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Pattern formation of skin cancers: Effects of cancer proliferation and hydrodynamic interactions
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We study pattern formation of skin cancers by means of numerical simulation of a binary system consisting
of cancer and healthy cells. We extend the conventional model H for macrophase separations by considering
a logistic growth of cancer cells and also a mechanical friction between dermis and epidermis. Importantly,
our model exhibits a microphase separation due to the proliferation of cancer cells. By numerically solving
the time evolution equations of the cancer composition and its velocity, we show that the phase separation
kinetics strongly depends on the cell proliferation rate as well as on the strength of hydrodynamic interactions.
A steady-state diagram of cancer patterns is established in terms of these two dynamical parameters and some
of the patterns correspond to clinically observed cancer patterns. Furthermore, we examine in detail the time
evolution of the average composition of cancer cells and the characteristic length of the microstructures. Our
results demonstrate that different sequence of cancer patterns can be obtained by changing the proliferation rate
and/or hydrodynamic interactions.

DOI: 10.1103/PhysRevE.99.032416

I. INTRODUCTION

Tissue morphogenesis is a process in which multicellular
organisms are dynamically formed in a coherent manner [1].
Several deterministic and stochastic models to describe tissue
regeneration using such as stem cells have been proposed from
a theoretical point of view [2,3]. Recently, various analogies
between viscoelastic fluids and biological tissues have been
pointed out to investigate mechanical response of a biological
tissue to an applied force [4–7]. Needless to say, studies
on tumor dynamics are directly connected with medical di-
agnosis and there have been many attempts to understand
cancer behaviors across multiple biological scales [8–11].
Although some correlations between cancer patterns and their
malignancies are realized, it is not well-understood why and
how such malignant patterns appear in tissues. For example,
a skin cancer called melanoma often exhibits characteristic
surface patterns which are diagnosed by medical doctors
[12]. However, fundamental mechanisms that underlie such
a pattern formation need to be further investigated.
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Recently, some dynamical studies on skin lesions have
been performed to discuss the morphological changes in early
melanoma development by using a phase separation model
[13–16]. Among these works, Chatelain et al. investigated a
binary system composed of cancer and healthy cells. They
demonstrated that not only the cell-cell adhesion but also
the coupling to the diffusion of nutrients (oxygen) leads
to the microstructure (e.g., “dots” and “nests”) formation in
the early stage melanoma [13–15]. These microstructures are
analogous to those in block copolymer systems [17]. In the
model by Chatelain et al., the domain coarsening takes place
due to diffusion process whereas hydrodynamic interactions
are not considered. Hence, their model can be regarded as
an extension of “model B” [18–20] to take into account the
formation of microstructures. For bacterial colonies with-
out hydrodynamic interactions, an arrested phase separation
was explained only by considering a local density-dependent
motility and the birth/death of bacteria [21].

In general, a biological tissue can be regarded as a vis-
coelastic material because it responds like a solid with finite
elasticity at short time scales and behaves like a fluid with
an effective viscosity at long time scales [4–7]. Since the
“differential adhesion hypothesis” was proposed by Steinberg
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[22,23], the similarities between tissues and liquids have been
recognized for a long time. For example, by using parti-
cle tracking velocimetry in gastrulating Drosophila embryos,
it was shown that cytoplasmic redistribution during ventral
furrow formation is described by the presence of hydrody-
namic flows [24]. In a recent study of tissue dynamics of
a stratified epithelium, it was shown that a steady hydrody-
namic flow of stratified epithelium is controlled by the cell
proliferation rate [25,26]. Although these works highlight the
importance of liquid flows in the tissue dynamics, the effects
of hydrodynamic interactions on the skin cancer dynamics
have not been considered so far.

For ordinary fluid mixtures, however, it is well-known that
hydrodynamic interactions play crucial roles in their phase
separation dynamics. This is because the convection of the
composition field kinetically enhances the phase separation
in the presence of flows. The standard model that takes into
account the hydrodynamic effects is called “model H” that has
been extensively studied in the literature [18–20]. For ordinary
3D fluid mixtures, model H predicts that the domain size
increases linearly with time [27,28]. This is much faster than
the Brownian coagulation process [29] or the Lifshitz-Slyozov
evaporation-condensation process [30].

In this paper, we study the pattern formation of skin
cancers by means of numerical simulation of a binary system
composed of cancer and healthy cells. Our main focus is to in-
vestigate the effects of cancer proliferation and hydrodynamic
interactions on the phase separation kinetics. For this purpose,
we shall extend the conventional model H by incorporating
a logistic growth of cancer cells and a mechanical friction
between dermis and epidermis. Similar to chemically reac-
tive binary fluid mixtures [31,32] or block copolymer melts
[33–35], our model also exhibits a microphase separation due
to the proliferation of cancer cells.

Performing numerical simulations of the time evolution of
the cancer cell composition and the velocity field, we show
that the phase separation dynamics is strongly affected by
the cell proliferation rate as well as by the strength of hy-
drodynamic interactions. We shall examine in detail how the
average composition of cancer cells and the characteristic size
of microstructures depend on these dynamical parameters.
Our results also demonstrate that different sequence of cancer
patterns can be obtained by changing the cancer proliferation
rate and/or the hydrodynamic effects. Furthermore, our model
can reproduce some of the clinically observed microstructures
in melanoma.

In the next section, we discuss the dynamical equations
of a binary cell system in the presence of hydrodynamic
interactions. In Sec. III, we present our simulation results
for different proliferation rates and friction coefficients, and
summarize them in terms of a steady-state diagram as a
function of these parameters. For qualitative arguments, we
further perform structure analysis of the obtained patterns
and give a scaling argument for the observed microphase
separation. In Sec. IV, we discuss the mechanisms for pattern
formation in the early and late stages by using the amplitude
equations method and the sharp interface model, respectively.
Finally, the summary of our work and some discussions are
given in Sec. V.

