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Cochlear mechanics with fluid viscosity and compressibility
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We extend the one-dimensional cochlear model to include the effect of viscosity and compressibility of
the cochlear fluid. The resulting boundary-value problem is solved exactly using numerical techniques and
semianalytically using the WKB approximation. Our results indicate the general trend of basilar membrane
response increasing with an increase in compressibility or a decrease in viscosity. However, in the physiologically
relevant range of these parameters, the change in the response is insignificant, justifying the assumption made in
one-dimensional cochlear models that these effects are unimportant. Using the semianalytical WKB algorithm,
we also demonstrate the simultaneous existence of forward- and backward-traveling waves on the basilar
membrane.
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I. INTRODUCTION

In mammalian auditory systems, the transduction of acous-
tic signals into neural signals occurs in the cochlea, a coiled
duct filled with a fluid called perilymph. A flexible partition,
called the cochlear partition, that runs along the length of the
duct divides it into two chambers (see Fig. 1). The two cham-
bers meet at a small opening at the apex of the cochlea called
the helicotrema. The top chamber (scala vestibuli) opens to the
middle ear through a membrane-covered opening called the
oval window and the bottom chamber (scala tympani) through
the round window. The cochlear partition houses an elastic
membrane called the basilar membrane (BM). The ear drum
and middle ear bones transmit the airborne acoustic vibrations
to the oval window membrane, which in turn excites traveling
pressure waves in the perilymph. The fluctuating pressure
difference across the BM sets up traveling waves in the
BM. The mechanical vibrations of the BM are converted to
electrical signals by sensory hair cells residing on the BM.

Besides transduction, the cochlea is also responsible for the
frequency analysis of the incoming sound waves. The mass,
stiffness, and damping of the BM exhibit a spatial gradient
causing the envelope of the surface waves elicited by a single
tone sound wave (with stimulus frequency f and time period
T ) to peak at a resonant place which depends on f [1].
At the resonant place, the impedance of the BM is purely
resistive and dissipates most of the energy of the traveling
wave; Lighthill referred to this phenomenon as critical-layer
absorption [2]. Thus specific exciting frequencies cause spe-
cific resonant places on the BM to respond and selectively
stimulate the hair cells attached to the resonant place. This
spatial mapping of frequency on the BM enables the brain to
discriminate frequencies. The BM stiffness decays exponen-
tially from the cochlear base to the apex [3] and hence the
resonant places for higher (lower) frequencies are located near
the cochlear base (apex), as can be seen in Fig. 2.
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Understanding cochlear mechanics is not only of scientific
interest, but also of technological importance in the diagnosis
and treatment of hearing disorders. Much research effort has
been aimed at constructing cochlear models. The pioneering
mathematical model developed by Helmholtz [4] described
the BM as an elastic sheet without any fluid interaction.
This was followed by other theoretical models of varying
degrees of complexity and focusing on various aspects of the
problem. The simplest among these is the one-dimensional
(1D) model which solves for the difference in the cross-
sectionally averaged fluid pressures across the two chambers
of the uncoiled cochlea and links it to the deflection of the
BM through its impedance. This simple model has been very
successful in accurately capturing the essential features of the
BM vibration. Further, the model can be easily extended to
simulate the active amplification of auditory stimuli mediated
by the hair cells via a nonlinear feedback mechanism [5].
More sophisticated models consider the two-dimensional (see,
e.g., [6–8]) and three-dimensional (see, e.g., [9,10]) versions
of the problem.

We focus on how fluid viscosity and compressibility affect
the results from the 1D cochlear model. Keller and Neu [11]
concluded that viscosity is not important using asymptotic
analysis in an open 2D model, where the fluid domains are
unbounded. Most mathematical models consider the cochlear
fluid to be inviscid based on the assumption that viscous ef-
fects are confined to narrow boundary layers near the cochlear
walls and BM. Since the height of each chamber is of the order
of 1 mm, it is unclear whether the results of Ref. [11] would
apply to a real cochlea. Here we attempt to include the effect
of fluid viscosity in the framework of a 1D model. Lighthill [2]
suggested that fluid compressibility might affect the response
at high frequencies, but no dedicated study had focused on this
effect, specifically in 1D models.

