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Periodic, quasiperiodic, fractal, Kolakoski, and random binary polymers:
Energy structure and carrier transport

K. Lambropoulos* and C. Simserides†

Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Zografos, Athens, Greece

(Received 29 November 2018; published 18 March 2019; corrected 1 August 2019)

We study periodic, quasiperiodic (Thue-Morse, Fibonacci, period doubling, Rudin-Shapiro), fractal (Cantor,
generalized Cantor), Kolakoski, and random binary sequences using a tight-binding wire model, where a site is
a monomer (e.g., in DNA, a base pair). We use B-DNA as our prototype system. All sequences have purines,
guanine (G) or adenine (A), on the same strand, i.e., our prototype binary alphabet is {G, A}. Our aim is to
examine the influence of sequence intricacy and magnitude of parameters on energy structure, localization, and
charge transport. We study quantities such as autocorrelation function, eigenspectra, density of states, Lyapunov
exponents, transmission coefficients, and current-voltage curves. We show that the degree of sequence intricacy
and the presence of correlations decisively affect the aforementioned physical properties. Periodic segments have
enhanced transport properties. Specifically, in homogeneous sequences transport efficiency is maximum. There
are several deterministic aperiodic sequences that can support significant currents, depending on the Fermi level
of the leads. Random sequences is the less efficient category.
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I. INTRODUCTION

DNA is fundamental to living organisms because the se-
quence of its bases (adenine, guanine, thymine, cytosine) car-
ries their genetic code. Its remarkable properties have drawn
the interest of a broad interdisciplinary scientific community,
molecular biology and genetics. From a physics point of view,
its electronic structure and its charge transfer and transport
properties properties are studied with the aim to understand
its biological functions and their potential applications in nan-
otechnology (e.g., nanocircuits, molecular wires) [1,2]. The
base-pair stack of the double-helix DNA structure creates a
nearly one-dimensional π pathway that favors charge transfer
and transport. The term transfer means that a carrier, created
(e.g., by oxidation or reduction) or injected at a specific place,
moves to a more favorable location, while the term transport
implies the use of electrodes between which electric voltage
is applied.

We focus on periodic, aperiodic, and random binary se-
quences, i.e., sequences based on a binary alphabet, like
{0, 1}. We use B-DNA as a prototype system and investigate
sequences based on the couple {G, A}. This means that in
one strand of double helix B-DNA we have either guanine
(G) or adenine (A), and, of course, in the complementary
strand we have cytosine (C) and thymine (T), respectively.
The persistence length �p of a polymer somehow quantifies
its stiffness, in the sense that pieces shorter than �p behave
rather like a flexible elastic beam, while much longer pieces
are more likely to bend. DNA is among the stiffest of known
polymers with �p ≈ 50 nm or 150 base pairs [3]. This is one of
the reasons we chose B-DNA as our prototype system, along
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with its biological and nanoscientific importance. On the other
hand, if we stretch and join the DNA of all chromosomes of a
single cell, then that would give us a length of the order of a
meter and would consist of billions of base pairs.

Recent research has shown that carrier movement through
DNA can be manipulated. For example, the carrier transfer
rate through DNA can be tuned by chemical modification,
e.g., using various natural and artificial nucleobases with dif-
ferent highest occupied molecular orbital (HOMO) levels [4].
Transfer rates can be increased by many orders of magnitude
with appropriate sequence choice [5–7]. Furthermore, dynam-
ical fluctuations, arising from either solvent fluctuations or
base-pair vibrations can gate charge transport, counteracting
the intrinsic disordered potential profile of the sequence [8].

Many external factors (such as aqueousness, counterions,
extraction process, electrodes, purity, substrate), influence
carrier motion along DNA [9]. Hence, the need for a better
understanding of the intrinsic factors that affect charge
transfer and transport, such as geometry and base-pair
sequence, arises. Ab initio calculations [10–16] and model
Hamiltonians [5–7,17–27] have been used to explore
the variety of experimental results and the underlying
mechanisms. The former are currently limited to short
segments for computational reasons, while the latter allow to
address systems of realistic length. Here we study rather long
sequences, and hence we adopt the latter approach. The aim
of this work is a comparative examination of the influence of
base-pair sequence on charge transport.

Several works have been devoted to the study of trans-
fer and transport in specific DNA structures (periodic
[5–7,28,29], quasiperiodic [30–32], random and natural
[19,20,33–35]) using variants of the tight-binding (TB)
method. Here we employ the TB wire model, with the sites
of the chain being the base pairs (i.e., the on-site energies

2470-0045/2019/99(3)/032415(17) 032415-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.032415&domain=pdf&date_stamp=2019-08-01
https://doi.org/10.1103/PhysRevE.99.032415


K. LAMBROPOULOS AND C. SIMSERIDES PHYSICAL REVIEW E 99, 032415 (2019)

refer to a base pair and the hopping integrals correspond to
adjacent base-pairs in the 5′-3′ direction), to study the spec-
tral, localization and charge transport properties of periodic,
deterministic aperiodic [Thue-Morse (TM), Fibonacci (F),
period doubling (PD), Rudin-Shapiro (RS), Cantor set (CS),
generalized Cantor set (GCS), Kolakoski (KOL)], and random
DNA binary segments.

We use a TB parametrization that allows for different hop-
ping (or transfer or coupling) parameters (or integrals). Such
TB parametrizations for DNA have been derived by many sci-
entists in many works and used with various TB models (wire,
ladder, extended ladder, fishbone, etc), for example, for cou-
pling parameters and on-site energies, cf. Refs. [14,15,36,37];
for coupling parameters, cf. Refs. [38–40]; and for on-site
energies, cf. Refs. [41–46]. Roughly, the coupling integrals
found in the literature are usually [17] in the range 0.001 to
0.200 eV, although sometimes even smaller or larger values
have been reported. In Ref. [47] there are some nice tables
showing the variance of on-site energies and coupling pa-
rameters for different triplets (or triads) of base pairs. TB
parameters may change at different levels of theory, and
their values can tune the results, having both quantitative and
qualitative effects. The analysis of what happens changing TB
parameters may indicate future research directions.

When dealing with charge transport properties, it is usual
in the literature to use only one hopping parameter and/or
on-site energy, to simplify the problem. We go beyond these
simplifying hypotheses in the present manuscript. This leads
to quantitative and qualitative consequences. Our treatment
gives a clearer picture, as will be discussed below. In this
spirit, we calculate—among other quantities—autocorrelation
functions, integrated density of states, Lyapunov exponents,
transmission coefficients, and current-voltage (I-V ), curves
taking into account the different on-site energies as well as
the different hopping parameters.

