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Extreme value analysis of gut microbial alterations in colorectal cancer
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Gut microbes play a key role in colorectal carcinogenesis, yet reaching a consensus on microbial signatures
remains a challenge. This is in part due to a reliance on mean value estimates. We present an extreme value
analysis for overcoming these limitations. By characterizing a power-law fit to the relative abundances of
microbes, we capture the same microbial signatures as more complex meta-analyses. Importantly, we show that
our method is robust to the variations inherent in microbial community profiling and point to future directions
for developing sensitive, reliable analytical methods.
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I. INTRODUCTION

Colorectal cancer (CRC) is the third most commonly diag-
nosed cancer in the United States [1], resulting in an estimated
50 000 deaths annually [2]. Development of sporadic, i.e.,
nonhereditary, CRC is a complex process typically defined
by the adenoma-carcinoma sequence, where there is first a
transition from a normal colon epithelium to an adenomatous
growth followed by a transition to a cancerous tumor [3].
Recently, evidence has been mounting that alterations in the
gut microbiome—the approximately 100 trillion microbes
residing in the gut—play a crucial role in this transition from
normal epithelium to cancerous tumor [4–6].

Profiling the taxonomic composition of the gut microbiome
has been made possible due to recent advances in 16S rRNA
sequencing, a technique that quantitatively sequences hyper-
variable regions of the microbial rRNA present in a sample
and assigns taxonomy accordingly [7,8]. The microbial pro-
files of healthy subjects can then be compared to the profiles
of subjects with CRC. Specifically, one common approach
is to identify taxa that are enriched in CRC subjects, then
narrow down the list of microbes that potentially drive CRC
progression. This may be sound in principle, but results are
difficult to interpret in practice when inconsistencies arise
between different studies [5,9]. For instance, oral pathogen
Peptostreptococcus stomatis is often considered a known as-
sociate of CRC, with several studies having corroborated these
results [10–16]. Meanwhile, other studies show a very weak
[4] or even no association at all [5,17–20]. At the same time,
these studies often find a number of other possible signatures;
thus, instead of clarifying the microbial drivers, these studies
create additional confusion. Recent meta-analyses systemat-
ically analyze previously published 16S gene sequence data
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in an effort to identify consistent signatures. However, these
results only confirm a limited number of species, and even
highlight that the majority of results from individual studies
do not agree [9,16].

One commonly proposed reason for the inconsistencies
between studies is the existence of multiple mechanisms by
which microbes can promote CRC [5,9,18,19]. The result is
that CRC drivers in one case may be uninvolved in another,
with even the few confirmed CRC signatures displaying en-
richment in, at most, a subset of cancerous stool or tumor
biopsy samples [9,16–21]. Typical analyses used to find these
signatures rely on either the mean or a rank ordering of taxa
abundances and therefore cannot reliably detect trends that
only occur in a subset of samples. In other words, these
measures only detect general and unidirectional shifts when,
in fact, microbial effects are neither general nor linear. Further
exacerbating these issues, mean value estimates often assume
symmetrical Gaussian [22] or zero-inflated Poisson distribu-
tions [23,24], which do not reflect real microbial distributions.
The field is in crucial need of reliable analysis methods to
parse out the signal from the noise.

In this study, we make use of extremal distributions as a
more sensitive and consistent means of identifying the major
microbial signatures associated with CRC progression. In
doing so, we show that the relative abundance distributions
of putatively causative taxa follow a power law whose tail,
i.e., extreme values, differs between normal, adenoma, and
CRC samples. We use a permutation test with extreme value
test statistics to quantify the differences in these asymmetrical
distributions. We show our extremal analysis to be robust
by replicating our findings in a separate, European cohort
[11], also corroborating the results of recent meta-analyses
[9,16,25]. Employing a power-law distribution to understand
the role of potential microbial culprits in CRC progression
will motivate, guide, and simplify future development of
analytical methods for microbial data.
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II. POWER-LAW-LIKE DISTRIBUTION OF
MICROBIAL ABUNDANCES