FIG. 1. Schematic illustration of an epidermal tissue on dermis.
The cell layer is assumed to be thin enough so that it can be
regarded as a 2D fluid with hydrodynamic flows. The fluid sheet is
infinitely large and we do not consider any out-of-plane deformation
of the epidermal layer. The cell layer is composed of cancer cells
(shown in black) and healthy cells (shown in white), and their areal
compositions are defined by φ and ψ , respectively. The two types of
cell fill all the available space and satisfy the saturation constraint,
i.e., φ + ψ = 1. Further, the local velocities are denoted by vφ and
vψ for cancer and healthy cells, respectively. We also take into
account a mechanical friction between dermis and epidermis that is
characterized by the friction coefficient ζ .

II. MODEL

A. Continuity equations

Let us consider an epidermal cell layer on dermis as
schematically depicted in Fig. 1. The cell layer is assumed
to be thin enough such that it can be regarded as a two-
dimensional (2D) system characterized by a 2D vector r =
(x, y). Here we do not consider any out-of-plane deforma-
tion of the epidermal layer. We assume that the cell layer
is composed of cancer cells and healthy cells whose area
fractions are denoted by φ(r, t ) and ψ (r, t ) (0 � φ � 1 and
0 � ψ � 1), respectively, which depend on time t . For the
hydrodynamic description, we define the corresponding local
velocities by vφ (r, t ) and vψ (r, t ) for cancer cells and healthy
cells, respectively. We further assume that the two types of
cell fill all the available space and always satisfy the satu-
ration constraint φ + ψ = 1 at every point. This saturation
constraint leads to the following incompressibility condition:

∇ · v = 0, (1)

where we have introduced the local average velocity,

v = φvφ + ψvψ, (2)

which is weighted by the respective area fractions.
To take into account the proliferation of cancer cells and

the death of healthy cells simultaneously, we consider the
following continuity equations that are consistent with the
above incompressibility condition:

∂φ

∂t
+ ∇ · (φvφ ) = �(φ), (3)

∂ψ

∂t
+ ∇ · (ψvψ ) = −�(φ), (4)
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where the function �(φ) represents the composition-
dependent cancer proliferation rate of epidermal cells. Among
various possibilities, we choose here the following logistic
growth function:

�(φ) = γφ

(
1 − φ

φ∞

)
, (5)

where the coefficient γ > 0 is the cancer proliferation rate in
the epidermal layer. Such a logistic growth was considered
before to describe the effects of birth and death in bacterial
colonies [21]. Starting from an initial average composition,
φ0, the cancer cell composition evolves toward a higher com-
position, φ∞, whose value is roughly given by φ∞ ≈ 0.6-0.8
depending on the cancer cell type [36]. Since the function
�(φ) is positive, cancer cells proliferate during the phase
separation while healthy cells die out due to the invasion
of increased cancer cells, as described by Eq. (4). Since the
time-evolution of healthy cells is simply given by ψ (r, t ) =
1 − φ(r, t ) due to the saturation condition, we shall only
consider Eq. (3) in the following discussion.

We note here that the above introduced functional form of
the proliferation rate, �(φ), is analogous to that considered
in the previous model [13–16] in which they also included
the diffusion of nutrient concentration. One can easily show
that the form of Eq. (5) can be obtained by simply assuming
that the nutrient concentration decreases linearly with the
cancer composition φ. For the purpose of clarifying the effects
of cancer proliferation and hydrodynamic interactions, it is
sufficient to consider the above sigmoidal growth without
introducing any additional field variable.

It should be mentioned that the above logistic growth of
cancer cells can also originate from the mechanical coupling
between the net cell division rates and pressure [4]. In general,
the cell division rates depend on mechanical pressure [37–40]
and are characterized by the homeostatic pressure, i.e., the
pressure for which cell division and apoptosis balance and no
net growth occurs. Near the homeostatic state, we are allowed
to expand both the pressure and the net cell division rate
to linear order in density difference around the homeostatic
density [4]. Such an effect also leads to the growth term in
Eq. (5).

B. Dynamical equations

Next we consider the time evolution equations for φ and v.
By extending the standard model H for phase separations with
hydrodynamic interactions [18–20], the dynamical equations
that are consistent with Eq. (3) can be given by

∂φ

∂t
= −∇ · (φv) + L∇2μ + �(φ), (6)

ρ
∂v
∂t

= η∇2v − ∇p + ∇ · � − ζv, (7)

together with the incompressibility condition in Eq. (1). In
the above equations, L is the transport coefficient, μ is the
chemical potential, ρ is the mass density, η is the viscosity, p is
the 2D pressure, � is the stress tensor due to the composition
gradient, and ζ is the friction coefficient. For simplicity, we
assume that both ρ and η are constants and do not depend
on φ. Moreover, we consider the case when the transport

coefficient L is independent of φ [41], because a composition
dependent transport coefficient would not alter the asymptotic
dynamics [42,43]. In the present work, we do not include any
stochastic noise.

The last term −ζv in Eq. (7) represents the frictional
dissipation between the epidermal layer and dermis. In human
tissues, such a friction arises from the adhesion of integrins
that connect a keratin intracellular network to collagen fibers
of basement membranes. With this frictional term, the total
momentum is no longer conserved within the 2D fluid sheet.
Furthermore, the friction coefficient ζ controls the strength
of hydrodynamic interactions. Namely, hydrodynamics does
not play any role when ζ → ∞, whereas hydrodynamic
interactions are fully present when ζ → 0. Later, we shall
systematically change the value of ζ to investigate the effects
of hydrodynamic interactions on the phase separation kinetics.

To further obtain the chemical potential μ and the stress
tensor �, we introduce the total free energy describing the
phase separation of a cell mixture. Following Wise et al. who
discussed a continuum model of multi-species tumor growth
[44], we use the following form for a binary cellular system:

F =
∫

dr
{

1

a2β
[φ ln φ + (1 − φ) ln(1 − φ)

+χφ(1 − φ)] + κ

2
(∇φ)2

}
. (8)

Here, a has the dimension of length, β−1 has the dimension
of energy, χ is a dimensionless interaction parameter between
cancer and healthy cells, and κ > 0 is a quantity related to the
line tension in the 2D cellular sheet.

Since the above equation has the same form as the Flory-
Huggins free energy, a phase separation occurs for the condi-
tion χ > 2 [45]. Notice that the local terms can be replaced
by any other phenomenological description which exhibits a
phase separation at sufficiently strong repulsion between the
different cell types. Hence, the exact functional form is not
important and different forms of free energy were proposed in
Refs. [13–16].

