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Cooperative motor action to regulate microtubule length dynamics

Atul Kumar Verma, Natasha Sharma, and Arvind Kumar Gupta*

Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar-140001, Punjab, India

(Received 6 July 2018; revised manuscript received 11 January 2019; published 7 March 2019)

Motivated by the recent experimental observations on motor induced cooperative mechanism controlling the
length dynamics of microtubules (MTs), we examine how plus-end-targeted proteins of the kinesin family
regulate MT polymerization and depolymerization routines. Here, we study a stochastic mathematical model
capturing the unusual form of collective motor interaction on MT dynamics originating due to the molecular
traffic near the MT tip. We provide an extensive analysis of the joint effect of motor impelled MT polymerization
and complete depolymerization. The effect of the cooperative action is included by modifying the intrinsic
depolymerization rate. We analyze the model within the framework of continuum mean-field theory and the
resultant steady-state analytic solution is expressed in terms of Lambert W functions. Four distinct steady-state
phases including a shock phase have been reported. The significant features of the shock including its position
and height have been analyzed. Theoretical outcomes are supported by extensive Monte Carlo simulations. To
explore the system alterations between the regime of growth and shrinkage phase, we consider kymographs
of the microtubule along with the length distributions. Finally, we investigated the dependence of MT length
kinetics both on modifying factor of depolymerization rate and motor concentration. The overall extensive study
reveals that the flux of molecular traffic at the microtubule plus end initiates a cooperative mechanism, resulting
in significant change in MT growth and shrinkage regime as also observed experimentally.
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I. INTRODUCTION AND BACKGROUND

Cells being the underlying units of living organisms are
often called the “building blocks of life.” They are capa-
ble to carry out specialized functions including movement
of substances across the cell membrane, cell division, and
protein synthesis [1]. These functions depend on progressive
microscopic processes and are robustly out of equilibrium
due to a continuous supply of energy. The efficient delivery
of critical cargoes to specific locations is essential for many
cellular functions and occurs essentially in all eukaryotic cells
[2]. The cytoskeleton network, comprising of microtubule
(MT) filaments, plays a vital role in cellular trafficking. It
aids as a road map for several kinds of mobile biological
nanomachines, namely, the cytoskeletal motors such as ki-
nesin, dynein, and myosin to walk along the filaments while
carrying intracellular cargo vesicles from the site of supply
to the site of demand [3–7]. Along with directed motion,
due to finite processivity, molecular motors can detach from
the filament to the surroundings and diffusing motors from
the vicinity can also approach and attach to a site of the
filament [8].

Microtubule, a type of cytoskeletal filament, is an intracel-
lular structure that determines cell shapes and controls various
kinds of essential movements in cells including mitosis [9],
cytokinesis [10], and intracellular transport [11]. These are
polymers with basic subunits α/β-tubulin of 8-nm length,
that spontaneously gather along with their long axis into a
microtubule of relatively 25 nm of diameter [12]. Generally,
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12–14 of these protofilaments wrap into a helical cylinder
known as a microtubule. The dissimilarity of the α-β dimer
subunit results in two structurally distinct ends of MT: the plus
end and the minus end [13].

Structurally, MTs are the stiffest component of the cy-
toskeleton network displaying a complex dynamic instability,
featured by a stochastic swapping within phases of continuous
growth (polymerization) or rapid shrinkage (depolymeriza-
tion) [14–16]. MTs grow and shrink with different kinetic
rates for both polymerization and depolymerization dynamics
from plus and minus end simultaneously [17]. Since micro-
tubules are engrossed in a wide variety of requisite cellular
operations, proper microtubule length regulation by certain
cellular mechanisms is essential to expedite these tasks. Sev-
eral in vitro and in vivo investigations and experiments reveal
that these mechanisms are strongly influenced by complex
actions including guanosine triphosphate (GTP) hydrolysis
[15,18], mechanical forces [19], and microtubule associated
proteins [20]. Regulation of such actions probably controls the
length dynamics of the microtubules.

One of the characterized cellular factors that regulate MT
dynamics is different molecular motors and various families
of MT-associated proteins [21]. Among these, motors in the
kinesin-8 family (Kip3p) strongly influence the MT poly-
merization dynamics and are crucial regulators of its length
kinetics [20]. In general, it is observed that kinesin-8 restrain
MT growth by inducing switching of MTs from growth to
shrinkage phase [22]. After attaching strongly at a random
site on a microtubule, being highly processive plus-end (tip)
directed motor, the proteins proceed toward the plus end
and exhibit a long run length. Recent experiments [20,22]
and theoretical work [23] revealed their tip depolymerization
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action accomplished by the stacking of motors along the MT.
The significant outcome of these studies is that the longer MTs
depolymerize rapidly in comparison to shorter ones, featuring
a length-dependent activity. A parallel length-dependent con-
trol of MT dynamics by kinesin-5 motors have been noted
in in vivo analysis [24]. This length-dependent depolymer-
ization along with polymerization leads to microtubule length
control.

To understand the biological relevance of molecular mech-
anisms on MTs and to examine the transport phenomena,
a paradigmatic model, namely, totally asymmetric simple
exclusion process (TASEP) [25], has become a classical
model for studying self-driven out-of-equilibrium systems.
TASEP models have been extensively used to study a large
number of biological and physical systems, ranging from
intracellular transport and gene transcription to vehicular and
pedestrian dynamics [26]. Despite their simplicity, TASEPs
have successfully revealed a number of complex nonequilib-
rium phenomena [27–29]. It is a stochastic model considering
particle movement along “tracks” or “trails.” These tracks are
mimicked by a one-dimensional lattice, on which particles
progress in preferred direction obeying a hard-core exclusion
principle with a certain preassigned set of rules. The particles
enter the lattice at one end and unless obstructed by other
particles, they hop toward the opposite end and, eventually,
leave the lattice. In addition, particles can attach and detach to
and from the lattice at bulk sites [Langmuir kinetics (LK)]
[30]. A few TASEP based studies have been conducted to
understand the regulatory mechanisms of length control in-
cluding the interplay between the polymerization kinetics and
motor induced depolymerization. In this direction, several
extensions of single lane exclusion processes with particle
induced polymerization coupled with LK and without LK
has been studied extensively [23,31–36]. Klein et al. [37]
investigated a single lane exclusion process considering both
sided hopping rules along with depolymerization. The study
revealed that under certain conditions, motors dynamically ac-
cumulate at the filament ends. Later, a single lane TASEP with
LK has been investigated to visualize the interplay between
both MT polymerization and depolymerization [38,39]. In the
context of MT dynamics at both the ends, Johann et al. [40]
proposed a single lane TASEP-LK model with polymerization
and depolymerization at different ends to study the effect of
the motor-induced depolymerization. Further, few researchers
have also studied length regulation under processive (non-
processive) depolymerization with bidirectional hopping rules
[41,42].