A power-law-like distribution of microbial relative abun-
dances should not, in fact, be surprising. Observations of
power laws are prevalent in nearly every field, and reflect the
universal importance of extreme events across fields ranging
from economics to ecology, describing events from wealth
distribution in the U.S. to wildfire sizes [26]. Even just within
the field of physics, power-law behaviors have received spe-
cial attention; complex social networks [27], avalanches [28],
scientific citations [29], and football goals [30] have all been
characterized to follow power laws. While we cannot claim
a power-law distribution in our own work, understanding
the characteristics of power laws can nonetheless guide the
analysis of power-law-like data and reveal important insights.
For example, one insight gained is that the extreme values
comprising the heavy tail of power laws are often the most
influential and informative to study [31,32]. A Gaussian ap-
proximation of a power-law tail would underestimate the ex-
treme values, thereby underestimating the mean. This insight
deems approaches based on mean values less appropriate and
calls for extreme value analysis (EVA).

We examine the fecal microbiota of subjects who are
healthy (n = 486), have adenomas (n = 233), or have CRC
(n = 17) by using 16S rRNA gene sequences from Hale et al.
[6]. The relative abundance of each taxon commonly cited in
the field was determined for all samples at the genus level, the
smallest taxonomic category able to be identified accurately.
Average sequence read count was 6 219, and samples with
fewer than 2 000 reads were removed as done in the original
analysis by Hale et al. [6]. Removing these samples protects
against the sensitivity to sequencing depth variations that
relative abundances at the lower limit face.

While the relative abundances of high-abundance microbes
show a distribution more similar to a symmetrical Gaussian
distribution, low-abundance microbes display a highly right-
skewed distribution with a heavy tail. Typical examples of
genera displaying these two types of distributions are shown
in Fig. 1.

As shown in Fig. 2, the right-skewed distributions do, in
fact, approximate power laws. However, it should be noted
that power laws are characterized by extreme behavior that
extends to infinity, while relative abundances are bound by 1.
In this study we only consider low-abundance genera with
a mean relative abundance of less than 0.005. This left us
with 11 out of the 18 total taxa characterized [33] (Akkerman-
sia, Bifidobacterium, Bilophila, Desulfovibrio, Epulopiscium,
Fusobacterium, Lachnobacterium, Parvimonas, Peptostrepto-
coccus, Pseudomonas, and Streptococcus).

Upon closer inspection, the length of the power-law tail
appears to differ according to disease status (data not shown).
We therefore propose that the power-law tails, i.e., extreme
values, of CRC drivers are the values that differ between the
normal, adenoma, and cancer stages of CRC progression. To
assess this, we employ extreme value analysis to quantify
these differences. Examining data from subjects at each stage
of the adenoma-carcinoma sequence can then distinguish a
microbe’s role in the various stages of carcinogenesis [34].
For example, a microbe that exhibits depletion of extreme

FIG. 1. Relative abundance distributions of typical high-
abundance (Coprococcus) and low-abundance (Desulfovibrio) mi-
crobes. The former is more Gaussian, while the latter is heavily
right-skewed.

values in normal samples but enrichment in adenoma samples
would indicate a role in the early transition to cancer, whereas
a microbe that exhibits only an enrichment in cancer samples
would suggest a later effect.

III. PERMUTATION TEST

To focus our analysis on extreme rather than mean values,
we perform a permutation test on an extreme value measure to
determine the role of microbial taxa in CRC etiology. An ad-
vantage of using a permutation test is that it is nonparametric;
hence, we do not make faulty assumptions about distributional
symmetry. We can also choose any extreme value measure to
test. One such example is a simple maximum [35]; however,
this statistic is overly dependent on a single data point, making
it sensitive to random fluctuations and technical artifacts.
Instead, we found averaging over the x greatest values (maxx)
to be a more reliable measure of extreme behavior. This
statistic represents the maximum while eliminating noise, and
it defines the “leading edge” of the abundance values.

While we utilize the previously mentioned insight about
power-law tails to focus our analysis on extreme values,
importantly, our nonparametric approach does not rely on
estimates of power-law parameters, or even a rigorous claim
that the relative abundances follow a strictly power-law distri-
bution.

We test this approach for different values of x (max3,
max5, and max7) and find nearly identical results despite
different sample sizes in each group (see Appendix A). These
results indicate that these defined sizes of the leading edge are
sufficient to produce reliable results, independent of sample
size. We carry on by performing the permutation test using
only the max5 test statistic.