The rest of the paper is organized as follows: In Sec. II
we outline our TB and transfer matrix method (TMM) frame-
work. In Sec. III we present the studied sequences. In Sec. IV
we focus on the occurrence percentages of on-site energies,
hopping parameters, and triplets (a site and its previous and
next neighbors) in the sequences. In Sec. V, we discuss
eigenspectra, density of states (DOS), and integrated density
of states (IDOS). In Sec. VI we present Lyapunov exponents,
which characterize the localization length of eigenstates. In
Sec. VII we discuss zero-bias transmission coefficients. In
Sec. VIII, we study I-V characteristics using the Landauer-
Büttiker formalism. In Sec. IX we state some remarks on the
effect the parameters have on the results. Finally, in Sec. X,
we state our conclusions.

II. TIGHT-BINDING AND TRANSFER MATRIX METHOD

In the present work, we focus on periodic, deterministic
aperiodic, and random DNA segments consisting of different
base pairs with their purines (A and G) on the 5′-3′ strand. We
will use this strand to denote the segments. For example, the
notation GGAG means that we have the GGAG bases in the
5′-3′ strand and the complementary ones, CCTC, in the 3′-5′
strand. All studied sequences start with G.

TABLE I. HOMO Hopping integrals, t53
rc , between successive

base pairs involved in the segments studied in this work, in the 5′-3′

direction. r(c) stands for the base pair in the row (column) of the
table.

t53
rc (eV) G A

G −0.100 −0.110
A −0.030 −0.020

The TB system of equations for a DNA segment in the wire
model [6,48] reads

Eψn = Enψn + tn−1ψn−1 + tnψn+1, (1)

∀n = 1, 2, . . . , N , where E is the eigenenergy, En is the on-
site energy of base pair n, |ψn|2 is the relevant occupation
probability, and t� is the hopping integral between base pairs l
and l + 1. The on-site energies are taken EA−T = −8.3 eV for
the A-T base pair and EG−C = −8.0 eV for the G-C base pair
[5–7,17,36,49]. The hopping integrals between successive
base pairs that are involved in the segments studied here are
shown in Table I [5–7,17,36,49]. The values of the parameters
correspond to the HOMO of the base pairs and are discussed
in Ref. [17].

Equation (1) can equivalently be solved using the TMM by
rewriting it in the matrix form(

ψn+1

ψn

)
= Pn(E )

(
ψn

ψn−1

)
, (2)

where

Pn(E ) =
(

E−En
tn

− tn−1

tn

1 0

)
(3)

is the transfer matrix of base pair n. The product

MN (E ) =
1∏

n=N

Pn(E ) (4)

defines the global transfer matrix (GTM) of the segment,
containing all the information about its energetics. Starting
from the fact that MK = PK MK−1, cf. Eq. (4), the elements
of the GTM are recurrently given by

M11(12)
N = E − EN

tN
M11(12)

N−1 − tN−1

tN
M11(12)

N−2 , (5a)

M21(22)
N = M11(12)

N−1 , (5b)

with initial conditions M11
1 = (E − E1)/t1, M12

1 = −tN/t1,
M21

0 = 1, M22
0 = 0. Mi j is the element i j of matrix M. If we

cyclically bound the segment, then the GTM is a symplectic
matrix, and hence it is always unimodular.

III. SEQUENCES

We denote periodic segments by (XY . . . Z)m, where m is
the total number of repetition units. The categories, substitu-
tion rules, and substitution matrices of the studied determinis-
tic aperiodic sequences can be found below. Using, e.g., the
binary alphabet {i, j}, the substitution matrix S of a given
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sequence has elements Si, j = ni[s( j)], where ni[s( j)] is the
number of times i is present in the substitution rule s( j). By
definition, the substitution matrix does not univocally define
the substitution rule, since it does not provide information
about the letter order. Hence, different sequences can have the
same substitution matrix [50]. However, the substitution ma-
trix can be used, among others, for the spectral classification
of aperiodic crystals [50]. Apart from the fractal (Cantor and
generalized Cantor) and Kolakoski {1, 2} sequences, the rest
of the cases studied here have primitive substitution matrices
S (a matrix S is primitive if it is non-negative and there is a
n ∈ N∗ such that Sn is positive).

A. Fibonacci

The Fibonacci sequence, named after the Italian mathe-
matician Leonardo Pisano (Fibonacci), who introduced it in
his 1212 book Liber Abaci, in a study of the population
growth of rabbits [51], is a number sequence the terms of
which are generated by the addition of the two previous terms,
with given initial conditions. However, this sequence appeared
many centuries before in Indian mathematics, in connection
with Sanskrit prosody [52]. For example, the number of
possible ways to arrange short and long syllables (the duration
of a long syllable is twice the duration of a short syllable)
with given total duration of g short syllables (g being a natural
number) is the Fibonacci number of the g + 1 generation. If
Ng is the Fibonacci number of generation g, and we set N0 =
N1 = 1, the recurrence relation Ng = Ng−1 + Ng−2 produces
the number sequence 1, 1, 2, 3, 5, 8, 13, 21, 34 . . . . Using the
two-letter alphabet {G, A}, we can define the Fibonacci word
Fg by the substitution rule s(A) = G, s(G) = GA, starting
with F0 = A. F1 = G, F2 = GA, F3 = GAG, F4 = GAGGA,
etc. Obviously, the length of the word Fg is Ng. The substitu-
tion matrix of the Fibonacci sequence is

S =
(

1 1
1 0

)
. (6)

B. Thue-Morse

The TM sequence (also known as the Prouhet-Thue-Morse
sequence) was studied by Eugene Prouhet in the field of
number theory [53], defined by Alex Thue in the field of
combinatorics [54], and rediscovered by Marston Morse in
the context of differential geometry [55]. It is a binary se-
quence of 0s and 1s, starting with 0, with its gth generation
constructed by appending the Boolean complement of the pre-
vious generation to the sequence. With the two-letter alphabet
{G, A}, we can define the TM word TMg by the substitu-
tion rule s(G) = GA, s(A) = AG, starting with TM0 = G.
TM1 = GA, TM2 = GAAG, TM3 = GAAGAGGA, etc. The
length of the word TMg is 2g. The substitution matrix of the
TM sequence is

S =
(

1 1
1 1

)
. (7)

C. Period doubling

The PD sequence is closely connected with the TM
sequence. Specifically, its elements are given by the first

differences of the elements of the TM binary sequence modulo
2. Using the two-letter alphabet {G, A}, we can define the PD
word PDg by the substitution rule s(G) = GA, s(A) = GG,
starting with PD0 = G. PD1 = GA, PD2 = GAGG, PD3 =
GAGGGAGA, etc. The length of the word PDg is 2g. The
substitution matrix of the PD sequence is

S =
(

1 2
1 0

)
. (8)

D. Rudin-Shapiro

The RS (also known as Golay-Rudin-Shapiro) sequence is
the sequence of the appended coefficients of the RS polyno-
mials [56,57]. It contains only ±1 and is generated by starting
with +1,+1 and employing the rules

+1,+1 → +1,+1,+1,−1

+1,−1 → +1,+1,−1,+1

−1,+1 → −1,−1,+1,−1

−1,−1 → −1,−1,−1,+1.