Interestingly, the leading in vivo and in vitro experimen-
tal studies of Kip3p proteins highlighted a surprising find-
ing [20,22]. It suggested that the motors act cooperatively
to induce length-dependent MT depolymerization. When an
individual Kip3p molecule reaches unoccupied MT tip, it
stands there for around half a minute. During this time,
Kip3p molecule removes terminal dimer partially and then
stays bounded until a neighboring Kip3p molecule from back
knocks it down, resulting in complete tip removal. This coop-
erative interaction leads to a depolymerization rate that is pro-
portional to the number of motors near to the microtubule end
and is liable for the length dependence of depolymerization.
In contrast to prior theoretical models, our model incorporates

more realistic cooperative motor actions. In this work, we
will show that this affects system dynamics significantly and
is essential for the regulation of MT length dynamics under
polymerization and flux-dependent depolymerization [22].

Besides, our model is different than those studied in the
past as following. In [23,37], polymerization is not considered
while in [32] depolymerization is not taken up. Similarly,
many studies [31,35,36,38–40] have considered spontaneous
or inhibition polymerization with or without depolymeriza-
tion. But, due to the lack of experimental knowledge on
polymerization process in the presence of kinesin-8 at MT tip,
past theoretical studies have hypothesized this process [38].
Therefore, we have adopted particle induced polymerization
with depolymerization to fill this gap and to visualize if
we can obtain any new physics. Moreover, none of the past
studies [23,31–42] have considered cooperative motor action
which eventually leads to flux-dependent depolymerization
with polymerization, thereby making the proposed work more
general in comparison to similar studies in the past.

Motivated by an unusual form of motor action to collec-
tively cut back the length of the microtubule, as a first step
in the direction, we formulated a TASEP based molecular
mechanism considering the effect of cooperative interactions
originating due to the molecular traffic near the plus end on
MT dynamics. Notably, we have not considered the dynamics
at the minus end as their rates are very small in comparison
to those at the plus end [43]. We have especially examined
the joint effect of motor stimulated MT polymerization, where
MT growth is possible if the motor at the MT tip disassociates
from the filament and complete depolymerization induced by
collective motors on MT dynamics. The effect of cooperative
interactions is examined by modifying the depolymerization
rate based on the configuration of nearest neighboring sites
[20,22]. It is significant to mention here that primarily to
examine the cooperative motor action to regulate MT length
alteration, we ignore spontaneous polymerization and depoly-
merization at this stage. This proposal enables us to study the
impact of interactions on the complex dynamical processes
including rich dynamics of MT length. The key motive is
to analytically explore the qualitative as well as quantitative
control of interactions on the length dynamics. The proposed
framework gives some insight not only in understanding how
collective motors can affect and control MT length, but also
toward the enhancement of one’s insight into various nonequi-
librium systems present in nature.

The paper is organized as follows. The model with all
the relevant parameters is defined in Sec. II. Further, the
mean-field framework is presented in Sec. III. Several results
and discussions on significant parameters including phase
diagrams, shock dynamics, and microtubule length dynamics
based on theoretical and simulation studies are provided in
Sec. IV. Finally, the results along with the future scope of the
proposed system are summarized in Sec. V.

II. MINIMAL MODEL

We characterize the biological trails network as lattices:
α-β dimer subunit as a site and plus-end-directed proteins
moving along these lattices as particles. In particular, as-
suming individual protofilament of a MT as an independent
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and noninteracting entity, we represent a protofilament as a
semi-infinite one-dimensional lattice of length L with N sites,
labeled i = 1, . . . , N , as depicted in Fig. 1. Here, on account
of dynamic length behavior of MT, N is not constant and the
lattice spacing ε = L/N , length of a tubulin dimer (≈8.4 nm),
is defined in such a way that it remains fixed for any value
of N and L. The particles are distributed under the hard-core
exclusion principle, which means that each lattice site can be
either empty or occupied by exactly one particle. The state of
the system is characterized by a set of occupation numbers,
which indicate the spatial accumulation of the particles on
the lattice. Distinctively, τi (i = 1, 2, 3, . . . , N ) corresponds
to the occupation number of a particle at ith lattice site, taking
values τi = 0 for empty and τi = 1 for occupied site. For
each time step, a lattice site i is randomly chosen and particle
hopping takes place with a constant rate v (corresponding
to relative 6.35 steps per second as from experimental data
[22]), as per random-sequential update rules. The dynamical
behavior of the defined system can be expressed in terms of
the progression permitted for the particles according to the
following dynamical rules.

(i) At boundary on the right (i = N), denoted by minus
end, particles are injected into the lattice with a rate α

provided τN = 0. If τN = 1 and τN−1 = 0, then the particle
moves from site N to site N − 1 with a rate v. If τN = 1 and
τN−1 = 1, no hopping occurs from the right boundary.

(ii) For 1 < i < N , the particles symmetrically hop to
adjacent empty site from right to left at rate v, and interact
via hard-core repulsion. Along with directed motion, we addi-
tionally consider the interaction of particles with surroundings
through LK process. Molecular motors present at a constant
concentration c are assumed to randomly attach from the
surrounding environment to empty lattice site with a rate cωa.
Once attached, these motors move toward the plus end with
the same hopping rate v. Additionally, the particle at the ith
site (i = 2, 3, . . . , N − 1) can also detach with a rate ωd ,
independent of c.

(iii) At boundary on the left (i = 1), referred as plus end,
we consider MT dynamics that originate due to the interaction
of molecular motors with the plus-end tip. When a particle
progressing toward left from right reaches the tip, MT poly-
merizes with rate γ , and the particle detaches from the lattice
[32] [Fig. 1(a)]. It is important to mention here that due to
lack of sufficient experimental knowledge on polymerization
process in the presence of kinesin-8, past theoretical studies in
the framework of TASEP have hypothesized this process [38].
But, experimental studies suggest that another motor from ki-
nesin family, namely kinesin-5, promotes the polymerization
and two different motors from a same group may behave in
a similar way [44]. Besides, past studies have mainly focused
on spontaneous polymerization, therefore, inspired by these
facts, we have chosen particle induced polymerization for the
sake of filling this gap and to observe its effect on the system
dynamics. Further, motivated by recent experiments on coop-
erative depolymerization act [20,22], we assume that when a
motor arrives at the MT tip, it binds stably to the terminal
dimer [Fig. 1(c)] and stands there until an incoming particle
bumps into this paused molecule. This leads to the complete
dissociation of both the terminal dimer and motor with an
accelerated rate δlωD [Fig. 1(b)], resulting in shrinkage of the
lattice. We incorporated the observed collective dynamics in
the proposed mathematical system using parameter l which
depends on the configuration of the nearest neighboring sites.
Here, l is a positive integer representing the strength of the
modifying factor δ > 1 of intrinsic noncooperative depoly-
merization rate ωD. The modified depolymerization dynamics
at the occupied MT tip takes into account the configuration of
two nearest neighboring sites according to the following rules:

(1) If the site adjacent to the tip is empty, complete re-
moval of the plus-end tip is not possible due to lack of direct
interaction, as evidenced from the experiments [22], resulting
in absence of depolymerization [Fig. 1(c)].