The chemical potential μ is obtained from the functional
derivative of the total free energy F with respect to φ [45],

μ = δF

δφ
= 1

a2β

[
ln

φ

1 − φ
+ χ (1 − 2φ)

]
− κ∇2φ. (9)

The stress tensor due to the composition gradient � is given
by [45]

�i j = −κ
∂φ

∂ri

∂φ

∂r j
, (10)

with i, j = x, y.
The coupled Eqs. (6) and (7) together with the incom-

pressibility condition in Eq. (1) constitute our model for skin
cancers and provide us with a new type of phase separation
dynamics. In the absence of the cancer proliferation effect,
i.e., γ = 0, the above model reduces to conventional mod-
els for macrophase separations [18–20]. When γ = 0, our
model reduces to model H in the limit of ζ → 0 with full
hydrodynamic interactions, while it corresponds to model B
in the limit of ζ → ∞ for which hydrodynamic interactions
are completely suppressed. The case of γ �= 0 showing an ar-
rested phase separation was studied for the pattern formation
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FIG. 2. Time evolutions of cancer area fraction φ(r, t ) for four different values of the cancer proliferation rate γ = 1, 3, 4, and 5 × 10−3

(bottom to top) in the presence of full hydrodynamic interactions (ζ = 0). The other dimensionless parameters are φ0 = 0.3, φ∞ = 0.8, χ =
2.5, κ = 1, ρ = 0.3, and η = 1.0. The system size is 512 × 512 and the velocity filed is not shown. In the present grayscale representation,
the values 0 and 1 correspond to white and black, respectively. For γ = 1 and 5 × 10−3, see also SM1.mp4 and SM2.mp4, respectively, in the
Supplemental Material [47].

of bacterial colonies in the absence of hydrodynamic interac-
tions [21].

C. Simulation method

We numerically solve Eqs. (1), (6), and (7) by using a
standard Euler’s method on a 2D square lattice of size 512 ×
512 with periodic boundary conditions. The pressure field p is
calculated with the marker-and-cell method in each time step
[46]. It is convenient to use the quantities a, β−1, and a4β/L
to scale length, energy, and time, respectively. The numerical
estimations for these quantities will be discussed in Sec. V.
Then the dimensionless velocity becomes ṽ ≡ (a3β/L)v and
the dimensionless model parameters are defined by

ρ̃ ≡ L2

a4β
ρ, η̃ ≡ L

a2
η, γ̃ ≡ a4β

L
γ , ζ̃ ≡ Lζ , κ̃ ≡ βκ.

(11)

With the above rescaling, we end up with the following
six dimensionless parameters: χ , κ̃, ρ̃, η̃, γ̃ , and ζ̃ . Among
these parameters, we have fixed four of them as χ = 2.5,
κ̃ = 1.0, ρ̃ = 0.3, and η̃ = 1.0 in our simulations. Moreover,
the initial and the final values of the cancer area fractions
are chosen as φ0 = 0.3 and φ∞ = 0.8 [36], respectively.
In the following, we shall mainly vary the two dynamical
parameters, γ̃ and ζ̃ , to see the effects of cancer prolifera-
tion and hydrodynamic interactions on the pattern formation
of skin cancers. Physically speaking, the strength of the

hydrodynamic interaction should be characterized by a di-
mensionless number ζa2/η = ζ̃ /̃η that involves both the vis-
cosity and the friction coefficient. Since we set η̃ = 1.0 in
our simulations, the parameter ζ̃ controls the strength of the
hydrodynamic interaction. When we present the simulation
results in Sec. III, the above tilde notation is omitted and all
the quantities are treated as dimensionless numbers.

III. SIMULATION RESULTS

A. Pattern formation dynamics

In this section, we present the results of the numerical sim-
ulations of the proposed model. We first define the spatially
averaged composition of cancer cells as

〈φ(t )〉 = 1

A

∫
dr φ(r, t ), (12)

where A is the total area of the system. Because of the cancer
proliferation, 〈φ(t )〉 varies from the initial value φ0 = 0.3
toward the stationary value φ∞ = 0.8. Typical time evolutions
of cancer patterns are shown in Fig. 2 when ζ = 0 for four
different values of the cancer proliferation rate γ = 1, 3, 4,
and 5 × 10−3 (bottom to top). Notice that ζ = 0 corresponds
to the case with full hydrodynamic interactions.

Let us first discuss the case of small proliferation rate γ =
1 × 10−3 (bottom panels in Fig. 2 and the movie SM1.mp4
in the Supplemental Material [47]). In the initial stage at
around t = 5 × 102, dots of cancer cells (shown in black) are
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FIG. 3. Time evolutions of cancer area fraction φ(r, t ) for four different values of the friction coefficient ζ = 10−3, 10−2, 10−1, and ∞ (top
to bottom) while the cancer proliferation rate is fixed to γ = 1 × 10−3. Notice that the limit ζ → ∞ is equivalent to the complete absence of
hydrodynamic interactions (No HI). In practice, such a situation was simulated by omitting the advection term in Eq. (6). The other parameters
are the same as those in Fig. 2. The values 0 and 1 correspond to white and black, respectively. For No HI, see also SM3.mp4 in the Supplemental
Material [47].

formed within a continuous healthy region (shown in white).
We shall call such a structure as a “cancer-in-healthy” (C/H)
pattern. As time evolves, smaller cancer domains collide and
merge to form larger domains at around t = 104. However,
not all the cancer domains are connected to each other even
though 〈φ(t )〉 already exceeds the critical composition φc =
0.5. The C/H pattern in the late stage no longer evolves in
time and the system attains a steady state without undergoing
a macroscopic phase separation. This result shows that our
model exhibits a microphase separation.