We also revisit the WKB method of solving the cochlear
model. Though it has been used to get closed-from solutions
for 1D [12], 2D [13], and 3D [9] models, after making many
approximations, a solution that is valid uniformly over the
length of the cochlea is not yet available in the literature. Here
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FIG. 1. Schematic diagram showing a longitudinal section of
the uncoiled cochlea. BM: basilar membrane; OWM: oval window
membrane; and RWM: round window membrane.

we adopt a semianalytical technique where the WKB solu-
tions are integrated numerically. The motivation is twofold.
First, it enables the relaxation of the assumptions made in pre-
vious studies with respect to the impedance of the BM. Most
studies either completely neglect the resistive element of the
impedance or assume it to be small in relation to the stiffness
component so as to obtain closed-form solutions. This leads to
a singular or near-singular behavior of the BM displacement
near the resonant place and subsequently the WKB solution
does not agree well with the exact solution in the regions api-
cal to the resonant place. Without making any such assump-
tions, we achieve WKB solutions with global validity and
accuracy. Second, this hybrid algorithm allows us to include
the two linearly independent WKB solutions and provide
insights into their relative importance. All the previous studies
consider only the wave propagating in the forward direction
(i.e., from the base to the helicotrema). This corresponds to
only one of the WKB solutions. We show that the second
mode is a backward-traveling wave with amplitude many
orders of magnitude lower than the forward-traveling mode.

II. MODEL

We start deriving the modified 1D model by applying mass
conservation on the upper chamber (see Fig. 1). We use the
following notation: t is the time, x is the position along the
BM, u = (u, v) is the 2D fluid velocity field, p is the pressure,
ρ is the fluid density, ρ̄ is the mean fluid density, κ is the fluid
compressibility (defined as the reciprocal of the bulk modulus
K = ρ̄

d p
dρ

), ω = 2π f is the excitation angular frequency, L is
the length of the BM, l is the height of each channel, η(x, t )
is the vertical displacement of the BM, ηmax is the maximum
displacement of the BM, λ is the wavelength of the BM wave,
and the subscripts 1 and 2 denote upper and lower chambers,
respectively. The continuity equation for the upper chamber
reads

∂ρ1

∂t
+ ρ̄∇ · u1 = 0. (1)

Here the advective term in the material derivative of density is
neglected since O(u1) ∼ ωηmax and thus the order of magni-
tude of a typical advective term relative to that of the unsteady
term is O(u1

∂ρ1

∂x )/O( ∂ρ1

∂t ) ∼ ηmax/λ � 1. Note that the 1D
model is valid when the wavelength is long compared to the
lateral dimensions of the chamber, thus the above inequality
is highly satisfied. Introducing the fluid’s compressibility,

Eq. (1) becomes

∇ · u1 = −κ
∂ p1

∂t
. (2)

Since we seek a steady-state response of the BM to a single
tone, the ansatz

u1 = ũ1(x)eiωt + c.c. (3)

(with similar expressions for other variables) is used to trans-
form Eq. (2) from the time domain to the frequency domain
as

∇ · ũ1 = −κiω p̃1. (4)

After integrating this equation over the differential control
volume of height l and thickness dx located at x as shown
in Fig. 1 and subsequently using the divergence theorem, we
get

∂ j̃1
∂x

− Ṽ = −iωκl p̃1. (5)

Here j̃1 = l ũ1 is the longitudinal volume flow rate. Further,
we have used the no-penetration boundary condition at the top
wall of the chamber, i.e., ṽ1(x, y = 0) = 0, and the kinematic
boundary condition at the BM, i.e., ṽ1(x, y = l ) = Ṽ , the
complex amplitude of the vertical velocity of the BM. The
vertical displacement of the BM is driven by the pressure dif-
ference across the BM p = p1 − p2 according to the equation

m(x)
∂2η

∂t2
+ r(x)

∂η

∂t
+ k(x)η = −p, (6)

where m(x), r(x), and k(x) denote the mass, resistance, and
stiffness per unit area of the BM. The negative sign indicates
that a higher pressure in the lower chamber causes a positive
BM displacement. In the frequency domain, this equation
leads to

Ṽ = −p̃/Z, (7)

where

Z (x) = iωm(x) + r(x) − i
k(x)

ω
, (8)

is the impedance per unit area of the BM. In this paper we use
m(x) = 0.5 kg/m2, k(x) = 1 × 1010e−300x N/m3, and r(x) =
3 × 104e−150x N s/m3, where x is in meters [6].