(2) If τ2 = 1 and τ3 = 0, l takes the value 1 and
complete depolymerization is triggered. For this scenario,

(a) (b) (c)

FIG. 1. Schematic representation of the model. Allowed transitions are shown by arrows. Crossed arrows indicate impermissible
transitions. (a) MT growth dynamics, (b) knockdown mechanism resulting in accelerated detachment of plus-end bound motor by incoming
motors, (c) paused molecule before knockdown.
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FIG. 2. Knockdown mechanism explaining the accelerated de-
polymerization dynamics at the occupied MT tip taking into account
the configuration of (a) adjacent neighboring site, (b) two nearest
neighboring sites.

noncooperative depolymerization rate ωD is modified by a
factor δ and the accelerated removal rate becomes δωD

[Fig. 2(a)].
(3) If τ2 = 1 and τ3 = 1, modified depolymerization rate

is adapted as δ2ωD due to l = 2, as exhibited in Fig. 2(b).
The above mentioned dynamical rules are based on the in

vivo and in vitro experiments for flux-dependent accelerated
depolymerization [22] together with hypothesized particle
induced polymerization [32]. Note that we have not consid-
ered the spontaneous polymerization and depolymerization as
experiment reveals that these processes, spontaneous depoly-
merization, in particular, take place with a very slow rate,
thereby, do not affect steady-state system dynamics signifi-
cantly [22,32]. However, an extension of the presented model
is possible on the similar lines by incorporating the remaining
cases of polymerization and depolymerization processes in
the absence of the motor at the tip and has been discussed in
Appendix A. It has been found that the additional processes
only increase the complexity of the model and do not affect
the system dynamics qualitatively, which motivated us to ig-
nore them in the further analysis and include them separately
to avoid the lengthy calculations.

Besides, in the limiting case of ωD = 0 and c = 1, we
retrieve the model studied in the literature [33]. The above
considerations make the proposed model more general and
realistic over the existing models [23,38] accounting for the
interplay between MT dynamics and microtubule associated
motors. It is notable to mention that in the following work, we
consider v = 1 to set the basic timescale as proposed in the
literature [33,38,39].

III. MEAN-FIELD ANALYSIS AND
STEADY-STATE BEHAVIOR

Now, we analyze the proposed system obtained from the
mean-field description and examine its behavior in the steady
state. In this direction, we derive the resulting kinetic equa-
tions in terms of the mean site density for the evolution
of occupancy of particles. Here, the stochastic processes
defined above are included by considering the dynamics in
a comoving frame with respect to plus-end tip. When the

polymerization takes place, the ith site label is updated by
(i + 1)th, while for depolymerization it modifies to (i − 1)th.
Thus, in case of lattice growth (shrinkage), the change in
density at site i is the net result of particles entering from the
site on the right (left), departing to the site on the left (right).
For i � 4 (bulk of lattice), we obtain

d〈τi〉
dt

= 〈τi+1(1 − τi )〉 − 〈τi(1 − τi−1)〉 + cωa〈1 − τi〉
−ωd〈τi〉 + γ 〈τ1(τi−1 − τi )〉
+ωD[δ〈τ1τ2(τi+1 − τi )〉 + δ2〈τ1τ2τ3(τi+1 − τi )〉],

(1)

where 〈. . .〉 denotes the statistical average. Here, the first two
terms on the right hand side represent forward hopping from
right to left obeying hard-core exclusion principle. The third
and fourth terms describe the corresponding gain and loss
terms arising due to attachment and detachment processes.
Capturing the interplay between the MT tip and motors,
the last two terms corresponding to γ and ωD exemplify
the role of polymerization and depolymerization dynamics,
respectively.

Further, due to the consideration of accelerated depolymer-
ization on account of two nearest neighboring sites, second
and third in particular, the particle density at the sites i = 1, 2,
and 3 in the comoving frame of the tip can be computed as

d〈τ1〉
dt

= 〈τ2(1 − τ1)〉 − γ 〈τ1〉,
d〈τ2〉

dt
= 〈τ3(1 − τ2)〉 − 〈τ2(1 − τ1)〉 − γ 〈τ1τ2〉

+ cωa〈1 − τ2〉 − ωd〈τ2〉 + δωD〈τ1τ2τ3〉
− δωD〈τ1τ2〉,

d〈τ3〉
dt

= 〈τ4(1 − τ3)〉 − 〈τ3(1 − τ2)〉 + γ 〈τ1τ2〉 − γ 〈τ1τ3〉
+ cωa〈1 − τ3〉 − ωd〈τ3〉 + δωD〈τ1τ2τ4〉
− δωD〈τ1τ2τ3〉 + δ2ωD〈τ1τ2τ3τ4〉 − δ2ωD〈τ1τ2τ3〉.

(2)

At the fixed right end of the lattice, i = N , the occupancy of
particles evolve according to

d〈τN 〉
dt

= α〈(1 − τN )〉 − 〈τN (1 − τN−1)〉. (3)

Ignoring particle spatial correlations and factorizing the cor-
responding correlation function as product of their averages,
we have

〈τiτ j〉 = 〈τi〉〈τ j〉. (4)

For large system size N −→ ∞ and small lattice constant
ε = L/N −→ 0 with finite Nε, we can derive the continuum
limit by coarse graining a discrete lattice with continuous
variable x = iL/N and rescaling the time as t ′ = tL/N . For
simplicity, we fix the length of the lattice as L = 1 restricting
the variable x in the range [0, 1]. Since the nonconserving
processes in the system occur at lower rates in comparison
to particle conserving processes, the system attains steady
state locally due to conservative dynamics only. Therefore, the
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adopted time rescaling is useful to understand the engagement
between particle conserving and nonconserving dynamics
[45]. Besides, to observe competition between boundary and
bulk dynamics, we rescale LK rates in such a way that the
original rates decrease with an increase in system size N as
proposed in the literature [46]. In this direction, we consider

	a = ωaN,

	d = ωd N. (5)

In the continuum limit, replacing 〈τi〉 by a continuous variable
ρi ∈ [0, 1] and retaining the terms up to O(N−2) in Taylor’s
series expansion we obtain

ρi±1 = ρi ± 1

N

∂ρi

∂x
+ 1

2N2

∂ρ2
i

∂x2
+ O

(
1

N3

)
. (6)

Without loss of generality, dropping subscript i as the system
is free from any kind of spatial inhomogeneity and denoting
t

′
by t , the continuum mean-field equation describing steady-

state bulk densities can be given as

∂ρ

∂t
= E

∂2ρ

∂x2
+ ∂J

∂x
− (c	a + 	d )ρ + c	a, (7)

where

E = ε

2
[1 + γ ρ1 + δωDρ1ρ2(1 + δρ3)] (8)

and

J = ρ(1 − ρ) − [γ ρ1 − δwDρ1ρ2(1 + δρ3)]ρ. (9)

Here, J is the bulk current in the lattice with respect to
the comoving frame. Similarly, in the continuum limit the
evolution equations of density at sites 1, 2, and 3 are given
by

dρ1

dt
= ρ2(1 − ρ1) − γ ρ1,

dρ2

dt
= ρ3(1 − ρ2) − ρ2(1 − ρ1) − γ ρ1ρ2 + c	a(1 − ρ2))