Using the four-letter alphabet {i = GG, j = GA, k = AG,
� = AA}, we can define the RS word RSg by the sub-
stitution rule s(GG) = GGGA, s(GA) = GGAG, s(AG) =
AAGA, s(AA) = AAAG, starting with RS0 = GG. RS1 =
GGGA, RS2 = GGGAGGAG, etc. The length of the word
RSg is 2g+1. The substitution matrix of the RS sequence is

S =

⎛
⎜⎝

1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

⎞
⎟⎠. (9)

E. Cantor set

The Cantor set (CS), named after mathematician Georg
Cantor, who introduced it [58], is one of the most well-known
deterministic fractals. It is obtained as follows: Given the
continuous interval [0,1], the middle third, ( 1

3 , 2
3 ) is deleted,

resulting in the union [0, 1
3 ] ∪ [ 2

3 , 1]. Then, the open middle
third of each remaining interval is deleted, and the process is
repeated ad infinitum. Using the two-letter alphabet {G, A},
we can define the CS word CSg by the substitution rule s(G)
= GAG, s(A) = AAA, starting with CS0 = G. CS1 = GAG,
CS2 = GAGAAAGAG, etc. All generations are palindromic
words. The length of the word CSg is 3g. The (nonprimitive)
substitution matrix of the CS sequence is

S =
(

2 0
1 3

)
. (10)

F. Generalized Cantor set

In accordance with the rationale described above, one
can imagine the construction of a generalized CS word,
GCSg(t, d ), produced by the two-letter alphabet {G, A},
where t is the total number of letters substituting each letter
of the sequence in the next generation and d is the number
of letters that correspond to the “deleted” middle segment
(t > d). t and d are mutually odd or even to preserve the
palindromicity of the words. For example, the generalized
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word GCSg(4, 2) is given by the rule s(G) = GAAG, s(A) =
AAAA, starting with GCS0(4, 2) = G. The length of the word
GCSg(t, d ) is t g. The (nonprimitive) substitution matrix of the
GCS sequence is

S =
(

t − d 0
d t

)
. (11)

G. Kolakoski

The Kolakoski {p, q} sequences are a family of sequences
of the integers p 	= q that are their own run-length encodings
(a run is defined here as the maximal subsequence of identical
numbers). The classic and most well-known sequence of this
class, Kolakoski(1,2) [59], also referred to as the Oldenburger-
Kolakoski sequence, was popularized by recreational math-
ematician William Kolakoski [60], but it was independently
introduced by Rufus Oldenburger [61]. This family of se-
quences possesses different properties in different cases. For
example, for specific values of p and q, they may show pure-
point or continuous diffraction spectra [62]. Each generation,
Kolg(p, q), of the sequences can be seen as the run-length
encoding of the next generation, starting with Kol0(p, q) = qp

and following the substitution rule

s(q) = pq if q was at odd n,

s(q) = qq if q was at even n,

s(p) = pp if p was at odd n,

s(p) = qp if p was at even n.

For example, Kol0(1, 2) = 2, Kol1(1, 2) = 11, Kol2(1, 2) =
12, Kol3(1, 2) = 122, Kol4(1, 2) = 12211, Kol5(1, 2) =
1221121, etc. Accordingly, using the two-letter alphabet
{G, A}, we can define the KOL(p, q) word KOLg(p, q) by
assigning G to p and A to q. Thus, e.g., KOL5(1, 2) =
GAAGGAG. The length of KOLg(1, 2) as g increases is given
by the OEIS sequence A001083 [63]. Generally, the length
of the word KOLg(p, q) is equal to the sum of the terms of
KOLg−1(p, q).

Here we focus on the Kolakoski (1,2) and (1,3) sequences.
The former (and generally cases where p and q have different
parity) cannot be associated with a primitive substitution
matrix. The latter (and generally cases where p = 2μ + 1 and
q = 2ν + 1) can alternatively be constructed by the three-
letter alphabet {i = pp, j = pq, k = qq} and the substitution
rule s(i) = iμ jkμ, s( j) = iμ jkν , s(k) = iν jkν . Hence, we ar-
rive at the substitution matrix

S =
⎛
⎝μ 1 μ

μ 1 ν

ν 1 ν

⎞
⎠. (12)

H. Substitution matrices and letter frequencies

For deterministic aperiodic segments with primitive substi-
tution rules [i.e., all cases studied here apart from the fractals
and KOL(1, 2)], the frequencies of the letters G and A in
each sequence can explicitly be determined. From the Perron-
Frobenius theorem it follows that the substitution matrix S has
a unique, real, positive eigenvalue, λPF, and the corresponding

eigenvector can be chosen to have strictly positive entries.
The normalized components (such as their sum is one) of
the right eigenvector associated with λPF give the asymptotic
relative frequencies of the letters G and A [64]. In the fractal
sequences, these frequencies asymptotically reach 100% and
0%, respectively; in KOL(1, 2) sequence, they are conjectured
to be 50% for each letter [65] [cf. Fig. 2(h)].

For segments with primitive substitution rules, we can
also determine the frequencies of the legal k-letter words
in the sequence. We present a way to analytically ob-
tain these frequencies, based on the following proposition
[64]: If s is the primitive substitution rule of a sequence
based on the alphabet A, W = {w = w1w2 . . . wk,∀wi ∈ A}
is the set of the legal k-letter words in the sequence, and
s(w) = w′

1w
′
2 . . . w′

n, then the induced substitution sk (w) =
(w′

1w
′
2 . . . w′

k )(w′
2w

′
3 . . . w′

k+1) . . . (w′
lw

′
l+1 . . . w′

l+k−1), where
l is the length of the word s(w1), is also primitive.

Hence, a primitive induced substitution matrix Sk can be
defined, from which we can find the asymptotic relative fre-
quencies of the legal k-letter words from the Perron-Frobenius
theorem. For sequences in which S is defined with the help
of another alphabet [i.e., RS, and KOL(1, 3), cf. Sec. III D,
Sec. III G], these frequencies can be deduced from the possi-
ble 2k-letter words of the helping alphabet.

Below, we demonstrate the procedure to determine the
induced substitution matrix S3 of the possible three-letter
words of the period-doubling sequence, for illustration. In
this case, k = 3, W = {GGG, GGA, GAG, AGG, AGA} (cf.
Sec. IV) and l is always 2. Hence,

s(GGG) = GAGAGA → s3(GGG) = (GAG)(AGA),

s(GGA) = GAGAGG → s3(GGA) = (GAG)(AGA),

s(GAG) = GAGGGA → s3(GAG) = (GAG)(AGG),

s(AGG) = GGGAGA → s3(AGG) = (GGG)(GGA),

s(AGA) = GGGAGG → s3(AGA) = (GGG)(GGA).