When the cancer proliferation rate is larger such as when
γ = 5 × 10−3 (top panels in Fig. 2 and the movie SM2.mp4
in the Supplemental Material [47]), healthy regions transform
to cancer domains even in the early stage, and the C/H
pattern is already formed at around t = 102. As the average
composition 〈φ(t )〉 increases, a locally bicontinuous cancer
structure is formed at around t = 103. However, such a locally
bicontinuous structure is destroyed later and smaller healthy
domains emerge. At this stage, black cancer domains are
almost fully connected to form a large continuous domain
at around t = 5 × 103. In the late stage, circular domains
of healthy cells appear in the network of cancer cells. Such
a structure will be called as a “healthy-in-cancer” (H/C)
pattern. These circular healthy domains do not coarsen any
more in the long time and result in a microphase separation.

When the proliferation rate is intermediate such as when
γ = 3 × 10−3, healthy domains are elongated and form a
narrow continuous network. Moreover, cancer domains in the

late stage at around t = 105 take polygonal shapes rather than
circular shapes. For γ = 4 × 10−3, a coexistence between the
C/H and H/C patterns is observed as a steady-state structure.

So far we have explained the effects of cancer proliferation
rate γ in the presence of full hydrodynamic interactions,
i.e., ζ = 0. Next we investigate the hydrodynamic effects
by changing the friction coefficient ζ . In Fig. 3, we present
the time evolutions of cancer patterns when the proliferation
rate is fixed to γ = 1 × 10−3 while the friction coefficient
is varied as ζ = 10−3, 10−2, 10−1, and ∞ (top to bottom).
Notice that hydrodynamic interactions are completely absent
when ζ → ∞. In practice, this situation is simulated by
omitting the advection term in Eq. (6) which is then decoupled
from the Stokes equation. When the friction coefficient is
small such as when ζ = 10−3 (top panels in Fig. 3), the
time evolution of cancer pattern is similar to that obtained
with full hydrodynamic interactions (bottom panels in Fig. 2).
However, the steady-state cancer domains at around t = 105

are more elongated. The appearance of elongated domains in
the steady state is more remarkable for ζ = 10−2.

As the hydrodynamic interactions are further weakened
such as when ζ = 10−1, cancer domains are more elongated
especially in the late stage patterns. Here we emphasize again
that the major cancer domains are disconnected while the
minor healthy domains form a continuous network structure.
When hydrodynamic interactions are completely absent (bot-
tom panels in Fig. 3 and the movie SM3.mp4 in the Supple-
mental Material [47]), we eventually obtain an asymmetric
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FIG. 4. Plots of the average area fraction 〈φ(t )〉, defined by
Eq. (12), as a function of time t (a) in the absence of hydrodynamic
interactions and (b) in the presence of full hydrodynamic interactions
(ζ = 0). In the former case, simulations were performed by omitting
the advection term in Eq. (6). The cancer proliferation rate is changed
as γ = 1, 2, 3, 4, and 5 × 10−3 (from bottom to top). The other
parameters are the same as those in Fig. 2.

bicontinuous (AB) structure at least locally. In this structure,
both the wider interconnected cancer domain and the narrower
interconnected healthy domain are convoluted to each other
for t � 104.

B. Average cancer composition

In Fig. 4, we have plotted the average cancer composition
〈φ(t )〉, defined by Eq. (12), as a function of time t by changing
the cancer proliferation rate γ . To calculate this quantity,
average over five independent runs (starting from different
initial configurations) has been taken. Figure 4(a) is the case
when hydrodynamic interactions are completely absent. As
γ is increased, the saturation time becomes smaller and the
saturated value of 〈φ(t )〉 becomes larger. It is interesting to

FIG. 5. Steady-state diagram of cancer patterns obtained for
different cancer proliferation rate γ and friction coefficient ζ (con-
trolling the strength of hydrodynamic interactions). The other pa-
rameters are the same as those in Fig. 2. Hydrodynamic interactions
are fully present when ζ = 0, whereas they are completely absent in
the limit of ζ → ∞ (No HI). The latter situation was simulated by
omitting the advection term in Eq. (6). Black circles correspond to
cancer-in-healthy (C/H) patterns (such as the bottom right pattern
in Fig. 2), red (light gray) circles correspond to healthy-in-cancer
(H/C) patterns (such as the top right pattern in Fig. 2), and green
(open) circles correspond to (locally) asymmetric bicontinuous (AB)
patterns (such as the bottom right pattern in Fig. 3) in the respective
steady states. Black triangles indicate the coexistence between C/H
and H/C patterns (such as γ = 4 × 10−3 and t = 105 in Fig. 2).

note that 〈φ(t )〉 overshoots before it reaches the stationary
value.

When hydrodynamic interactions are fully present (ζ =
0), however, the time evolutions of 〈φ(t )〉 are different as
presented in Fig. 4(b). Here we notice that the value of 〈φ(t )〉
becomes slightly larger when the hydrodynamic interactions
are present especially for larger γ values. However, the over-
shooting behavior of 〈φ(t )〉 is suppressed in Fig. 4(b). These
results indicate that hydrodynamic interactions affect not only
the steady-state behavior but also the transient dynamics of
pattern formation.

C. Steady-state diagram

Next we have systematically varied the proliferation rate γ

and the friction coefficient ζ to see how the steady-state struc-
tures depend on these dynamic parameters. We have men-
tioned before that there are at least three different steady-state
patterns: cancer-in-healthy (C/H), healthy-in-cancer (H/C),
and asymmetric bicontinuous (AB) patterns. The obtained
steady-state patterns are classified into these three cases for
different combinations of γ and ζ . In Fig. 5, we summarize
the results in terms of a steady-state diagram in which the
three different cases, C/H, H/C, and AB are distinguished.
The triangle indicates the coexistence between C/H and H/C
patterns.
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The C/H pattern clinically corresponds to the globule
pattern of melanoma, and is typically observed when the pro-
liferation rate γ is small and hydrodynamic interactions are
strong (small ζ ). The AB pattern appears when hydrodynamic
interactions are weak or fully suppressed (large ζ ) while the
proliferation rate γ is relatively small. The AB pattern may
correspond to the stripe pattern of melanoma mainly found in
human palms or soles. Finally, the H/C pattern typically ap-
pears when both γ and ζ are large. When the proliferation rate
is as large as γ = 5 × 10−3, only the H/C pattern is obtained
irrespective of the strength of hydrodynamic interactions. In
contrast to the other two cases, however, the H/C pattern is
usually not diagnosed in typical skin cancers because domains
of healthy cells are completely destroyed by invasive cancer
cells.