−	dρ2 + δωDρ1ρ2ρ3 − δωDρ1ρ2,

dρ3

dt
= ρ4(1 − ρ3) − ρ3(1 − ρ2) + γ ρ1ρ2 − γ ρ1ρ3

+ c	a(1 − ρ3) − 	dρ3 + δωDρ1ρ2ρ4 − δωDρ1ρ2ρ3

+ δ2ωDρ1ρ2ρ3ρ4 − δ2wDρ1ρ2ρ3. (10)

Additionally, the density at the Nth site evolves as

dρN

dt
= α(1 − ρN ) − ρN (1 − ρN−1). (11)

In the limit of ε → 0, the continuum steady-state equation
assumes the form

∂ρ

∂x
= (c	a + 	d )ρ − c	a

1 − 2ρ − γ ρ1 + δωDρ1ρ2(1 + δρ3)
, (12)

where ρ1, ρ2, and ρ3 can be obtained by solving the system
in Eq. (10) in steady state taking an approximation ρ3 = ρ4.
Due to the involved complexity in the above system, we first
attempt to find an explicit solution for a special regime where

the various rates satisfy the condition

1 − γ ρ1 + δωDρ1ρ2(1 + δρ3)

2
= c	a

c	a + 	d
. (13)

The assumption in Eq. (13) enables us to compute steady-state
average density ρ explicitly in terms of x and other model
parameters. For the above choice of constraints, the steady-
state equation for the bulk reduces to[

ρ − c	a

c	a + 	d

][
dρ

dx
+ B

]
= 0, (14)

where B = c	a+	d
2 .

The solution of the above equation leads to mean-field
density profiles for the low density (ρ < 0.5) (LD), constant
density (CD), and high density (ρ > 0.5) (HD) phases as

ρ(x) =
⎧⎨
⎩

ρHD(x) = ρ3 − Bx,
ρCD(x) = 1−γ ρ1+δωDρ1ρ2(1+δρ3 )

2 ,

ρLD(x) = α + B(1 − x).
(15)

These mean-field expressions correspond to a linear solution
for the case of the LD and HD phases and a homogeneous
density profile for the case of the CD phase. Please see
Appendix B for proof of the above solution.

Although simpler to analyze, the previous case in Eq. (13)
is somewhat particular as it depends upon a specific set of
parameters. Generally, one would not expect Eq. (13) to
hold always. Alternatively, to analyze the system dynamics
completely and to obtain full solution of Eq. (12), we derive
its explicit solution which has been obtained in form of a
special function, namely, Lambert W function [47]. In this
direction, we consider a rescaled density in the form as
follows:

σ (x) = −2ρ + 2K
K+1

−2K
K+1 + [1 − γ ρ1 + δwDρ1ρ2(1 + δρ3)]

, (16)

where K = c	a/	d . Since the density ρ(x) is restrained to
the interval [0, 1], the rescaled density σ (x) can have val-
ues within the interval [−2K

H , 2
H ], where H = K − 1 + (1 +

K )[γ ρ1 − δwDρ1ρ2(1 + δρ3)]. Clearly, H takes positive val-
ues for the adopted set of parameters. For the above transfor-
mation, Eq. (12) simplifies to

∂xσ (x) + ∂x ln |σ (x)| = −	d (K + 1)2

H
. (17)

Integrating Eq. (17) outturn (for details see Appendix C)

|σ (x)|exp[σ (x)] = Y (x), (18)

where Y (x) is given by

Y (x) = |σ (x0)| exp

[
σ (x0) − 	d (K + 1)2

H
(x − x0)

]
, (19)

and σ (x0) is the value of the density as computed from
Eq. (16) at the boundary point x0. In particular, Y (x) that
match the boundary condition on the left or right end of the
system can be written as

Yρ3 (x) = |σ (0)| exp

[
σ (0) − 	d (K + 1)2

H
x

]
, (20)
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FIG. 3. The real branches W0 and W−1 of Lambert W function.

Yα (x) = |σ (1)| exp

[
σ (1) − 	d (K + 1)2

H
(x − 1)

]
, (21)

where σ (0) and σ (1) can be computed in terms of kinetic
rates using Eq. (16) and boundary conditions ρ(0) = ρ3 and
ρ(1) = α. As inferred from Eqs. (1) and (2), here x = 0
signifies the left boundary represented by third lattice site
while x = 1 exhibits the right end of the lattice. Relations
in Eq. (18) appear in various references such as population
growth and hydrodynamics [47]. This type of equation has an
explicit solution written in terms of a special function called
Lambert W function [47] as

σ (x) = W (Y (x)), σ (x) > 0

σ (x) = W ( − Y (x)), σ (x) < 0. (22)

The Lambert W function is a multivalued function with two
real branches (see Fig. 3), which we refer to as W0 and W−1.
The branch of W is selected based on the rescaled density σ .
For σ ∈ [−2K

H ,−1] the suitable solution is W−1(−Y ), while
for σ ∈ [−1, 0] the relevant solution is obtained by W0(−Y ).
Eventually, for σ belonging to [0, 2

H ], we have W0(Y ).
The obtained solutions for the adopted parameters, using

left and right boundary conditions, are given by

ρHD(x) = 1

2

[
2K

K + 1
[1 + W0[−Yρ3 (x)]] − W0( − Yρ3 (x))

× [1 − γ ρ1 + δωDρ1ρ2(1 + δρ3)]

]
(23)

and

ρLD(x) = 1

2

[
2K

K + 1
[1 + W−1( − Yα (x))] − W−1( − Yα (x))

× [1 − γ ρ1 + δωDρ1ρ2(1 + δρ3)]

]
. (24)

Here, as mentioned, ρLD and ρHD denote the low and high
density solutions obtained by right and left boundaries,
respectively.

Additionally, to validate our theoretical findings, we have
provided an alternative way to obtain the implicit solution of
Eq. (12) in Appendix D.

TABLE I. Parameter values in experiment [22,23,38].

Parameter Value

Dimer length [23] 8.4 nm
Hopping rate [22,38] v = 6.35 steps s−1

Attachment rate [22,23,38] ωa = 24 (nM min μm)−1

Detachment rate [23] ωd = 7.6 × 10−4 s−1

Concentration c in nM

IV. METHODS AND MATERIAL

The model parameters employed in the proposed work are
based on the available in vivo and in vitro studies on motor
transport in biological systems [22]. The details of parameters
referred in experimental studies with their units are provided
in Table I [22,23,38]. Besides, the parameters used in the
theoretical model are summarized in Table II. Apart from
certain disclosed specifications for transport mechanisms on
the MT, the parameters detailing the polymerization rate γ ∈
[0, 1] and the depolymerization rate wD ∈ [0, 1] are yet to be
approximated from experiments [38]. Based on the underlying
biological outcomes, the modifying factor δ > 1 of intrinsic
noncooperative depolymerization rate wD is taken as 1.1 [22].