So the induced primitive substitution matrix S3 reads

S3 =

⎛
⎜⎜⎜⎝

0 0 0 1 1
0 0 0 1 1
1 1 1 0 0
0 0 1 0 0
1 1 0 0 0

⎞
⎟⎟⎟⎠. (13)

IV. SEQUENCE PROPERTIES

To obtain a clear picture of the interplay between sequence
intricacy and energy profile of the segments, as well as its
effect on localization and transport properties, we present
some details on the sequence characteristics of the studied
segments. We deal with binary sequences, that is, sequences
based on a binary alphabet, like {0, 1} or {G, A} in our case.
Therefore, a useful classification of their properties can be
done through the study of the different base-pair triplets that
are found in each category [50]. A triplet is made of a base
pair and its next and previous neighbors. Since in a realistic
treatment we need to simultaneously consider the difference
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FIG. 1. Classification of the DNA segments studied in this work
based on the number and occurrence percentage of base-pair triplets.
The boxes correspond to each of the eight possible triplets. For each
segment, white boxes correspond to forbidden triplets, and the color
of the rest corresponds to their occurrence percentage (calculated for
large N).

in the on-site energies and the hopping integrals (as done
here), the total number of possible triplets (23 for a binary
sequence) corresponds to the total number of different transfer
matrices that can be found in the GTM; cf. Eq. (3). The
number of triplets in each category of DNA segments as well
as the occurrence percentage of each triplet (for large N) are
depicted in Fig. 1. Finally, we notice, it has been claimed that
the on-site energy of a base depends on its flanking bases, an
idea beyond the scope of our present calculations [47].

From Fig. 1 it is obvious that the periodic (GA)m segment
represents the most ordered case (two triplets with equal
occurrence percentages). The F and PD segments possess
four and five different triplets, respectively, and have one
dominant GAG triplet. The TM and KOL(1, 2) segments
possess six equidistributed triplets. The RS, random, and
KOL(1, 3) segments possess all possible triplets; in the first
two cases they are equidistributed; in the latter there are some
predominant triplets. Finally, the Cantor set family segments
possess many of the possible triplets [seven for CS and six
for GCS(4, 2)]. However, the AAA triplets are predominant,
asymptotically reaching 100% occurrence percentage as N
increases. For segments with primitive substitution rules, the
values at which the occurrence percentage of each possible
triplet converge can be found from the procedure described
in Ssec. III H. For example, the occurrence percentages of the
possible triplets in PD segments converge to the components
of the normalized right eigenvector corresponding to λPF = 2
of matrix S3 [Eq. (13)], i.e., [ 1

6 , 1
6 , 1

3 , 1
6 , 1

6 ]T .
The intricacy of the sequence determines the total number

of TB parameters (on-site energies and hopping integrals) and
the occurrence percentage of each inside a given segment.
In Fig. 2, we present the scaling of each TB parameter
occurrence percentage for all the categories of studied seg-
ments. Among other things, we observe that the occurrence

percentage of tGA is always equal to that of tAG. In all
deterministic aperiodic cases, the occurrence percentages
reach specific values as the generation, g, increases. Com-
paring F and PD sequences, although the former sequence
is simpler (cf. Fig. 1), it has the same total number of TB
parameters with the latter, since it has the additional triplet
GGG. Again, we notice that, for sequences with primitive sub-
stitution rules, the values at which the occurrence percentage
of each on-site energy and hopping integral converge coincide
with the letter frequencies of the possible one- and two-letter
words in the sequence, respectively, which can be found from
the procedure described in Sec. III H.

Having obtained an estimate of the intricacy of the se-
quences, we move to the estimation of the correlations of
their energy landscape. We will do this by calculating the
autocorrelation function (ACF) [66] for the quantities En

tn
, n =

1, . . . , N . This ratio is used to fully capture the energy intri-
cacy of the sequences. The degree the base pairs are correlated
with their jth-order neighbors, i.e., the correlation between
sites with indices n and n + j for fixed j, is expressed by the
lag- j normalized ACF, ACF( j). Using the notation yk = Ek

tk
, it

is given by

ACF( j) =
∑N− j

k=1 (yk − ȳ)(y j+k − ȳ)∑N
k=1(yk − ȳ)2

, (14)

where ȳ is the mean value of y{n}.
In Fig. 3, we present the ACF all the categories of studied

segments for three different lengths for each. The horizontal
axes are normalized over the total number of neighbors (N −
1), thus corresponding to the relative neighbor distances. We
notice that the ACF of each category has a characteristic
shape. Furthermore, from the inspection of Fig. 3, we ob-
serve that there is a correspondence between the degree of
intricacy of the segments and the strength of correlations.
Random and RS sequences, which possess eight equidis-
tributed triplets, display weak correlations. KOL(1, 2) and
TM sequences, which possess six equidistributed triplets, dis-
play somehow stronger correlations. Then follow KOL(1, 3),
CS, and GCS(4, 2) sequences, which possess predominant
triplets. The fractal sequences of the Cantor set family pos-
sess strong correlations in the regions where G is present,
interrupted by long, largely homogeneous, regions where it
is not present. Deterministic aperiodic segments with the
least possible triplets (F and PD, with four and five triplets,
respectively) display strong correlations, and the periodic case
is the dominant one.

Finally, we mention that by comparing the ACF of each
category for different N , we can come to conclusions about
their inflation-deflation symmetry. Sequences with this sym-
metry have similar autocorrelations at similar relative neigh-
bor distances. This is the case for all studied aperiodic se-
quences, apart from KOL(1, 2) and the random ones [cf.
Figs. 3(h) and 3(j), respectively]. As far as the KOL(p, q)
family segments are concerned, we have checked no inflation
or deflation symmetry exists when |p − q| = 2ν + 1, ν ∈ N,
in contrast with the cases |p − q| = 2ν, such as KOL(1, 3),
shown in Fig. 3(i).
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FIG. 2. Scaling of the occurrence percentage of each TB parameter in various categories of DNA segments. (a) Periodic (GA)m. (b) TMg.
(c) Fg. (d) PDg. (e) RSg. (f) CSg. (g) GCSg. (h) KOLg(1, 2). (i) KOLg(1, 3). (j) Random (50% G, 50% A).
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FIG. 3. Scaling of the autocorrelation function of various categories of DNA segments. (a) Periodic (GA)m. (b) TMg. (c) Fg. (d) PDg (e)
RSg. (f) CSg. (j) GCSg(4, 2). (h) KOLg(1, 2). (i) KOLg(1, 3). (j) Random (50% G content, 50% A content).