In the case of an ordinary microphase separation, the late
stage structure should be the H/C pattern when 〈φ(t )〉 > 0.5.
As shown in Fig. 5, however, we obtain either the C/H pattern
or the AB pattern for different combinations of ζ and γ ,
especially when γ is small. This is one of the unique features
of the proposed model for cancer cells with hydrodynamic
interactions. Since these steady-state patterns are typically
obtained in the presence of hydrodynamic interactions, we
consider that they appear kinetically and do not correspond
to equilibrium microstructures. The different mechanisms for
the pattern formation will be discussed in Sec. IV.

D. Structure analysis

To analyze the time evolutions of the patterns quantita-
tively, we have calculated their structure factors. Let δφ(r, t )
be the deviation of φ(r, t ) from its average value, δφ(r, t ) =
φ(r, t ) − 〈φ(t )〉, where 〈φ(t )〉 defined in Eq. (12) depends
on time. First we introduce the spatial Fourier transform of
δφ(r, t ) by

δφk(t ) =
∫

dr δφ(r, t )e−ik·r, (13)

where k = (kx, ky) is a 2D wave vector. Then the structure
factor is defined as

S(k, t ) = 〈δφk(t )δφ−k(t )〉, (14)

where the average is over the ensemble of systems. Using the
circularly averaged structure factor S(k, t ) with k = |k|, we
calculate the following (inverse) characteristic length scale of
patterns [48],

〈k(t )〉 =
∫

dk k−1S(k, t )∫
dk k−2S(k, t )

, (15)

where we omit k = 0 in the integrals.
In Fig. 6, we plot the time evolutions of the circularly

averaged structure factor S(k, t ) as a function of the wave
number k when γ = 3 × 10−3. Figure 6(a) corresponds to
the case when hydrodynamic interactions are absent, while
Fig. 6(b) presents the case with full hydrodynamics. By com-
paring these two cases, we see that the early stage structures
are similar as long as the proliferation rate γ is the same. In
the intermediate stage, however, the microstructure formation
is faster in the presence of hydrodynamic interactions, and
the peak position is shifted to a smaller k value in Fig. 6(b).

FIG. 6. Plots of the circularly averaged structure factor S(k, t )
as a function of the wave number k for different time steps t (from
right to left) (a) in the absence of hydrodynamic interactions and
(b) in the presence of full hydrodynamic interactions (ζ = 0). The
cancer proliferation rate is fixed to γ = 3 × 10−3, while the other
parameters are the same as those in Fig. 2. Notice that the real space
pattern evolution that corresponds to (b) is presented in Fig. 2.

We also find that the peak height in the late stage is slightly
smaller in Fig. 6(b) than that in Fig. 6(a).

In Fig. 7, we have plotted the characteristic wave number
〈k(t )〉, defined by Eq. (15), as a function of time. The prolifer-
ation rate γ is similarly changed as in Fig. 4 and the average
over five independent runs has been taken as before. As shown
in Fig. 7(a) when hydrodynamic interactions are absent, the
average wave number 〈k(t )〉 saturates at larger values (smaller
structures) when γ is increased. This means that γ is an im-
portant parameter that controls the characteristic length scale
of the steady-state microstructures. Comparing Figs. 4(a) and
7(a), we notice that the saturation times for 〈φ(t )〉 roughly
correspond to those for 〈k(t )〉.

The effects of hydrodynamic interactions on 〈k(t )〉 can be
seen in Fig. 7(b) for which we have set ζ = 0. Here 〈k(t )〉
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FIG. 7. Log-log plots of the characteristic wave number 〈k(t )〉,
defined by Eq. (15), as a function of time t (a) in the absence of
hydrodynamic interactions and (b) in the presence of full hydrody-
namic interactions (ζ = 0). The cancer proliferation rate is changed
as γ = 1, 2, 3, 4, and 5 × 10−3 [from bottom to top at t = 105 in
(a) and from right to left for the intermediate time region in (b)]. The
other parameters are the same as those in Fig. 2. The dashed lines
indicate the power-law behaviors with the respective slopes −1/3 in
(a) and −2/3 in (b).

shows a large decrease up to the intermediate stage. This
result indicates that hydrodynamic interactions tend to form
larger domains even though they are only transient structures.
Interestingly, a minimum of 〈k(t )〉 appears at around t = 104

and 〈k(t )〉 exhibits an undershooting behavior. Hence, the
transient domain size depends not only on the proliferation
rate γ but also on the friction coefficient ζ . According to
Fig. 7(b), however, the late stage dynamics of 〈k(t )〉 has not
yet reached the steady state completely. Such a long-lived dy-
namics is also different from the case without hydrodynamic
interactions.

FIG. 8. (a) Log-log plot of the steady-state value of the charac-
teristic wave number k∞ in Fig. 7(a) as a function of the proliferation
rate γ in the absence of hydrodynamic interactions. From the slope
of the fitted straight line, we find a power-law relation k∞ ∼ γ 0.32.
(b) Log-log plot of 〈k(t )〉t1/3 as a function of the dimensionless
variable γ t using all the data in Fig. 7(a). The collapse of all the
data confirms the validity of the scaling assumption in Eq. (16). The
dashed lines indicate the power-law behaviors with the respective
slopes 1/3 both in (a) and (b).

E. Scaling analysis of domain growth

The result in Fig. 7(a) can be further analyzed in terms
of the scaling argument. In the case of γ = 0, for which the
average cancer fraction remains constant (conserved case), the
system exhibits a macrophase separation because such a case
without any hydrodynamics corresponds to model B. Let us
denote the steady-state characteristic wave number as k∞. In
Fig. 8(a), we plot k∞ as a function of γ used in Fig. 7(a). We
find a clear power-law behavior, i.e., k∞ ∼ γ s with s ≈ 0.32.
This result suggests that the characteristic wave number obeys
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the following scaling form:

〈k(t )〉 ∼ t−α f (γ t ), (16)

where α is the domain growth exponent in the absence of the
cancer proliferation effect, and f (z) is a scaling function with
a dimensionless variable z = γ t . A similar scaling hypothesis
was successfully used to analyze the phase separation dynam-
ics of chemically reactive binary mixtures [31,32] or that of
block copolymer melts [33–35].