In order to validate our theoretical findings, we simulta-
neously developed a kinetic Monte Carlo simulation for the
proposed model in Fig. 1. The simulated filament includes
an array of binary numbers representing τi (i = 1, . . . , N ).
To sample the filament, at each time step, a site is chosen at
random and a transition is attempted with the rates defined in
Sec. II. One time step comprises of N such updates, so that,
on an average, a lattice site is altered once per time stamp.
Here, keeping our time unit constant, the number of updates
per time step increases with increase in N . Note that during
one time stamp the system may increase or decrease in length.
As a consequence, if polymerization takes place, the ith site is
updated as (i + 1)th site. Similarly, if the depolymerization
occurs, the ith site transforms into (i − 1)th site and lattice
shrinks by one site. In principle, this would affect our unit of
time, however, such an increase or decrease, typically of one
lattice unit, will be insignificant in the limit of N → ∞.

Our desire is to allow the system to reach a steady state
and calculate significant quantities including phase diagrams,
density profiles, and lattice length distributions. A problem
with the adopted simulation technique is that as N → ∞,

TABLE II. Quantification of parameter values (unitless) used in
the proposed model as obtained from similar studies in literature
[22,23,38].

Parameter Value

Hopping rate [38] v = 1
Attachment rate [22,23] 	a = 5.3 × 10−4

Detachment rate [23] 	d = 7.6 × 10−4

Polymerization rate γ ∈ [0, 1]
Depolymerization rate ωD ∈ [0, 1]
Entry rate α ∈ [0, 1]
Modifying factor [22] δ > 1
Concentration c > 1
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computational cost increases. To minimize this problem, we
have considered only a fixed length portion of the lattice in
a comoving frame and simulations have been performed for
109–1010 time steps after ignoring initial 5% time steps. Also,
the steady-state densities are calculated by averaging over an
interval of 10N in the reference of the comoving frame of
the tip.

V. RESULT AND DISCUSSIONS

A. Phase diagram and density profiles

To understand the steady-state behavior and further to
explore the effect of the flux of molecular traffic on the system
dynamics, we derive phase diagrams for a range of concen-
trations in the controlling parameter space (α, γ ). Figure 4
shows the composition of the phase plane, clearly indicating
four distinct steady-state phases including low density (LD),
high density (HD), mixed low-high (LH), and shock (S)
phases. For the sake of clarity, we determine the expressions
for the phase coexistence lines among the observed phases.

Phase coexistence line between LD and HD phases. This
can be obtained by using the expressions of current J from
Eq. (9) and equating the current for LD phase with the current
for HD phase at x = 1, so that JLD(1) = JHD(1). We thus have

ρLD(1)[1 − ρLD(1)] −
(

H + 1 − K

K + 1

)
ρLD(1) = JHD(1),

(25)

where JHD(1) = ρHD(1)[1 − ρHD(1)] − ( H+1−K
K+1 )ρHD(1).

Here, ρLD(1) and ρHD(1) are the densities at the right
boundary in low and high density phases, respectively, and
are obtained from Eqs. (16) and (22) with suitable Lambert W
function branch as discussed in the previous section.

Phase boundary between LD and LH phases. We deter-
mined the phase boundary between low and low-high density
phases by equating the current for LD phase with the current
for HD phase at x = 0, i.e., JLD(0) = JHD(0). Using the above
condition, we have

ρLD(0)[1 − ρLD(0)] −
(

H + 1 − K

K + 1

)
ρLD(0) = JHD(0)

(26)

with JHD(0) = ρHD(0)[1 − ρHD(0)] − ( H+1−K
K+1 )ρHD(0). In

particular, ρLD(0) and ρHD(0) are densities at left boundary in
low and high density phases, respectively. Similarly, one can
have the phase boundaries shared by S phase with LD and
HD phases, respectively. It is to be noted that the location of
the shock is determined by equating the obtained current for
the LD and HD phases.

Distinctively, as evident from Fig. 4, the increasing concen-
trations show both qualitative as well as quantitative changes
in the phase diagram. For significantly smaller values of con-
centrations, until c1 ≈ 30, three phases including LD, HD, and
S phases are observed with dominating LD phase as displayed
in Fig. 4(a). Physically, for higher values of polymerization
rate, growth process accelerates resulting in the conversion
of particles into empty sites. At this stage, along with the

FIG. 4. Phase diagrams for varied c as (a) 20, (b) 100, (c) 500,
(d) 2000 with N = 1000, ωD = 0.2, 	a = 5.3 × 10−4, and 	d =
7.6 × 10−4. Solid lines denote phase transition for δ = 1.1, while
dotted lines are those obtained for δ = 1.5. Color code running from
orange to red represents the transition from shrinkage to growth
phase as calculated from Eq. (27) for δ = 1.1.

prevailing scarcity of the particles in the system on account
of low concentration, low density phase dominates. Prior to
c1, no qualitative changes have been observed in the phase
diagram except the repositioning of the phase boundaries due
to enlargement and shrinkage of various existing phases. The
LD phase shrinks, while the HD and S phases expand due to
increase in motor concentration. With a further increase in c,
beyond c1, along with the preexisting phases, one observes the
emergence of new mixed LH phase in the locale of LD and
HD phases. As an outcome of this, the shifting of the phase
boundaries has been observed resulting in shrinkage of the
LD phase and expansion of the HD phase. The noticed struc-
tural changes have been exhibited for c = 100 in Fig. 4(b).
The appearance of the phase at this stage can be physically
attributed to the increased number of particles attaching from
the background to the lattice, resulting in some part of the bulk
to be in low density while the remaining part to have high den-
sity. Besides, the observed continuous phase transitions from
LD to HD phase is exhibited in Fig. 5(a). As evident from this
figure that for a comparatively lower value of α, the LD profile
emerges which converts into a shock with increase in entry
rate. With further increment in α due to more particles on MT
transition of shock phase into high density phase has been
observed as shown in Fig. 5(a). Similarly, Fig. 5(b) displays
the phase transition from the S phase to LH phase with respect
to γ . Initially, for lower values of γ there is a shock phase
which transits into a HD phase with an increase in γ . But,
further increase in γ reduces the number of motors on MT
due to particle induced polymerization leading to conversion
of HD phase into LH phase. No significant change is observed
in the phase diagram until c2 ≈ 220 at which the mixed LH
phase ceases to exist. With more increase in concentrations,
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FIG. 5. Phase transitions from (a) low density (LD) to high
density (HD) phase for γ = 0.18 with varied α as 0.15, 0.33, and
0.55, (b) S to LH phase for α = 0.33 with varied γ = 0.18, 0.26,
and 0.40. These values are for curves from bottom to top in (a) with
N = 1000, ωD = 0.20, c = 100, 	a = 5.3 × 10−4, 	d = 7.6 × 10−4,
and δ = 1.1. In (b) other parameters are same as for (a) but dashed
red and pink color curves are for γ = 0.18 while solid yellow and
blue color are for γ = 0.26 and 0.40, respectively. Shock profile in
both (a) and (b) shown in black color is obtained by solving Eq. (7)
numerically and all other profiles are obtained using a suitable branch
of Lambert W function as discussed in Sec. III.

as expected due to the abundance of particles on the lattice,
the region containing LD phase contracts, while the region
of HD and S phases expands [see Fig. 4(c)]. Afar c3 ≈ 750,
the LD phase disappears, altering the phase boundaries due
to expansion and shrinkage of the existing phases. The phase
diagram for c = 2000, capturing the above noticed changes
more apparently, is shown in Fig. 4(d). The topology of the
phase diagram remains preserved for further values of c up to
12 000 except transitions in domain boundaries beyond which
S phase disappears. Note that the HD (LD) phase expands
(shrinks) monotonically, while the region of S and LH phase
exhibits nonmonotonic behavior with respect to increasing c.