V. EIGENSPECTRA AND DENSITY OF STATES

For fixed boundary conditions (ψN+1 = ψ0 = 0), the
eigenspectrum, i.e., the eigenenergies Ej , j = 1, 2, . . . , N of a
sequence, can be given by the roots of the polynomial M11

N (E )
[67,68]. Here the eigenspectra of the sequences have been
calculated by numerical diagonalization of the Hamiltonian

matrix, which is real, tridiagonal, and symmetric. For periodic
sequences with a repetition unit composed of u sites, i.e., for
N = mu, the matrix is u-Toeplitz, i.e., its elements have the
property hi, j = hi+u, j+u. The eigenspectra of such sequences
can alternatively be obtained recursively with the help of the
Chebyshev polynomials of the second kind [68]. The DOS can
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FIG. 4. Eigenspectra and DOS of various periodic and quasiperi-
odic DNA sequences. (a) Periodic (GA)m. (b) TMg. (c) Fg. (d) PDg.
(e) RSg.

be obtained by

g(E ) = N

π

d

dE

∣∣∣∣acos

{
Tr[MN (E )]

2

}∣∣∣∣. (15)

IDOS is given by the expression

IDOS(E ) =
∫ E2

E1

g(E )dE . (16)

The eigenspectra and the corresponding DOS for all the
categories of DNA segments studied in this work are pre-
sented in Figs. 4 and 5. We notice that for all studied de-
terministic aperiodic sequences, the allowed energies do not
exceed the energy interval defined by the eigenspectrum of
the random sequence. This also holds for periodic polymers
with only G and A in the 5′-3′ strand, as their repetition
unit increases [7]. Hence, the above-mentioned interval of

FIG. 5. Eigenspectra and DOS of various fractal, Kolakoski and
random DNA sequences. (a) CSg. (b) GCSg(4, 2). (c) KOLg(1, 2).
(d) KOLg(1, 3). (e) Random (50% G and 50% A).

the random sequence represents a limit. Two subsets of the
aforementioned interval gather around the on-site energies
of G and A, so will be henceforth referred to as G and A
energy regions. Comparing Fig. 4, which shows periodic and
quasiperiodic sequences, with Fig. 5, which shows fractal,
Kolakoski, and random sequences, we observe that the former
form sub-bands which are rather acute in the quasiperiodic
cases, while in the latter the DOS is more fragmented and
spiky.

The normalized IDOS for all categories of DNA segments,
for large N , is presented in Fig. 6. In each panel, the largest
energy gap, which is the region between two consecutive
discontinuities of the DOS, corresponds to the separation
between the upper limit of the allowed energies in the A region
and the lower limit of the allowed energies in the G region.
The value of the normalized IDOS in this gap corresponds to
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FIG. 6. Normalized IDOS of various categories of DNA segments. (a) Periodic (GA)m. (b) TM. (c) F (φ is the golden ratio.) (d) PD. (e)
RS. (f) CS. (g) GCS. (h) KOL(1, 2). (i) KOL(1, 3). (j) Random (50% G, 50% A).

the relative number of A inside the sequence. Periodic (GA)m

segments possess two narrow, continuous bands, which can
be recursively obtained; also, an analytical expression for the
DOS exists [68]. TM, F, PD, RS, and KOL family sequences
possess steplike IDOS, which indicates that the eigenenergies

concentrate at specific energy regimes, separated by small
gaps. Cantor set family sequences have allowed energies
predominantly in the A region. Although, at first glance,
the IDOS in this region may seem rather homogeneous, it
can be seen from the insets of Figs. 6(f) and 6(g), that the
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spectrum is very rough. The random sequence IDOS has a
shape that resembles to that of the RS sequence, although
it is much more disrupted. We have also observed that all
periodic and deterministic aperiodic segments possess IDOS
steps such that their relative value is equal to the occurrence
percentages of the possible base-pair triplets (cf. Fig. 1).
These steps and the corresponding relative IDOS values are
marked in the corresponding panels of Fig. 6 (except for the
fractal segments in which the non-AAA triplets have very
small occurrence percentages and cannot be depicted). For
example, in the F segments there are four clear IDOS steps
with relative heights φ−2, φ−3, φ−4, φ−3, respectively, where
φ is the golden ratio; this has also been reported before [69].
Our observation connects these relative heights of the IDOS
with the occurrence percentage of the possible triplets, further
substantiating the relation between the sequence structure and
the spectral properties of deterministic aperiodic segments.

VI. LOCALIZATION

For the GTM of a given segment, MN (E ), there exists a
limiting matrix L(E ) such that

L(E ) = lim
N→∞

[MN (E )T MN (E )]
1

2N . (17)

The existence of L(E ) is guaranteed by the Oseledec multi-
plicative ergodic theorem [70]. The Lyapunov exponents of
the segment are connected with the νth eigenvalue of L(E ),
Lν (E ), through

γν (E ) = ln[Lν (E )]. (18)

If the GTM is a 2d × 2d symplectic matrix, as in our
case (d = 1), then the Lyapunov exponents are distinct and
have the property −γ1 < −γ2 < · · · < −γd < γd < · · · <

γ2 < γ1, hence
∑2d

ν=1 γν = 0 [71,72]. Since the Lyapunov
exponents control the growth-decay rate of the solutions of
Eq. (1), they are associated with the system’s inverse localiza-
tion length. In the case of symplectic GTMs, the localization
length is given by the inverse of the smallest positive Lya-
punov exponent, γd (E ) [72].

Since we deal with finite segments, the numerical Lya-
punov exponents presented below correspond to finite val-
ues of N , and hence the limit is dropped. To avoid nu-
merical overflows when the matrix product is constructed,
we use a QR decomposition scheme: We start with the
initial matrix MN (E )T MN (E ) = PT

1 PT
2 . . . PT

N PN . . . P2P1. We
perform a QR decomposition of P1, i.e., P1 = Q(1)

1 R(1)
1 ,

so that MN (E )T MN (E ) = PT
1 PT

2 . . . PT
N PN . . . [P2Q(1)

1 ]R(1)
1 . By

consecutively performing QR decompositions at PjQ
(1)
j−1,

we arrive at MN (E )T MN (E ) = Q(1)
2N

∏1
j=2N R(1)

j := Q(1)R(1).
Hence, the matrix R(1)Q(1) and the initial matrix are similar,
i.e., they have the same eigenvalues. By iterating this pro-
cedure, we arrive at a form R(k)Q(k), where Q(k) converges
to a unit matrix and R(k) = ∏1

j=2N R(k)
j , i.e., a product of

upper triangular matrices with positive diagonal entries in
descending order. Hence, the eigenvalue Lν (E ) is given by
the 1

2N th power of the diagonal elements of R(k), R(k)νν . The

Lyapunov exponents are thus

γν (E ) = 1

2N

2N∑
j=1

ln
[
R(k)νν

j

]
. (19)

In our case, where d = 1, the only exponent to be determined
is γ1(E ). The index 1 will be dropped below.