According to the evaporation-condensation process consid-
ered by Lifshitz and Slyozov [30], the growth exponent should
be α = 1/3 when hydrodynamic interactions are absent. This
exponent is indeed observed and shown by the dashed line in
Fig. 7(a) before the saturation time. The asymptotic behavior
of the scaling function should be f (z) ∼ const. for z � 1,
and f (z) ∼ zα for z � 1. The latter power-law behavior is
required because 〈k(t )〉 should not depend on time t in the
steady state. Hence, we immediately obtain k∞ ∼ γ α and
s = α. In Fig. 8(b), we have replotted the quantity 〈k(t )〉t1/3

as a function of γ t using all the data in Fig. 7(a). The collapse
of all the curves demonstrates that our simulation results are
in good agreement with the above scaling ansatz as long as γ

is small enough.
In Fig. 7(b) with full hydrodynamic interactions, the

growth exponent in the intermediate stage is as large as α =
2/3 which is much larger than that in Fig. 7(a). However,
this result does not obey a simple scaling behavior because
of the complicated undershooting behaviors. Here we point
out that the value α = 2/3 was discussed by Furukawa who
considered the interplay between the inertia of the fluid and
the surface energy density [20,49]. This growth exponent was
also confirmed by lattice Boltzmann simulations for a critical
quench of a 2D binary fluid when the viscosity is small and
stochastic noise is absent [50,51]. Our result cannot be directly
compared with theirs because the average composition varies
with time and also the system exhibits a microphase separa-
tion in the late stage. However, it is evident from Fig. 7(b) that
a substantial acceleration of phase separation takes place in
the presence of hydrodynamic flows.

IV. MECHANISMS FOR PATTERN FORMATION

A. Early stage

In the early stage of phase separation, when φ is mostly
uniform with small perturbations, we are able to analyze the
pattern formation by using the amplitude equations method
with which the variations of φ and v are viewed as a group of
perturbation waves:

φ(r, t ) ≈ 〈φ(t )〉 +
[∑

q

δφq(t )eiq·r + c.c.

]
, (17)

v(r, t ) ≈
∑

q

vq(t )eiq·r + c.c., (18)

where c.c. denotes the complex conjugate and the summation
of q is taken over the principal modes of the pattern of interest.

The amplitude equations can be derived by substituting
Eqs. (17) and (18) into Eqs. (6) and (7):

d〈φ〉
dt

≈ γ 〈φ〉
(

1 − 〈φ〉
φ∞

)
− γ

φ∞

∑
q

|δφq|2, (19)

dδφq

dt
≈ −iq ·

∑
q1+q2=q

(δφq1 vq2 ) − q2μq

+ γ δφq

(
1 − 2〈φ〉

φ∞

)
− γ

φ∞

∑
q1+q2=q

(δφq1δφq2 ),

(20)

ρ
dvq

dt
= −ηq2vq − iqpq + iq · �q − ζvq, (21)

where q = |q|. In the above, μq, pq, and �q are the qth
component of the Fourier series of μ, p, and �, respectively,
and are given by

μq ≈
[

1

〈φ〉 + 1

1 − 〈φ〉 − 2χ + κq2

]
δφq

+ 1

2

[
− 1

〈φ〉2
+ 1

(1 − 〈φ〉)2

] ∑
q1+q2=q

δφq1δφq2

+ 1

3

[
1

〈φ〉3
+ 1

(1 − 〈φ〉)3

] ∑
q1+q2+q3=q

δφq1δφq2δφq3 ,

(22)

pq = q̂ · �q · q̂, (23)

�q = κ
∑

q1+q2=q

(q1 ⊗ q2)δφq1δφq2 , (24)

where q̂ ≡ q/q is the unit vector and ⊗ represents the dyadic
product. Then the previous amplitude equations can be sim-
plified as

dδφq

dt
≈ λ1δφq + λ2

∑
q1+q2=q

δφq1δφq2

+ λ3

∑
q1+q2+q3=q

δφq1δφq2δφq3

− iq ·
∑

q1+q2=q

(δφq1 vq2 ), (25)

ρ
dvq

dt
= −(ηq2 + ζ )vq + iq · �q · (I − q̂ ⊗ q̂), (26)

where I is the unit tensor and the three coefficients in Eq. (25)
are given by

λ1 = −q2

[
1

〈φ〉 + 1

1 − 〈φ〉 − 2χ + κq2

]
+ γ

(
1 − 2〈φ〉

φ∞

)
,

(27)

λ2 = −q2

2

[
− 1

〈φ〉2
+ 1

(1 − 〈φ〉)2

]
− γ

φ∞
, (28)

λ3 = −q2

3

[
1

〈φ〉3
+ 1

(1 − 〈φ〉)3

]
< 0. (29)
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According to the above amplitude equations, it is clear
that the hydrodynamic interaction, described by the last term
in Eq. (25), is a higher order contribution which does not
influence the early stage dynamics. The linear term λ1δφq
in Eq. (25) is independent of hydrodynamic interactions and
dominates when δφq is small. Therefore, the early stage
dynamics must be similar regardless of the values of ζ as seen
in Fig. 3 for t � 103.

According to the time evolution of the velocity in Eq. (26),
the combination ηq2 + ζ controls the decay of the hydrody-
namic flow. This implies that hydrodynamic interactions play
a significant role for large length scales. Consequently, the
flow is suppressed in the early stage when the average wave
number 〈k(t )〉 is large, whereas it is strengthened when 〈k〉
decreases as pattern evolves.

B. Late stage

To discuss the late stage dynamics from the viewpoint of
hydrodynamic flows, we show in Fig. 9 the velocity field
v(r, t ) together with the cancer fraction field φ(r, t ) in the
presence of full hydrodynamic interactions (ζ = 0) at (a) t =
7800 and (b) t = 9400 when γ = 1 × 10−3 (see also SM1.mp4
in the Supplemental Material [47]). In Fig. 9(a), a large scale
pair of vortices is created; one of them rotates clockwise and
the other moves counterclockwise. Such a flow is triggered by
the coalescence of two smaller domains into a larger domain.
As a result, a strong flow is induced at the neck region of
the two merging domains. Somewhat later in Fig. 9(b), how-
ever, a circular flow appears inside a large domain. Another
important feature in this pattern is the existence of a flow
along the domain boundaries. Such a flow sometimes induces
a large velocity field in the narrow channel between larger
domains.