Moreover, the alteration in concentrations has generated
notable differences in the regime of growth and shrinkage
phase. Precisely, as already noted in the previous section,
a mean-field description of the length change of the MT is
determined by

∂N

∂t
= γ ρ1 − δωDρ1ρ2 − δ2ωDρ1ρ2ρ3. (27)

Here, the first term on the right hand side contributes as
a gain term which is responsible for lattice growth, while
the remaining terms representing the loss account for the
lattice shrinkage. Figures 4(a)–4(d) display the region of MT
shrinkage and growth with varied c by means of a color code
running from orange (shrinkage) to red (growth) representing
the increase in MT length for δ = 1.1. As expected, the
increase in concentrations extends the MT shrinkage region,
revealing an interesting outcome of accelerated depolymeriza-
tion dependent on the concentration of motors on MT. Physi-
cally, the processive nature of the motors increases molecular
traffic at the microtubule plus end for higher concentrations.
This motor blockage initiates a cooperative action resulting in
speedy depolymerization, which overly widens the regime of
MT shrinkage. Moreover, it is significant to mention here that
in contrast to previous study [23], in the proposed framework

(a)

0 0.2 0.4 0.6 0.8 1
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1
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FIG. 6. Density profiles of (a) LD (ρ < 0.5), (b) HD (ρ > 0.5),
(c) LH, (d) S phases with (a) α = 0.22, γ = 0.22, (b) α = 0.8, γ =
0.23, (c) α = 0.35, γ = 0.35, (d) α = 0.32, γ = 0.21; N = 1000,
ωD = 0.20, c = 100, 	a = 5.3 × 10−4, 	d = 7.6 × 10−4, and δ =
1.1. Solid and dotted lines denote profiles obtained from Lambert W
function while markers (squares) represent the Monte Carlo simula-
tion results. HD and LD profiles are captured by Lambert W branch
given in Eqs. (23) and (24) along suitable boundary conditions as
discussed in Sec. III, respectively. In (d), solid curve is obtained by
solving Eq. (7) numerically.

MT dynamics depends significantly upon the motor concen-
tration.

Further, we examined the effect of increasing modifying
factor δ on the system dynamics by means of dotted phase
boundaries for δ = 1.5 in Fig. 4. It is noteworthy to mention
that as the magnitude of δ increases, no qualitative change in
the phase diagram is seen except for shifting of phase bound-
aries. Moreover, no new phase emerges for higher values of δ

in the phase diagram.
In order to understand the system dynamics in steady

state, some typical density profiles representing masses of
particles progressing along the lattice are displayed in Fig. 6.
To validate the theoretical outcomes from continuum mean-
field equations, we have included the simulation results as
exhibited in Fig. 6. Here, high and low density profiles are
obtained by using Eq. (23) along with Eq. (24), respectively.
We further obtained full shock profile by solving Eq. (7) with
suitable numerical scheme along with two boundary condi-
tions ρ(0) = ρ3 and ρ(1) = α. As evident from the Figs. 6(a)–
6(d), the theoretical results obtained from mean-field theory
using Lambert W function correlates well with simulation
results. The visible variations are primarily because of the
significant correlations emerging in the system due to strong
cooperation among the first three sites, resulting in deviations
since the mean-field theory ignores correlations. Similar de-
ficiencies have already been discussed and reported in the
literature [34].
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(a) (b)

FIG. 7. (a) Shock position, (b) shock height for γ = 0.03 with
N = 1000, ωD = 0.20, c = 100, 	a = 5.3 × 10−4, 	d = 7.6 ×
10−4, and δ = 1.1. The shaded portion shows magnified region of
shock phase.

B. Shock dynamics

The distinctive feature of the proposed system is the
appearance of shock which has not been reported in the
earlier studies on microtubule length control including both
polymerization and depolymerization [38–40]. In contrast to
[23], in this study, shock phase emerges for smaller values
of c and persists for its higher values as well. We examine
the indistinguishable shock entities: shock position (xs) and
shock height (hs) with respect to α. It is significant to mention
here that the shock dynamics is not visualized with respect
to concentration since the phase plane changes significantly,
resulting in shifting of phases, with varied c (Fig. 4). The
shock position is computed by using the constancy of the cur-
rent across the shock, viz., ρ2

+ − ρ+ = ρ2
− − ρ−, where ρ+ =

limx→x+
s

ρ(x) and ρ− = limx→x−
s

ρ(x). Figure 7(a) shows the
shock position for a fixed γ for varied α. For smaller values
of α, until α ≈ 0.35, we encounter low density phase as
exhibited in Fig. 4(b). Later, with an increase in α, when
the LD region transits into S phase, shock travels linearly
toward right boundary resulting in an upward jump as seen in
Fig. 7(a). Further, for α > 0.4, on entering the HD region from
the S phase [see Fig. 4(b)], downward fall in shock position is
observed. The two discontinuities in Fig. 7(a) reveal two phase
transitions from LD → S and S → HD phase, respectively.
Moreover, we have also calculated the variations in the shock
height (hs = ρ+ − ρ− = 2ρ+ − 1) with respect to α along
lines of constant polymerization rate γ . Figure 7(b) shows
the height of shock with respect to α along constant γ . For
0.35 < α < 0.41, hs jumps discontinuously to a finite value
on entering the S region from the LD phase, whereas, at
the phase boundary between the HD and S phases, hs jumps
to zero discontinuously. As expected, shock height increases
continuously in the S regime.

C. Microtubule length dynamics

To figure out how the system switches between the phases
of growth and shrinkage, we consider kymographs of the
MT, which exhibit how the MT length and the motor density
progress with time. MC simulations show that the MT length
varies around a well-defined average value, as depicted in
Fig. 8. Specifically, the length dynamics is irregular with al-
ternate switching within elongation and shrinkage feature, in-

0 50 100

2

4

x 10
4

Position

T
im

e

0 50 100

2

4

x 10
4

Position

(a) (b) (c)

T
im

e

0 50 100
1
2
3
4
5x 10

4

Position

T
im

e

FIG. 8. Effect of motor concentration on kymographs and corre-
sponding length distribution exhibiting the MT dynamics with time
for (a) c = 20, (b) c = 50, (c) c = 180 with N = 100, α = 0.15, γ =
0.16, ωD = 0.20, 	a = 5.3 × 10−4, 	d = 7.6 × 10−4, and δ = 1.1
obtained from Monte Carlo simulations. Empty sites are shown in
cyan, occupied sites in red. P(N ) denotes probability density function
for length N . Note that kymographs are plotted by left aligning the
lattice.