Note that the resistance r(x) accounts mainly for the struc-
tural damping of the BM (of the cochlear partition, to be more
precise). Direct damping of BM oscillations due to viscous
drag force from the perilymph is expected to be insignificant
for small amplitude of vibrations. This is because the tangen-
tial viscous stresses act on both sides of the BM along in the x
direction and thus do not affect the transverse motion in the
y direction. However, as we will see later, at high enough
fluid viscosity, the viscous dissipation in the fluid reduces
the energy available for the BM excitation and thus in turn
decreases the BM response. In passing, we remark that active
cochlear models exist which incorporate a negative damping
of the BM in the region basal to the resonant place [14], in an
attempt to represent the active behavior of hair cells, e.g., hair-
bundle motility [15]. Such an active BM pumps energy (rather

032417-2



COCHLEAR MECHANICS WITH FLUID VISCOSITY AND … PHYSICAL REVIEW E 99, 032417 (2019)

than dissipating energy) into the cochlear wave and thus helps
to explain the mechanism of cochlear amplification. In the
present work we focus on the macromechanics of a passive
cochlea and do not consider such an active phenomenon.

Now let us consider the linearized 1D momentum equation
for the fluid in the top chamber

ρ̄
∂u1

∂t
= −∂ p1

∂x
− 2μ

l2
u1. (9)

Here μ denotes the dynamic viscosity of the cochlear fluid.
The last term represents the viscous force per unit volume of
the fluid and its functional dependence on the average velocity
u1 can be easily obtained by scaling analysis. The prefactor
2 in the scaling arises from a comparison with the solution
of plane Poiseuille flow; however, the actual value of the
prefactor does not matter in the present analysis as long as
it is of order 1. After transforming Eq. (9) to the frequency
domain and multiplying by l gives

iωρ̄ j̃1 = −l
∂ p̃1

∂x
− 2μ

l2
j̃1. (10)

Using Eqs. (7) and (10) in Eq. (5) yields

∂2 p̃1

∂x2
+ ω2ρ̄κ

(
1 − i

2μ

l2ωρ̄

)
p̃1 − iωρ̄

Z (x)l

(
1 − i

2μ

l2ωρ̄

)
p̃ = 0.

(11)
Repeating the steps for the lower chamber leads to

∂2 p̃2

∂x2
+ ω2ρ̄κ

(
1 − i

2μ

l2ωρ̄

)
p̃2 + iωρ̄

Z (x)l

(
1 − i

2μ

l2ωρ̄

)
p̃=0.

(12)

Subtracting Eq. (12) from Eq. (11), we get

∂2 p̃

∂x2
+ q2(x) p̃ = 0, (13)

where

q2(x) =
[
ω2ρ̄κ − 2iωρ̄

Z (x)l

](
1 − i

2μ

l2ωρ̄

)
. (14)

III. RESULTS AND DISCUSSION

Note that setting κ and μ equal to 0 in Eq. (13) recovers
the second-order wave equation for the pressure difference
considered in previous studies [16]. Combined with the no-
pressure-difference boundary condition at the helicotrema,
i.e., p̃(L) = 0, Eq. (13) can be solved for p̃ with various
sound pressure levels (SPLs) (from [5]) at the cochlea base,
p̃(0). The boundary-value problem is solved numerically (for
details see [5]) and using a hybrid WKB numerical approach.

The WKB approach gives the following asymptotic solu-
tion, the validity of which will be discussed later:

p̃(x) = C+√
q(x)

exp

(
+i

∫ x

0
q(ξ )dξ

)

+ C−√
q(x)

exp

(
−i

∫ x

0
q(ξ )dξ

)
. (15)

We call the first term in Eq. (15) the plus mode and the
second term the minus mode. In previous studies, WKB
solutions are found to show only local agreement with the

exact solutions; a significant difference is observed between
the solutions both quantitatively and qualitatively in the region
apical to the BM resonant peak. To be more specific, the
WKB response drops much more steeply in the downward
sloping portion of the response compared to the exact solution
(see, e.g., Figs. 2 and 3 in Ref. [17]). Here we consider the
linear combination of the two WKB solutions as the general
solution to Eq. (13). Previous studies invariably consider only
the forward-traveling solution [the minus mode, the second
term in Eq. (15)], based on the observation that waves on the
BM travel only in one direction [1,13]. As already explained,
the waves emanating from the cochlea base travel toward the
apex and get absorbed near the resonant place. In accordance
with this physical picture, the waves cannot travel beyond
the resonant place. These studies however put restrictions on
the BM impedance (e.g., the resistive component is neglected
or considered to be small [12]) so as to get a closed-form
solution of the integral. Here we seek to understand the role
of the second mode (referred to as the plus mode hereafter)
without any assumptions as made in the previous studies; thus
we need to resort to numerical integration for the solution of
Eq. (15). Also note that by considering only one of the modes,
the solution can satisfy only one of the boundary conditions,
namely, the one at the cochlea base. Here, by considering
a superposition of both linearly independent solutions, both
boundary conditions are incorporated. Thus we have

C+ = p̃(0)
√

q(0)

1 − ei2H
, C− = p̃(0)

√
q(0)ei2H

ei2H − 1
, (16)

where H = ∫ L
0 q(ξ )dξ . The exact solution and the WKB

solution constructed herein show global agreement with each
other (Fig. 2), underscoring the accuracy and uniform validity
of Eq. (15).