In the late stage of pattern evolution, the domain structures
of the healthy and cancer cells become relatively robust. The
values of φ within healthy-rich and cancer-rich domains are
saturated to φ ≈ 0.145 and φ ≈ 0.855, respectively, which
correspond to the two free energy minima of Eq. (8) when
χ = 2.5. Once the microstructure is formed, the subsequent
evolution of pattern is determined by the competition between
two different processes; the shape accommodation and the
coalescence process.

The shape accommodation results from the movement
of interfaces that tends to minimize total interfacial energy.
Therefore, the system energetically favors circular domains
and the resultant pattern is the C/H pattern composed of
circular cancer domains separated by healthy cells. How-
ever, the interface is not static due to non-zero net prolif-
eration rate and the coalescence occurs when two nearby
cancer domains continue to grow and eventually connect
each other. For larger proliferation rates, the coalescence
surpasses the shape accommodation process. Hence, cancer
domains get interconnected and the length scale of pattern
increases. This process leads to a breakdown of the sixfold
symmetry of the C/H pattern owing to the random connecting
processes.

Since the pattern is kinetically controlled by these two
processes, the steady state should depend on the values of
γ and ζ , as summarized in Fig. 5. The rate of coalescence

FIG. 9. Plots of the velocity field v(r, t ) shown by the arrows
at (a) t = 7800 (system size 200 × 200) and (b) t = 9400 (system
size 150 × 150) when γ = 1 × 10−3 in the presence of full hydrody-
namic interactions (ζ = 0). The other dimensionless parameters are
φ0 = 0.3, φ∞ = 0.8, χ = 2.5, κ = 1, ρ = 0.3, and η = 1.0. Both
patterns are the closeups of a larger system size simulation as
presented by the bottom panels of Fig. 2. See also SM1.mp4 in the
Supplemental Material [47].

process is influenced by the domain growth rate γ . The shape
accommodation is realized through the mass transportation
and it is enhanced by the additional hydrodynamics flows
across interface, as presented in Fig. 9. Thus, when γ is as
large as γ ≈ 5 × 10−3, the dominating coalescence process
connects all domains together and transforms the pattern into a
uniform cancer cells with few healthy spots, corresponding to
the H/C patterns. However, the shape accommodation process
is faster than the coalescence process for small γ so that the
C/H pattern is preserved in the late stage. The intermediate
stripe-like pattern (AB pattern) appears in the steady state
when the coalescence and shape accommodation processes
are comparable.
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V. SUMMARY AND DISCUSSION

In this paper, we have performed numerical simulations
of pattern formation of skin cancers. In our phase separation
model for a binary cellular system, we have taken into account
the effects of cancer proliferation and hydrodynamic interac-
tions to describe the time evolutions of cancer cells. As a result
of the proliferation effect, the emerging patterns drastically
change their structures depending on the different stages of
the phase separation dynamics.

By controlling the cancer proliferation rate γ and the
friction coefficient ζ between dermis and epidermis, we have
obtained various types of steady-state cancer pattern such as
a cancer-in-healthy pattern (C/H), a healthy-in-cancer pattern
(H/C), and an locally asymmetric bicontinuous (AB) struc-
ture. As summarized in Fig. 5, we have constructed the steady-
state pattern diagram for different combinations of γ and ζ

values. In particular, the C/H patterns obtained for a small
proliferation rate and strong hydrodynamic interactions (small
ζ ) and the AB structures obtained for weak hydrodynamic
interactions (large ζ ) might correspond to the globule and the
stripe patterns, respectively, in real melanoma diagnoses.

For a quantitative analysis, we have calculated the spatially
averaged composition of cancer cells, 〈φ(t )〉, and the char-
acteristic length of the cancer patterns, 〈k(t )〉, as a function
of time t (see Figs. 4 and 7) both in the presence and the
absence of hydrodynamic interactions. We have shown that
〈φ(t )〉 and 〈k(t )〉 depend not only on the proliferation rate but
also on the strength of hydrodynamic interactions. Without
hydrodynamic flows, we have confirmed in Fig. 8 that the
scaling behavior of the characteristic length is described by
the form of Eq. (16). With hydrodynamic flows, however,
the domain growth exponent in the intermediate stage was as
large as α = 2/3, showing a pronounced acceleration of the
microphase separation.

First, we shall give some numbers for the quantities men-
tioned in Sec. II C to scale length, energy, and time that are
relevant to skin cancers [see Eq. (11)]. The typical length scale
observed in skin cancer patterns is in the order of 10−3 m.
According to Fig. 7, the characteristic wave number in the
steady state of our simulation is 〈k〉a ≈ 0.1 (notice that we
recover the dimensions of the physical quantities in this
section). From these values, we set the unit of length as
a ≈ 10−5 m which corresponds to the size of an epidermal
cell [13]. Since the interstitial fluid pressure in skin carcinoma
was estimated to be roughly � ≈ 103 Pa [13,36], we obtain
the typical energy scale as β−1 ∼ �a3 ≈ 10−12 J, which is
much larger than the thermal energy. From the data of the
interphase friction [13,52,53], the 3D transport coefficient can
be evaluated as L3D ≈ 10−15 m2Pa−1s−1. With this value,
we estimate the typical time scale in our model as a4β/L ∼
a5β/L3D ≈ 102 s.