dicating the dynamic nature of MT. Figures 8(a)–8(c) explore
the MT dynamics under the effect of cooperative interactions
for a range of motor concentrations c = 20, 50, and 180 with
the corresponding unimodal length distributions. As expected,
MT regulation is directly influenced by motor traffic. For
low concentration, hence, for the low density of particles,
polymerization predominates because of slow depolymeriza-
tion [Fig. 8(a)]. With further increase in concentration, we
recovered evident interplay between growth and shrinkage
phase resulting in an intermediate regime due to the significant
impact of depolymerization. Remarkably, during this sce-
nario, we observed intermittent dynamics of MT length with
random and frequent switching within growth and shrinkage
phase, shown in Fig. 8(b). The observation reveals an inter-
esting outcome of accelerated depolymerization dependent
on the concentration of motors on MT. Moreover, when the
motor concentration increases to larger values, strong enough
depolymerization dynamics to overcome MT growth due
to polymerization has been observed, resulting in dominant
shrinkage regime [Fig. 8(c)]. The above findings firmly point
toward a strong correlation between the depolymerization
dynamics and the density of the proteins. Qualitatively, this
action can be easily understood from the corresponding length
distributions in Figs. 8(a)–8(c). The increasing values of c re-
sult in smaller averages, hence accelerated depolymerization.
The overall scenario makes instinctive physical perception
that the concentration of the motors along MT influence each
other, thereby, affect its dynamics crucially in accordance with
the flux-dependent shrinkage as revealed in in vivo and in vitro
experiments [22].

Further, to analyze the importance of the interplay between
motor traffic and depolymerization dynamics at the MT tip,
Fig. 9 gives variation in MT length distribution for the pro-
posed model against varied concentrations. The increase in
motor flux initiates mutual cooperation among the particles,
hence, dominantly affects the depolymerization rate. Based
on the corresponding length distributions, it is evident that
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FIG. 9. Effect of the motor concentration on the steady-state
length distribution for various values of (a) c = 1000, (b) c = 3000,
(c) c = 5000 with α = 0.8, γ = 0.15, ωD = 0.20, 	a = 5.3 ×
10−4, 	d = 7.6 × 10−4, and δ = 1.1 obtained from Monte Carlo
simulations.

both average MT length and the distribution width decreases
with increase in motor intensity, signifying depolymerization
is accelerated with an increase in motor concentration as also
observed experimentally [22].

Now, to examine the effect of MT motor concentration on
length regulation, we explore the outcomes obtained from our
theoretical analysis (MF approximations) for the MT drift ve-
locity, with respect to the polymerization and the depolymer-
ization rates. Figures 10(a) and 10(b) exhibit the regimes of
MT growth and shrinkage as a function of polymerization and
depolymerization rates with varied concentration by means of
a color code. Variation from orange to red color represents
the increase in the MT length. The alteration in concentration
has generated notable differences for the distinct scenario. The
prevailing progression is that the region where MTs shrink is
enlarged with an increase in motor traffic. Physically, at high
concentrations, on account of the highly processive nature of
motors, the flux of molecular traffic at the microtubule plus
end increases. Such jamminglike situation initiates a coop-
erative mechanism resulting in accelerated depolymerization,
which drastically widens the regime of MT shrinkage.

FIG. 10. Drift velocity of the MT tip ∂N
∂t as a function of the poly-

merization and depolymerization rates for (a) c = 100, (b) c = 5000
with N = 1000, α = 0.8, 	a = 5.3 × 10−4, 	d = 7.6 × 10−4, and
δ = 1.1 as obtained from theoretical analysis. Color code ranging
from orange to red indicates the magnitude of the drift velocity.
Dashed white line indicates where the zero MT velocity as retrieved
from the analytical calculations, using Eq. (27).

Further, we take particular interest in analyzing the effect
of modifying factor δ > 1 on the system dynamics. In this
direction, Figs. 11(a) and 11(b) present the MT length dy-
namics [Eq. (27)] for varied δ in the controlling parameter
space (γ , ωD) and (α, c), respectively. Clearly, as anticipated,
the observed routine from Fig. 11(a) indicates that the regime
where MT shrink is extended with an increase in modifying
factor δ. Indeed, as examined from Fig. 11(b), increasing
motor traffic on MT due to enhanced concentration and en-
try rate results in dominating shrinkage domain similar to
Fig. 4, which further widens with raised δ on account of
accelerated depolymerization. Besides, predominantly to ex-
amine the relation between motor flux and depolymerization
dynamics, we plot the steady-state current in the α-c plane
in Fig. 11(c). As expected, Fig. 11(c) clearly reveals that the
lesser current corresponds to more depolymerization. This can
be understood as follows. Although increase in the number of
particles due to enhanced α and c leads to lesser current on the
microtubule on account of highly processive nature of motors,
the traffic near the MT tip increases, resulting in accelerated
depolymerization as reported in experimental study [22]. It is
noteworthy to mention that as evident from Figs. 11(b) and
11(c), drift velocity in the proposed model depends crucially
on concentration in contrast to that observed in the previous
study [23].

The outcomes of the accomplished model are in accor-
dance with the experimental observations reported in the
literature [22]. Our study not only captures the cooperative
motor action for depolymerization dynamics at the MT tip,
but is also useful to understand the cooperation between
the molecular motor and microtubule length dynamics, in
general. The overall scenario portraying the interplay between
motor traffic and MT kinetic at the plus end provides new
theoretical insights into the role of collective mechanism on
MT assembly and disassembly dynamics.

VI. SUMMARY AND CONCLUSION

In this work, we investigated how flux-dependent acceler-
ated depolymerization along with particle induced polymer-
ization can result in length control of biological filament net-
work. On a broader perspective, we constructed a stochastic
mathematical model capturing the collective mechanism of
the plus-end-directed motor traffic undergoing attachment-
detachment process on the MT dynamics. The dynamical
rules are motivated by well established molecular properties
of MT-associated proteins from kinesin family [22]. The
effect of the cooperative action is included by modifying
the depolymerization rate based on the configuration of two
nearest neighboring sites. To explore the system dynamics,
mean-field equations in the continuum limit are computed and
the resultant analytic solution is expressed in terms of Lam-
bert W functions. The theoretical outcomes are validated by
extensively performed Monte Carlo simulations. Additionally,
the steady-state dynamics is examined by exploring vital char-
acteristics including phase diagrams, density profiles, phase
transitions, and drift velocity.

The phase diagrams are derived in the parameter space
of (α, γ ) and the influence of cooperative motor action is

032411-10



COOPERATIVE MOTOR ACTION TO REGULATE … PHYSICAL REVIEW E 99, 032411 (2019)

FIG. 11. Effect of modifying factor δ on the system dynamics in (a) (γ , ωD ) parameter space for α = 0.8, (b) (α, c) parameter space
for γ = 0.22 as obtained from theoretical analysis with N = 1000, ωD = 0.20, 	a = 5.3 × 10−4, 	d = 7.6 × 10−4, and δ = 1.1. (c) Same
parameters as in (b). Color code ranging from orange to red indicates the magnitude of the drift velocity and current in (a), (b), and (c),
respectively, for δ = 1.1.

thoroughly investigated. We have categorized the phase di-
agrams in terms of motor concentration c. Four different
steady-state phases have been observed including two new
phases, namely, shock phase S and mixed phase LH. Although
the LH phase exists only for the intermediate value of c, how-
ever, shock persists for all values describing nonmonotonic
behavior of phase domains with respect to motor concen-
tration. Moreover, as revealed through theoretical analysis,
the existence of these two phases is one of the significant
outcomes of the proposed study although these phases have
not been reported experimentally and in previous similar
studies from literature [35,38,39]. Therefore, we hope that
by performing in vitro and in vivo experiments under well
controlled environments where the chosen polymerization and
depolymerization processes play an important role, traffic
jams by molecular motors might be observed. The presence
of shock has strong relevance in the proposed study which can
be explained as follows. It reveals that cooperative depolymer-
ization leads to accumulation of motors at plus end, leading
to traffic-jam-like situation, thereby making it a significant
phenomenon which acts like a bottleneck and affects the
motors motility. Additionally, the presence of shock indicates
that both polymerization and flux-dependent depolymeriza-
tion together produce a coexistence region which is a notable
feature of such nonequilibrium process. To explore the shock
phase further, based on the mean-field approach, we have also
analyzed the indistinguishable features of stationary shock
including its position and height.