However, the quantitative agreement is less impressive at
low frequencies. For instance, the deviation of the peak ampli-
tude in the WKB solution from the exact solution is about 7%
for f = 1000 Hz and 74% for f = 100 Hz. This is expected
because the validity of the WKB approximation becomes
questionable at long wavelengths. The WKB approximation
is valid when the coefficient q2(x) in the differential equa-
tion (13) is a slowly varying function [17] or, more precisely,
when | dq

dx | � q2. Since q2(x) is related to the impedance of the

cochlear partition [Eq. (14)], | dq
dx | can be crudely considered as

the rate of change of the impedance. Also note that q(x) can
be interpreted as the local wave number of the cochlear waves
(solutions to the differential equation), as can be seen from
Eq. (15). Introducing the local wavelength [λ(x) = 2π

q(x) ], the
above condition can be recast as∣∣∣∣dq

dx

∣∣∣∣λ � 2πq. (17)

In simple terms, this means that the variation of impedance
over a wavelength of the traveling wave should be small. As
can be seen from Figs. 2(c) and 2(d), at lower frequencies the
wavelength near the cochlea base is larger; hence the above
validity criterion becomes increasingly unsatisfied, which ex-
plains the greater disagreement between the WKB solution
and the exact solution.
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FIG. 2. Instantaneous waves (solid line) and wave envelope (dashed line) on the BM for (a) and (b) f = 1 kHz and (c) and (d) f = 20
Hz: (a) and (c) exact solution and (b) and (d) WKB approximation. Instantaneous waves are shown at uniformly spaced time instants over
a period of oscillation. The time instants normalized by the period of oscillation T are indicated in the legends. The parameter values are
L = 35 mm and l = 1 mm from [5], ρ̄ = 1000 kg/m3 from [6], μ = 0, κ = 0, and a SPL of 40 dB. Note the shift in the location of the peak
amplitude toward the apex of the BM at the lower frequency. The location of the resonant place is x ≈ 1.7 cm for f = 1 kHz and x ≈ 3.2 cm
for f = 20 Hz.

The excellent agreement between the WKB solutions con-
sidering a superposition of the two modes [Eq. (15)] and the
exact solution raises the question of how the single-forward-
traveling-wave solution reported previously yields the correct
result. To answer this question, we present the magnitude
of each of the modes in Fig. 3 and observe that the plus
mode is several orders of magnitude lower in magnitude
than the minus mode. The reason for this is that ei2H is an
exponentially large number. For instance, for the parameter
values used in Fig. 3, |ei2H | ∼ O(1030). It is a simple exercise

0 0.5 1 1.5 2 2.5 3 3.5
10-40

10-30

10-20

10-10

100

minus mode
plus mode

FIG. 3. Amplitude of the two WKB modes in Eq. (15) for f =
1 kHz, a SPL of 40 dB, μ = 0, and κ = 0. Note the smallness of the
plus mode.

to show that in the limit of |ei2H | → ∞, Eq. (15) reduces to

p̃(x) = p̃(0)
√

q(0)√
q(x)

exp

(
−i

∫ x

0
q(ξ )dξ

)
, (18)

which is the WKB solution considering only the minus mode.
Now it becomes clear as to why ignoring the backward-
traveling wave does not affect the accuracy of the overall so-
lution. Nevertheless, our analysis shows that both modes exist
simultaneously, albeit the backward-traveling wave is minus-
cule in magnitude relative to the forward-traveling wave.

Now we present the effect of variation in fluid viscosity
and compressibility in Figs. 4 and 5, respectively, at dif-
ferent frequencies and sound intensities. We change each
of these fluid properties over 6 orders of magnitude around
their respective values relevant for mammalian cochleae [μ ∼
O(10−3) Pa s [6] and κ ∼ O(10−9) m2/N [18]]. Figure 4
shows that the BM response decreases with an increase in
μ for a given SPL. This is expected because the energy loss
due to viscous dissipation in the fluid during one period of
oscillation of the BM displacement scales as

Ev ∼ μη2
maxωl, (19)

which is proportional to μ. Thus, for a fixed input energy at the
stapes, the energy available for sustaining the BM oscillations
will decrease as viscosity increases.