The Lyapunov exponents of all categories of periodic and
deterministic aperiodic DNA segments, for large N , are pre-
sented in Fig. 7, together with some sequences with randomly
rearranged base pairs. We have grouped together the segments
according to the percentages of G and A they possess. Cases
with similar G and A content are depicted in Fig. 7(a), with
dominant G content in Fig. 7(b) and with dominant A content
in Fig. 7(c). Segments grouped together have similar sizes
where possible.

Starting with Fig. 7(a), we notice that the Lyapunov ex-
ponents follow the trend of the autocorrelation functions;
stronger correlations lead generally to less-localized states.
Periodic (GA)m segments have vanishing exponents inside
their bands; this is a signature of the Bloch character of the
wave functions. TM and KOL(1, 2) sequences have nonva-
nishing exponents of similar magnitude. This similarity is
direct consequence of the similar base-pair triplet distribu-
tion those two categories possess (cf. Fig. 1). The random
sequence has generally much more localized states. As a
general remark, we notice that the Lyapunov exponents in
the A energy region are rather smaller than the ones in the
G energy region.

The conclusion that segments with stronger correlations
possess less-localized states is also evident from Fig. 7(b).
Furthermore, the Lyapunov exponents of F and PD segments
reach very small values in both base-pair energy regions,
while those of RS and random segments do not. The F (PD)
segments possess larger energy intervals of less-localized
states in the A (G) region than PD (F), while for RS and
random segments the exponents follow similar trends. The
dominance of smaller exponents in PD segments over F
segments in the G region can be explained by the enhanced
presence of tGG (which are of large magnitude) in the former,
induced by the occurrence of GGG triplets (cf. Fig. 1).

In segments with dominant A content, which are depicted
in Fig. 7(c), the Lyapunov exponents in the A energy region
are much smaller than those in the G region. KOL(1, 3)
segments possess less-localized states than random ones with
similar G content in their common allowed energy intervals.
The more dominant A becomes, the less (more) localized are
the states in the A (G) region; this is the case for segments
CS, GCS(4, 2), and random sequences with similar G content.
In these cases, there are large A-rich regions within the seg-
ments, interrupted by Gs, which act like a disorder. The more
homogeneous regions the segments possess, the less localized
their eigenstates will be in the A energy region. Comparing
these segments in Fig. 7(c), we can see that, generally, as the
percantage of G decreases, the exponents become smaller in
the A region; however, there are always energies at which
the fractal sequences, which possess stronger correlations,
are more delocalized than the random one. The very small
percentage of G leads to highly localized states in the corre-
sponding energy interval.
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FIG. 7. Lyapunov exponents of various categories of DNA seg-
ments. Top: Segments with 50% G content: periodic (GA)m (red
dashed), TM [pink (light) filled], KOL(1, 2) (blue dotted), and
random [black (dark) filled]. Middle: Segments with more than
50% G content: F [61.82%, black (dark) filled], RS [56.25%, pink
(light) filled)], PD (67.19%, red dashed), and random (56.25%, blue
dotted). Bottom: Segments with less than 50% G content: KOL(1, 3)
[40.00%, pink (light) dashed], CS [13.17%, black (dark) filled],
GCS(4, 2) [6.25%, red (dark) dashed], and two random [40.00% blue
dotted, 10.00% cyan (light) filled].

VII. TRANSMISSION COEFFICIENT

The transmission coefficient describes the probability
of an incident wave to be transmitted through a specific
segment. We connect the segment to semi-infinite homo-
geneous metallic leads, which act as carrier baths. The
leads’ energy spectrum is given by the dispersion relation

E = EM + 2tM cos(qa), where EM is the on-site energy of
the leads and tM is the hopping integral between the leads’
sites. The coupling between the segment and the left (right)
lead is described by the effective parameters tcL(R). Assuming
incident waves from the left, we have

ψ{n}�1 = eiqna + re−iqna, ψ{n}�N = teiqna. (20)

The transmission coefficient is defined as T (E ) = |t |2. The
GTM of the scattering region obeys the equation(

ψN+1

ψN

)
= PRMN PL

(
ψ1

ψ0

)
. (21)

PR =
(

tN
tcR

0

0 tcR
tM

)
, PL =

(
tM
tcL

0

0 tcL
tN

)
, (22)

are the matrices that describe the coupling of the three sub-
systems. After some manipulations, we arrive at the following
expression for the transmission coefficient:

T (E ) = 1

1 + 	(E )
, (23)

	(E ) = [WN (E ) + X +
N (E ) cos(qa)]2

4 sin2(qa)
+ X −

N (E )2

4
. (24)

WN (E ) = M11
N ω − M22

N ω−1, (25a)

X ±
N (E ) = M12

N χ ± M21
N χ−1, (25b)

ω = tMtN
tcRtcL

, χ = tcL

tcR
. (25c)

ω, included only in WN (E ), expresses the deviation of the
coupling of the system to the leads from the ideal case in
which they are interconnected as if they were connected to
themselves; hence ω is a coupling strength factor. χ , included
only in X ±

N (E ), expresses the difference of the coupling
between the leads and each end of the system; hence, χ is
a coupling asymmetry factor. In Ref. [68] we discuss the
effects of ω and χ , as well as of the leads properties, to the
transmission profiles of periodic segments. In the following,
we choose the coupling parameters to satisfy the ideal and
symmetric coupling conditions, |ω| = |χ | = 1. These have
been shown to be the optimal coupling conditions for periodic
segments [68]. We choose EM = (EA−T +EG−C )

2 = −8.15 eV and
tM = −0.25 eV, so that all eigenstates of the systems under
examination are contained within the leads’ bandwidth.

In Fig. 8 we present the transmission coefficients. At first
glance, the transmission coefficients qualitatively follow the
trend of the Lyapunov exponents (cf. Fig. 7). The less local-
ized the eigenstates are, the more transparent the segments
are to the incident waves at their energy region. Periodic
(GA)m segments display the most enhanced transmission and
reach the full transmission condition at specific energies [68];
this does not hold in general for deterministic aperiodic and
random segments. Furthermore, apart from periodic (GA)m,
F, and PD segments, transmission in the G energy region
is from very small to negligible. These categories, together
with the Cantor set family ones, display the most enhanced
transmission. TM and KOL(1, 2) sequences display some
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FIG. 8. Transmission coefficients of various categories of DNA
segments. Top: Segments with 50% G content: periodic (GA)m

(red dashed), TM [pink (light) filled], KOL(1, 2) (blue dotted) and
random [black (dark) filled]. Middle: Segments with more than
50% G content: F (61.82%, black/dark filled), RS [56.25%, pink
(light) filled], PD (67.19%, red dashed), and random (56.25%, blue
dotted). Bottom: Segments with less than 50% G content: KOL(1, 3)
[40.00%, pink (light) dotted], CS [13.17%, black (dark) filled],
GCS(4, 2) (6.25%, red dashed), and two random [40.00% blue (dark)
dotted, 10.00% cyan (light) filled].

energies at which transmission is rather significant. Determin-
istic aperiodic segments are more transparent than random
ones with similar base-pair content, with the exception of RS,
which generally follows the trend of its randomly redistributed
counterpart. Finally, we notice that the sequences shown in
Fig. 8(c) have negligible transmission in the G energy region.
This is due to the small role tGG plays, since it rarely occurs
within the segments.