Having discussed various scales for skin cancers, we can
convert the dimensionless parameters in our simulations to
the physical quantities with dimensions. For example, the di-
mensionless time t/(a4β/L) ≈ 105 to reach the steady states
in Fig. 7 roughly corresponds to t ≈ 102 days which are
reasonable for cancer spreading. The choice η̃ = Lη/a2 = 1
in our simulation corresponds to η3D ∼ η/a ≈ 105 Pa s that
fits within the previously reported viscosity values [4,25]. As

for the cancer proliferation rate, the value γ̃ ∼ a4βγ /L =
10−3 roughly corresponds to γ ≈ 10−5 s−1 ≈ 1 day−1. This
proliferation rate is in agreement with that in the previous
reports [13,54]. Finally, the range of the scaled friction co-
efficient ζ̃ = Lζ = 10−3 − 1 in our simulation predicts ζ ≈
107 − 1010 Pa s m−1 and it coincides with the range of the
friction coefficient in Ref. [55].

Next we discuss the role of cancer proliferation effects on
the phase separation dynamics. In the conventional model B
describing ordinary macrophase separations, a typical time
scale is set by the transport coefficient L. In the present
model, however, the proliferation rate γ in Eq. (5) provides
us with additional time scale. Generally speaking, the phase
separation dynamics should be determined by the competi-
tion between these two time scales. In our simulation, the
initial cancer composition started from φ0 = 0.3 and L was
much larger than γ . More precisely, we have chosen the
dimensionless number as a4βγ /L ≈ 10−3 in the simulations
[see Eq. (11)]. Hence, the compositional instability for the
phase separation, that is governed by L, takes place before
the average composition 〈φ(t )〉 increases with the rate γ .

As shown in Fig. 2, the cancer domains appear as a result
of unstable concentration fluctuations, and they form C/H
patterns for 〈φ(t )〉 < 0.5 in the early stage. In the late stage,
the initial C/H pattern continues to remain for smaller γ

values, while it transforms into the H/C pattern for larger
γ values. When the quantity a4βγ /L is much larger and
becomes close to unity, the system always exhibits the H/C
pattern because the average composition will be immediately
saturated at a larger value 〈φ(t )〉 > 0.5 before the system
undergoes a phase separation. Hence, the cancer proliferation
significantly affects the microstructures of cancer patterns.

In the present work, we have considered a 2D system
composed of cancer and healthy cells whose compositions
evolve in time due to the cancer proliferation effect. Al-
though a similar model was proposed by Chatelain et al.
[13,14], the main difference in our work is that the effects of
hydrodynamic interactions are explicitly taken into account.
Moreover, the strength of hydrodynamic interactions can be
controlled by changing the friction coefficient ζ . When hy-
drodynamic interactions are fully present, the C/H patterns
continue to remain even in the late stage when 〈φ(t )〉 > 0.5
(see bottom panels in Fig. 2 and SM1.mp4 in the Supplemental
Material [47]). Such a transient pattern was not observed in
the previous study by Chatelain et al. [13,14].

Alternatively, Chatelain et al. took into account the dif-
fusion of nutrient (oxygen) concentration chosen as an ad-
ditional variable [13,14]. Accordingly, they employed a dif-
fusion equation for the nutrient concentration with a source
term. In their model, the cell-nutrient interaction defines a
typical diffusive length that controls the saturation of growing
domains. In our model, we did not consider such a coupling
to the diffusion of nutrients from an outer environment, but
simply used the logistic growth model to describe the cancer
proliferation [see Eq. (5)]. As mentioned before, this simplifi-
cation is justified when the cancer composition is proportional
to the nutrient concentration.

We have assumed that dermal and epidermal boundary
is flat and the epidermal layer was modeled as a 2D fluid.
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However, the structure of dermis and epidermal can affect
the cell differentiation and also the cancer pattern formation.
For example, Balois et al. considered melanin transport in
epidermis and showed that it is influenced by the dermal and
epidermal shape [16]. Such a geometrical effect of basal layer
will be considered in our future study by taking into account
the hydrodynamic interaction.

Cates et al. argued that the appearance of an arrested
phase separation in bacterial colonies can be explained only
by considering a local density-dependent motility and the
birth/death of bacteria [21]. In their work, the competition
between the effects of birth/death and diffusion leads to a
typical length scale beyond which domain coarsening does not
occur. The obtained patterns of 2D simulation indeed show
droplets of the high-density phase dispersed in a continuous
low-density phase at large times [21]. Such a situation is very
reminiscent to the results of our model in the absence hydro-
dynamic interactions (either C/H or H/C pattern). However,
we have shown that hydrodynamic interactions affect not only
the steady-state patterns but also the transient patterns.

In Sec. II A, we have mentioned that the logistic growth of
cancer cells in Eq. (5) can stem from the mechanical coupling
effect that is controlled by the homeostatic pressure [4]. Ranft
et al. discussed the propagation of an interface between two
different cell populations when the homeostatic pressures of
two cell types are different [56]. Taking into account both
substrate friction and hydrodynamic interactions, Podewitz
et al. performed mesoscopic simulations to investigate in-
terface dynamics of competing tissues [57]. They showed
that the propagation velocity of the interface is proportional
to the homeostatic stress difference. Recently, Williamson
and Salbreux studied the stability and roughness of such
a propagating interface [55]. In these studies, however, the
formation of microstructures of cancer cells, such as dots or
stripes, has not been investigated.

As mentioned before, our model can reproduce clinically
observed globule and stripe patterns in melanoma. The C/H
patterns tend to appear when the proliferation rate is small

and the hydrodynamic interactions are strong. By contrast, the
stripe patterns, which are often found in human palms or soles,
tend to appear when hydrodynamic interactions are absent.
In reality, palms and soles contain a thick stratum corneum
and an unique cell layer called “stratum lucidum” which has
a finite stiffness. Such a stiffness may reduce hydrodynamic
interactions and results in the formation of stripe patterns.

Our model suggests that the proliferation and invasion
of cancer cells in superficial spreading melanoma can be
predicted by observing the epidermis using dermoscopy.
Melanoma cells migrate horizontally in the epidermis in the
initial stage of tumor development, during which the clin-
ical staging is described by “Clark’s level” and “Breslow’s
depth” [58]. In its staging, the diffusion range and the cell
spreading pattern of melanoma cells are the most important
measures for making prognostic predictions, such as the five-
year patient survival rate [59,60]. The present work presents
objective diagnostic indicators and methodologies for making
prognostic predictions for these patients that can be verified
by dermoscopic image data. We expect that our work will be
applied to the development and evaluation of future clinical
diagnosis.
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