR0

, while the geometry presented in Fig. 9 implies that A2 =
A0 so that the force will vanish in the transverse direction.
Nonetheless, we have established a strong connection between
the previously studied model of linear force dipoles and our
model of anisotropically contracting active disks.

Modes n > 2 can be thought of as higher-order multipoles.
Mode n = 0 is also related to a force dipole since it is an
isotropic collection of pairs of point forces around the disk.

In contrast to all other modes with zero net force, mode n = 1
may be thought of as a force monopole; the net force in this
case does not vanish, and it is thus less relevant to nonmotile
contractile cells. This is similar but not fully equivalent to
electric multipoles, since in electrostatics the charges are
scalar while in elasticity the forces are vectorial and thus
even if we restrict ourselves to radial forces, we need to sum
them vectorially in order to understand the long-range effect
of these forces. Thus n = 0 has a meaning for forces but not
for electric charges; see Refs. [41–44].

Due to the superposition principle, the dimensionless in-
teraction energy between two active disks may be written as

	Ẽ =
∑
n �=m

Cn,1Cm,2	Ẽnm, (59)

where the coefficients Cn,1 and Cm,2 are the amplitudes of
different modes of the radial forces created by the active disks
1 and 2, respectively. From Eq. (59) it follows that knowledge
of the interaction energies of different modes 	Ẽmn makes it
possible to evaluate the interaction energies of arbitrary force
distributions f̃1 and f̃2.

V. CONCLUSIONS

We modeled live cells as disks resting on the surface
of a semi-infinite substrate with linear (Hookean) elastic
properties, and applying on the substrate, along their edges
anisotropic forces directed to their centers. We described
the interaction between such cells via the interaction energy,
which we defined as the additional work that each cell has to
perform due to the presence of the other cell. We suggest that
this quantity could be helpful in theoretically predicting cellu-
lar activity. Specifically, positive interaction energy signifies
repulsion or the tendency of neighboring cells to move apart
or to send protrusions to opposite directions, whereas negative
interaction energy would imply that cells are mechanically
attracted to each other.

We found the interaction energy between every two cells
to be inversely proportional to integer powers of the distance
between them. This power depends on the Fourier modes, n
and m of the anisotropy of the forces applied by the cells.
We also found that the interaction energy is proportional to
a linear combination of the functions cos(nγ1 + mγ2) and
cos(nγ1 − mγ2), where γ1 and γ2 are the phase angles of
the active forces applied by each cell. The linearity of the
equations makes it possible to evaluate the interaction energy
for more complex force distributions by combining the results
that we presented. We deliberately simplified the biological
setup to the tractable geometry of circular disks. In princi-
ple, our approach could be extended to describe cells with
arbitrary shape, and not only the arbitrary azimuthal force
distribution that we studied here.

Biological cells have finite thickness and finite stiffness,
thus the application of forces to the substrate creates deforma-
tion fields in the cells as well and not only in the substrate,
and it would be interesting to take into account the additional
elastic energy stored in the cells in order to evaluate the
total elastic energy of the system. Following our work on
zero-thickness active disks on a semi-infinite elastic substrate,
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it would be interesting to consider finite-thickness active disks
with elastic properties that differ from those of the substrate.
Taking into account the difference in elastic properties be-
tween the substrate and the cells will help understand the be-
havior of cells plated on gels with different rigidities, as tested
experimentally. Finally, taking into account the nonlinearity
of the substrate [13,19,41,42,58,59], our analytical procedure
could clearly not be employed, and this could be an interesting
direction for future numerical research.
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