VIII. CURRENT-VOLTAGE CURVES

We apply a constant bias voltage Vb between the leads,
so that their chemical potential takes the form μL

R

= EM ±
Vb
2 . Then, a linear voltage drop within the DNA segment

is induced and the transmission coefficient becomes bias
dependent. The energy interval between the leads’ chemical
potentials defines the conductance channel. The electrical cur-
rent at zero temperature can be computed using the Landauer-
Büttiker formalism [73–75] as

I (V ) = 2e

h

∫ EM+ Vb
2

EM− Vb
2

T (E ,Vb) dE , (26)

since the Fermi-Dirac distributions, f (EM ± Vb
2 ), are Heavi-

side step functions. The factor 2 in Eq. (26) comes from the
double spin degeneracy of each electronic level.

Again, we choose the coupling parameters to satisfy the
ideal and symmetric coupling conditions, |ω| = |χ | = 1. We
set the leads hopping integral tM = −0.5 eV to ensure that the
leads’ bands are wide enough to capture the whole picture.
The choice of the leads Fermi level, EM , plays a major role
in both the shape of the I-V curves and the magnitude of the
currents. This is demonstrated in Fig. 9, where the I-V curve
of a periodic (GA)16 segment is determined as a function of
EM . It is evident that larger currents (∼0.1 μA) occur at small
biases when EM lies within the bands of the segment. When
this is not the case, voltage thresholds appear, and the (smaller
in magnitude) turn-on currents emerge at biases that increase
in a linear fashion with changing EM . The magnitude of the
currents becomes gradually smaller as EM moves further away
from the segments’ bands and is negligible when EM lies
well outside the bands. Finally, we should mention that, in
this case, the I-V curves are symmetric with respect to the
difference between EM and (EA−T +EG−C )

2 . The above-mentioned
conclusions hold also qualitatively for segments consisting of
identical monomers with crosswise purines, such as (GC)m,
where only one on-site energy (EG−C) is involved, with the
difference that the curves are symmetric with respect to the
difference between EM and EG−C .

Given the previous discussion and Fig. 9, we chose to
study the I-V curves of all segments for two values of EM ,
specifically −7.95 eV and −8.35 eV (i.e., at the center of the
periodic segment’s bands), to capture both G and A energy

−8.6 −8.4 −8.2 −8.0 −7.8
EM (eV)

−0.2

−0.1

0.0

0.1

0.2

V
(V

)

−23
−21
−19
−17
−15
−13
−11
−9
−7

log10(|I (A)|)

FIG. 9. The role of the leads’ Fermi level, EM , to the I-V curve
of a (GA)16 segment. The vertical dotted lines encompass the bands
of the segment.
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FIG. 10. The I-V curves of various categories of DNA segments
for EM = −8.35 eV. Categories as in Figs. 7 and 8. (a) Periodic
(GA)m, TM, and KOL(1, 2) segments and a random segment with
similar G content. (b) F, PD, RS segments, and a random seg-
ment with similar G content. (c) (top) KOL(1, 3), CS, GCS(4, 2)
segments; (bottom) random rearrangements of KOL(1, 3), CS, and
GCS(4, 2) segments, respectively.

regions. In the following, we will only present curves the cur-
rents of which reach the pA regime. Our results are depicted
in Figs. 10 and 11, for EM = −8.35 eV and EM = −7.95 eV,
respectively.

From Fig. 10(a), it is evident that periodic segments
can carry significantly larger currents (∼0.1 μA) than other
categories. The deterministic aperiodic TM and KOL(1, 2)
segments display quite smaller currents than the periodic
ones, of similar magnitude (∼1 nA), but with clearly distinct
shapes. The similarity of current magnitudes between TM and
KOL(1, 2) segments is in accordance with the similarity in the
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FIG. 11. I-V curves of various categories of DNA segments for
EM = −7.95 eV.

values of the Lyapunov exponents and zero-bias transmission
coefficient for these cases, cf. Figs. 7(a) and 8(a), respectively.
The random segment displays significantly smaller currents
compared to the rest categories, reaching ∼10 pA.

As far as segments with dominant G content are concerned,
we can see in Fig. 10(b) that F and PD segments can carry sig-
nificantly larger currents than the RS and random ones. This
is again in accordance with the magnitude of the Lyapunov
exponents and the transmission coefficients for these cases,
cf. Figs. 7(b) and 8(b). In the A energy region, there is a larger
energy range in which F segments display less-localized states
and higher transmission than PD ones. This fact is reflected
on the magnitude of the currents (∼1 nA for F, ∼0.1 nA for
PD). RS and random segments display currents in the ∼10-pA
regime, but their curves have different shapes.

Sequences with dominant A content are depicted in
Fig. 10(c). KOL(1, 3) sequences display rather small currents,
that hardly reach 10 pA, due to the fact that the hopping
integral with the largest occurrence percentage, i.e., tAA, is of
rather small value. Albeit their small magnitude, the currents
of KOL(1, 3) sequences are larger than of their random re-
arrangement, which hardly reach 1 pA. In Cantor set family
sequences, A content is much larger than G content, leading
to large parts of the segment being essentially homogeneous.
Hence, although tAA has a small value, rather large currents
occur [∼10 nA for CS, ∼1 nA for GCS(4, 2)]. In this class
of sequences, G, which, due to its small presence acts as a
disorder in an otherwise homogeneous segment, is gathered
in specific regions. Therefore, the currents they display are
about one order of magnitude larger than their random rear-
rangements (∼1 nA and ∼10 nA, respectively).

As discussed in previous sections, in the G energy region
the eigenstates of most segment categories are highly local-
ized and display very small or negligible transmission. This,
for EM = −7.95 eV, leads to currents that lie well below the
pA regime. The only cases that do not follow this trend are
the periodic, F, and PD segments, the I-V curves of which are
depicted in Fig. 11. The periodic segments curve in this case is
identical to the one for EM = −8.35 eV, due to the symmetry
of the I-V curves with respect to the difference between EM

and (EA−T +EG−C )
2 , cf. Fig. 9. The rest two cases display energy

intervals in the G region for which less-localized states and
enhanced transmission occur, as shown in previous sections.
Close to EM , the interval for F segments is much smaller than
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the one for PD segments, leading to a great difference in the
current magnitudes between the two cases: a single spike of
∼100 pA for F segments and currents in the ∼10 nA regime
for PD segments. This is due to the presence of GGG triplets
in PD segments, which leads to enhanced presence of tGG (the
magnitude of which is large), compared to F segments, cf.
Figs. 2(c) and 2(d).