However, as can be seen from Fig. 4, the effect of viscous
dissipation affects the BM displacement only at large values
of μ. At μ ∼ O(10−3) Pa s, the BM response has plateaued at
its value corresponding to μ = 0. The weak dependence of the
local wave number on μ at low μ is clear from Eq. (14); when
μ � l2ωρ̄, the effect of viscosity is expected to be negligible.

032417-4



COCHLEAR MECHANICS WITH FLUID VISCOSITY AND … PHYSICAL REVIEW E 99, 032417 (2019)

10-6 10-4 10-2
1.1

1.2

1.3

1.4

1.5
10-9

10-6 10-4 10-2
1.1

1.2

1.3

1.4

1.5
10-11

10-6 10-4 10-2
0

2

4

6

8
10-8

10-6 10-4 10-2
0

2

4

6

8
10-10

(a) (b)

(c) (d)

FIG. 4. Effect of fluid viscosity on the peak amplitude of BM displacement for (a) f = 1000 Hz and a SPL of 80 dB, (b) f = 1000 Hz and
a SPL of 40 dB, (c) f = 100 Hz and a SPL of 80 dB, and (d) f = 100 Hz and a SPL of 40 dB. Open symbols denote exact solutions and closed
symbols WKB solutions. Here κ = 0. The black arrow indicates roughly the value of fluid viscosity that is relevant to mammalian cochleae.

Further, at f = 1 kHz, this condition becomes μ � O(1) Pa s
and at f = 100 Hz, μ � O(0.1) Pa s; this explains why the
change in BM response with μ is higher at f = 100 Hz than
at f = 1 kHz. Similar arguments hold for compressibility
(Fig. 5). For the same input energy (as dictated by the SPL)
and excitation frequency, higher values of κ translate to a
higher fluid deformation rate and higher pressure difference
fluctuations across the BM and thus higher BM response. The
other qualitative trends observed in Figs. 4 and 5, such as

an increase in BM response with an increase in the SPL and
a decrease in excitation frequency, are physically consistent
with the characteristics of a linear oscillator.

IV. CONCLUSION

Our results show that in 1D cochlear models the effect of
viscosity and compressibility can be safely ignored. Changes
in μ and κ cause any substantial change in the BM response

10-12 10-10 10-8 10-6
1

1.5

2

2.5
10-9

10-12 10-10 10-8 10-6
1

1.5

2

2.5
10-11

10-12 10-10 10-8 10-6
4

5

6

7

8
10-8

10-12 10-10 10-8 10-6
4

5

6

7

8
10-10

(a) (b)

(c) (d)

FIG. 5. Effect of fluid compressibility on the peak amplitude of BM displacement for (a) f = 1000 Hz and a SPL of 80 dB, (b) f = 1000 Hz
and a SPL of 40 dB, (c) f = 100 Hz and a SPL of 80 dB, and (d) f = 100 Hz and a SPL of 40 dB. Open symbols denote exact solutions and
closed symbols WKB solutions. Here μ = 0. The black arrow indicates roughly the value of fluid compressibility that is relevant to mammalian
cochleae.
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or the location of peak amplitude (data not shown) only at
large values of μ and κ . The above conclusions are expected to
apply to mammalian cochlear models in general, since μ and
κ of the cochlear fluid are not expected to be very different.

We also explored the role of the usually ignored second
(backward-traveling) WKB mode. Since the 1D model is de-
scribed by a second-order wave equation, the general solution
obtained by the superposition of the two linearly independent
waves was examined. Numerical results demonstrate that
the backward-traveling wave is negligible compared to the
forward-traveling wave. Thus the present study shows that
the total WKB solution to the 1D model is in fact a super-
position of a large forward-traveling wave and a negligibly
small backward-traveling wave. This explains why only one
linearly independent solution provides the correct results to
the boundary-value problem.

Note that the two waves considered here are not the
dual traveling waves studied in the context of a two-degree-

of-freedom model [19]. The semianalytical approach also
shows that the WKB solutions possess a uniform accuracy
(over the length of the cochlea) for realistic impedance
variations (without any assumptions such as small damp-
ing) across a wide range of frequencies and sound pres-
sure levels. The coexistence of two waves propagating in
opposite directions on the BM suggests that the cochlear
waves could undergo internal reflections, a finding that is
relevant to the poorly understood phenomenon of otoacous-
tic emission. Otoacoustic emissions are sounds generated
by the inner ear (in the presence or absence of external
stimulation) and are believed to be produced from the re-
flection of cochlear traveling waves by random irregularities
in the impedance of the cochlea [20]. Understanding the
implications of coexisting forward- and backward-traveling
waves, induced by harmonic excitation of the stapes, for the
mechanism of evoked otoacoustic emissions is left as a future
task.
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