By comparing the group max5 values generated from the
10 000 random permutations of normal, adenoma, and cancer
to the observed max5 values, we are able to conclude whether
the observed extreme values in each group are higher or
lower than expected. Note that the calculated expectations
for extreme values depend on sample size, as larger samples
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FIG. 2. Log-log transformations reveal that the 11 genera examined approximate power-law relative abundance distributions.

are more likely to include more extreme values than smaller
samples. Correspondingly, cohorts with different sample sizes
between groups lead to different expectations for extreme
values in each group as well.

When applied to Desulfovibrio, we find that the max5

statistic is lower than expected in the normal group and higher
than expected in the adenoma group, indicating a role for
this genus in the transition from normal to adenoma (Fig. 3).
Applying these methods to the 10 other taxa studied, results
are also found for Fusobacterium and Peptostreptococcus,
both enriched in cancer (Fig. 4).

As additional confirmation, we implement an exploratory
parametric EVA method that explicitly applies the power-law
model to estimate an expected number of extreme values
(see Appendix B for detailed methods). Briefly, we normalize
a power-law fit to the microbial abundances and estimate
the number of expected extreme values above a defined
critical relative abundance value, which we then compare to
the observed number of extreme values. Our results match
the permutation test results for Peptostreptococcus (p = 0
in the normal group, p = 0.015 in the adenoma group, p =
0.009 in the cancer group) and are nonsignificant but trending
in the same direction for Desulfovibrio (p = 0.065 in the
normal group) and Fusobacterium (p = 0.141 in the normal
group). The uncertainty in the power-law parameters lowers

the detected significance, but overall these results strengthen
our findings based on the permutation test. Improving the
power-law model and its corresponding PDF would further
enhance the applicability of this approach.

Finally, we examine if our results can be generalized to
other studies. Inconsistencies between different studies arise
due to many different factors including batch effects [36,37]
and sequencing biases from collection [38–40], primer design
[41], PCR conditions [42], and laboratory-to-laboratory vari-
ation [38,43]. However, an advantage of our approach is that
the overall distributional characteristics should remain rela-
tively stable. We therefore expect our extreme value approach,
which makes assessments based off the observed distribution,
to be more robust to these variations.

To test this, we replicate our results in a separate European
cohort (61 normal, 42 adenoma, and 53 cancer) obtained from
Zeller et al. [11] that used different collection methods, primer
design, and sequencing platforms processed in a different
laboratory [44]. The same 11 genera are tested as previously
described using the permutation test. Indeed, results for all of
the signatures found in Hale et al. (Desulfovibrio, Fusobac-
terium, and Peptostreptococcus) are confirmed; Desulfovibrio
is found to be depleted in normal, and Fusobacterium and
Peptostreptococcus enriched in cancer but depleted in normal
(Fig. 5).
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FIG. 3. Permutation distributions of the average of maximum
five relative abundances test statistic (max5) for Desulfovibrio. Ten
thousand random permutations were generated to produce expected
distributions of the max5 values in each group: normal, adenoma, and
cancer. Lines indicate actually observed max5 values. An observed
value near the middle of the expected distribution would indicate an
expected result, while one near the ends would indicate significance.
Consequently, observed max5 is significantly lower than expected
in normal and higher than expected in adenoma. To visualize the
significance and direction of results, barcharts are shown below each
histogram, with x axis representing left-sided p values ranging from
0 to 1. One-sided p values (whichever is smaller) are also labeled
on the left of the barcharts (bold p values < 0.05). Therefore, a
significantly lower than expected result is indicated by a small shaded
region, while a significantly higher than expected result is indicated
by a large shaded region.

It is worth addressing the two results that differ between
the American and European cohort. Specifically, the Euro-
pean cohort results show Akkermansia and Porphyromonas
to have significant positive associations with cancer (Fig. 5).
However, these appear to be the result of differences in
study design. For Akkermansia, cohort size of the cancer
group was larger in the European cohort, making significance
easier to assess in the adenoma to cancer transition. Porphy-
romonas was completely undetected by Hale et al., making it
methodologically impossible to assess computationally. In
addition to study design-based limitations, it should also be
noted that the p values reported here are calculated without

FIG. 4. Taxa from Hale et al. with significantly different than
expected extreme values at each stage of CRC progression. One-
sided p values are shown from the permutation test using the max5

test statistic. Bold p values < 0.05

multiple hypothesis correction. However, the number of gen-
era considered is relatively small, and our several replications
of the results provide an additional level of stringency.