IX. EFFECT OF PARAMETERS

It is common in the literature that all hopping parameters
between different moieties are considered equal, for sim-
plicity. Let us provide some example results occurring for
identical hopping parameters, with reference to the Lyapunov
exponents: In this case, F segments possess more delocalized
states in the G region (results not presented here), in contrast
with the discussion of Fig. 7(b). Additionally, for all studied
sequences, if we take equal hopping parameters, then the
act of substituting G with A and vice versa leads to a mere
reflection of γ (E ) relative to the mean value of the on-site
energies, (EA−T +EG−C )

2 (results not presented here). This is not
the case when different hopping parameters are considered.
Their relative presence and magnitude can lead to significant
differences in the electronic properties. Another example is
the TM sequence. If we equalize all hopping parameters,
then the Lyapunov exponent is also symmetric relative to
(EA−T +EG−C )

2 (results not presented here), a scenario that does
not hold for different hopping parameters, cf. Fig. 7(a). Of
course, the inclusion of different hopping parameters plays
a significant role not only in the Lyapunov exponents but
also in all properties that are determined by the electronic
structure, such as the transmission coefficient and the I-V
curves. To conclude, besides the fact that, in terms of chemical
complexity, taking identical hopping parameters is unrealis-
tic, our treatment reveals that considering different hopping
parameters leads to a better understanding of the interplay
between sequence intricacy and transport properties, both
quantitatively and qualitatively.

Furthermore, as far as transport properties are concerned,
different results occur for different parameter values. For
example, we have been able to reproduce the results re-
ported for the transmission coefficients in Refs. [20,28,76],
and for the I-V curves in Ref. [28], using the corresponding
parametrizations, which are different from the one used here
(all with equal hopping integrals). Different shapes as well
as current-voltage regimes can be obtained if the parameters
are modified. For example, in Ref. [77] where microRNA
chains are studied, taking different hopping integrals between
nucleotides but of significantly larger magnitude than the ones
used here, the authors report currents in the nA regime for
voltages up to 16 V. These curves have been reproduced as
well. The difference in the current-voltage regimes can also be
seen by comparing the I-V curves of the homogeneous (G)m

and (A)m segments (Fig. 12), which, due to their sequential
simplicity, represent the most efficient cases for charge trans-
port. The curves have been calculated for EM = EG−C (EA−T )
for the former (latter) case, i.e., in the center of the bands, with
tM = −0.5 eV, and ideal and symmetric coupling conditions.
Since the leads are aligned with the band centers, the only
defining factor of the current-voltage regime is the value of the

V (V)
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FIG. 12. The I-V curves of the (G)32 and (A)32 segments.

hopping parameter tGG (tAA). Since tGG > tAA, (G)m segments
display greater currents than (A)m segments (∼10 μA vs.
∼1 μA) and lie in a larger bias regime. Generally, increasing
the value of the hopping parameter results in increase of both
the current magnitude and the voltage regime, until the states
of the segment reach the bandwidth of the leads. For both I-V
curves, the conductance at zero bias is equal to the quantum
of conductance, i.e., ∂I

∂V |V =0 = G0 = 2e2

h ≈ 7.748 × 10−5 S.
As discussed in Sec. VIII (cf. Fig. 9), the occurrence of

voltage gaps in the I-V curves depends on the relative position
of the Fermi level of the leads and the eigenenergies of the
segments. For example, a typical semiconducting I-V curve
occurs for (G)30 segments, if we set EM − EG−C = 0.3 eV
(i.e., for EM lying outside the band of the segment), with
a voltage gap of ≈ 0.7 V and currents ∼1 nA. This is in
accordance with the experimental I-V curves reported for the
same system in Ref. [78], where the authors also attribute
the voltage gap to the offset between the Fermi level of the
electrode and the energy levels of the (G)30 segment.

X. CONCLUSION

We comparatively studied periodic and deterministic ape-
riodic sequences, including quasiperiodic (Thue-Morse, Fi-
bonacci, period doubling, Rudin-Shapiro), fractals (Cantor,
generalized Cantor), Kolakoski, as well as random binary se-
quences within the framework of the TB wire model. We used
B-DNA and as a prototype system and the binary alphabet
{G, A}. All segments had their purines on the same strand.
We gained a better understanding of the interplay between the
intricacy of the segments and their spectral, localization, and
charge transport properties. We took differences in hopping
parameters between successive monomers into account. This
led to a more realistic evaluation of the role the sequence
intricacy plays in the aforementioned properties.

We determined the number and occurrence percentage
of all possible base-pair triplets that can be found within
these segments, as well as their autocorrelation functions. Our
results showed that there is a relation between the number
of possible triplets, the existence of dominant triplets and the
strength of correlations.

We calculated the eigenenergies, the density of states, and
the integrated density of states. The allowed eigenenergies
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of all studied deterministic aperiodic segments lie within the
interval defined by the eigenspectrum of random sequences. In
all deterministic aperiodic segments, there exist energy steps
in the relative normalized IDOS, equal to the occurrence per-
centages of the possible monomer triplets. This observation
establishes a clear relation between the sequence intricacy and
the spectral properties.

Furthermore, we calculated the Lyapunov exponents and
showed that the sequence intricacy, the relative presence of
each monomer, and the values of the TB parameters play ma-
jor role in the degree of eigenstates localization. Generally, se-
quences with strong correlations possess less-localized states.

Next, we connected the segments to semi-infinite
homogeneous leads and studied the zero-bias transmission
coefficients, reaching similar conclusions regarding their
transparency to incident carriers.

We also studied the current-voltage characteristics of the
segments, using the Landauer-Büttiker formalism. We showed
that the shape of the curves and the magnitude of the currents
strongly depends on the leads’ on-site energy (Fermi level).
The current-voltage characteristics were calculated for two
values of the latter, corresponding to positions that catch the
energy regions of interest. For the parametrization used, we

found that periodic binary segments can carry currents in the
μA regime. Several deterministic aperiodic segments (specif-
ically, Fibonacci, period doubling, Cantor, and generalized
Cantor) can also display rather large currents, namely in the
nA regime, depending on the Fermi level of the leads. Random
sequences hold the smallest currents, in accordance with the
weak correlations they possess.

Finally, the I-V curves of the homogeneous (G)m and
(A)m segments, due to their sequential simplicity, represent
the most efficient cases for charge transport with conductance
at zero bias equal to the quantum of conductance. Typical
semiconducting I-V curves occur for these segments when
there is a mismatch between their eigenstates and Fermi level
of the leads, in accordance with experimental results.
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