IV. DISCUSSION

Overall, our results are very consistent, demonstrating the
robustness of EVA. It is important to note that our relatively
simple permutation model performed on a single dataset
captures many of the same signatures that otherwise have
only been confirmed by more complex meta-analyses, most of
which show agreement on the importance of Fusobacterium
and Peptostreptococcus [9,16,25]. The match in results is a
testament to the equal, if not greater, sensitivity and reliability
of EVA compared to other methods. Moreover, EVA identified
Desulfovibrio and Akkermansia to be significantly associated
with the transition to adenoma and cancer stage, respectively,
a result that went undetected in the original analysis by Zeller
et al. [11].

Nonetheless, EVA has some limitations. By definition,
EVA requires capturing rare events and thus performs best
with a large number of samples. Fortunately, large-scale mi-
crobiome studies are becoming increasingly common [45,46]
as high-throughput sequencing becomes more accessible. In
this context, EVA takes advantage of this progress while
being less influenced by the variations inherent in microbial
community profiling than mean value analyses.

Future work may shift the paradigm of analytical methods
for 16S rRNA sequencing data. Already, we have demon-
strated the power of EVA to generate consistent results despite
the multiple different mechanisms by which the microbiome
drives CRC. Understanding that relative abundances of poten-
tial CRC drivers follow the ubiquitous power-law distribution
provides a guiding framework for developing future analytical
tools. The characteristic lack of a finite mean exhibited by
power laws explains the challenges of mean value analyses,
motivating a shift towards EVA. Advancements in EVA,
guided by this realization, will result in a clearer, simpler,
and more accurate way to understand the role that key gut
microbes play in the development and progression of CRC.
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FIG. 5. Replication of results in separate, European cohort (Zeller et al.) and comparison to previous Hale et al. results. Log-log
transformations and permutation distributions for Desulfovibrio using the max5 statistic are shown as a representative example. One-sided p
values from the permutation test are visualized for both Zeller et al. and Hale et al. to compare. Note that results support consistent conclusions
in both cohorts for Desulfovibrio, Fusobacterium, and Peptostreptococcus. Porphyromonas was undetected in Hale et al. Bold p values < 0.05.
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APPENDIX A: SENSITIVITY OF EXTREMAL AVERAGES

One method of measuring extreme values is to examine
sample maxima; however, a single maximum value is often
sensitive to random fluctuations and technical artifacts. Aver-
aging a number of maximum values remedies this problem.

Here, we considered using the average of 3 (max3), 5 (max5),
and 7 (max7) maximum values to derive the test statistic that is
most suitable. All three measures performed nearly identically
(Fig. 6). The index of dispersion was used as a quantitative
measure of the differences between the test statistics,

D = σ 2/μ, (A1)

where σ 2 is the variance and μ is the mean of the three
p values for each group. Indeed, the resulting indices of
dispersion were very low, ranging from D = 0 to 0.014.

APPENDIX B: PARAMETRIC EVA METHODS

The exploratory parametric EVA method first fits a power
law to the microbial abundance data, as in Fig. 2. β0 and β1
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FIG. 6. Sensitivity analysis of permutation test statistic using average of maximum 3 (max3), 5 (max5), and 7 (max7) values. Analyses
were conducted using data from Hale et al. Bold p values < 0.05.

from a linear fit to the log-log transformed data of bin interval
I are exponentiated to derive a crude power-law fit:

y = β0 + β1x, (B1)

f (x) = 10β0 xβ1 . (B2)

A cutoff point, or critical value, is then determined to define
the extreme values. A conditional inference tree is used to find
the critical value, and the average of 1000 bootstrap samples
is taken. We can now derive the total expected number of
extreme values (E ) from Eq. (B3), using the integral of the

power law from the critical value to 1 (the maximum possible
relative abundance):∫ 1

c
f (x)dx = 10β0 (1 − cβ1+1)

β1 + 1
, (B3)

E =
∫ 1

c f (x)dx

I
. (B4)

The integral must be divided by bin interval I because counts
are discrete. The number of observed extreme values in each
group (normal, adenoma, and cancer) is then compared to
expected using a binomial test, where x = observed counts,
n = group sample size, and p = E/ total sample size.
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