Similar to the outcomes from the experimental studies,
our study discloses that the flux of molecular traffic impacts
the system dynamics crucially. With increase in the motor
concentrations, both qualitative and quantitative crucial topo-
logical changes are observed in the phase diagram, due to
the appearance and disappearance of existing phases. The
critical values of the concentration beyond which a specific
phase appears and disappears are also identified. We feel
that these critical values of concentration can be utilized by
biologists to perform experiments for exploring the effect of
collective dynamics on the microtubule length characteristics
presented in the proposed system. The complexity of the
phase diagram decreases along with an increase in motor
concentrations due to enhanced flux on the microtubule. Ad-
ditionally, increased motor flux due to surged concentration
initiates the cooperative action among the motors near the MT

tip resulting in speedy depolymerization as reported in the
experimental study [22]. The interplay between motor flux
and depolymerization processes at the MT plus end results
in robust correlations between the depolymerization dynamics
and density profiles of depolymerases.

To study the fluctuations in the microtubule length, based
on the Monte Carlo simulations, we provided kymographs
of the microtubule dynamics along with length distribution
depicting the translations between the phases of growth and
shrinkage. As anticipated, MT regulation is directly controlled
by motor traffic. For the low density of particles, polymer-
ization predominates, while for its larger values, dominant
shrinkage regime is discovered resulting in large fluctuations
in the MT length. However, the overall microtubule length
remains almost constant with only small fluctuations in the
case of intermediate values of motor flux. The above findings
capture correlations between the depolymerization dynamics
and the density of the proteins. Therefore, the proposed model
provides a verification of principle that spatial dependencies in
the magnification and diminished rates of microtubules, which
emerge from proteins transport in this case, can result in an
average filament length.

We additionally studied the impact of motor concentration
and modifying factor on the MT drift velocity for the proposed
scenario. As expected, the increase in concentrations enlarged
the region where MTs shrink and reveals an interesting out-
come of accelerated depolymerization dependent on the flux
of motors near the tip on the MT similar to those observed
experimentally [22]. We found the motor concentration which
is required to reach a steady-state microtubule length. In
case of less number of motors, the chosen depolymerization
process cannot be sufficiently speedy to balance the intrinsic
polymerization. Moreover, the steady-state lattice length re-
lies crucially on the motor flux, implying that this process of
length regulation needs hard control of the total number of
motors to regulate successfully.

The proposed work is an attempt to provide natural means
to gain deeper insight into the steady-state properties of
collective dynamics on intracellular transport by motors, in
particular, the interactions between the individual motors and
the MT tip playing a crucial role in length regulation. The
theoretical framework developed here is not only limited to a
specific motor family which collaborates with microtubules,
but also can be utilized for any kind of proteins which control

032411-11



VERMA, SHARMA, AND GUPTA PHYSICAL REVIEW E 99, 032411 (2019)

the dynamics of filament ends. Similarly, our findings might
be useful in understanding other enzymatic processes form-
ing a nonequilibrium system and are not restricted to only
microtubules and their associated motors. It is worthwhile to
mention that our results are not very sensitive with respect
to chosen parameters, therefore, small perturbations in their
values do not alter the steady-state system properties.

Further, the progression of molecular motors along mul-
tiple microtubules accompanied by lane switching stimulates
the curiosity to explore the role of coupling on microtubule
length dynamics. Therefore, future study aims to analyze
the interplay between the spontaneous polymerization and
motor induced depolymerization along several coupled micro-
tubules.

APPENDIX A

The model studied in main text does not include the
polymerization and depolymerization processes when the MT
tip is empty. So here, in addition to dynamical rules presented
in the main text, we incorporate the remaining processes to
visualize the combined effect on the phase diagram of the
proposed model as follows. If MT tip is empty, polymerization
(depolymerization) takes place with rate γ ∗ (ωD∗ ), respec-
tively. The resulting equations for i � 4 (bulk of lattice) then
read as

d〈τi〉
dt

= 〈τi+1(1 − τi )〉 − 〈τi(1 − τi−1)〉 + cωa〈1 − τi〉
−ωd〈τi〉 + γ 〈τ1(τi−1 − τi )〉
+ γ ∗〈(1 − τ1)(τi−1 − τi )〉
+ωD

[
δ〈τ1τ2(τi+1 − τi )〉 + δ2〈τ1τ2τ3(τi+1 − τi )〉

]
+ωD∗ 〈(1 − τ1)(τi+1 − τi )〉. (A1)

Here, capturing the interplay between the MT tip and motors,
terms corresponding to γ ∗ and ωD∗ exemplify the role of poly-
merization and depolymerization dynamics in the absence of
molecular motor, respectively. The resulting particle density
at the sites i = 1, 2, and 3 in the comoving frame of the tip
can be computed as

d〈τ1〉
dt

= 〈τ2(1 − τ1)〉 − γ 〈τ1〉 − γ ∗〈τ1〉 − ωD1〈τ1〉
+ωD∗ 〈(1 − τ1)τ2〉,

d〈τ2〉
dt

= 〈τ3(1 − τ2)〉 − 〈τ2(1 − τ1)〉 − γ 〈τ1τ2〉
− γ ∗〈(1 − τ1)τ2〉 + cωa〈1 − τ2〉
−ωd〈τ2〉 + δωD〈τ1τ2τ3〉 − δωD〈τ1τ2〉
+ωD∗ 〈(1 − τ1)τ3〉 − ωD∗ 〈(1 − τ1)τ2〉,

d〈τ3〉
dt

= 〈τ4(1 − τ3)〉 − 〈τ3(1 − τ2)〉 + γ 〈τ1τ2〉 − γ 〈τ1τ3〉
+ γ ∗〈(1 − τ1)τ2〉 − γ ∗〈(1 − τ1)τ3〉 + cωa〈1 − τ3〉
−ωd〈τ3〉 + δωD〈τ1τ2τ4〉 − δωD〈τ1τ2τ3〉
+ δ2ωD〈τ1τ2τ3τ4〉 − δ2ωD〈τ1τ2τ3〉
+ωD∗ 〈(1 − τ1)τ4〉 − ωD∗ 〈(1 − τ1)τ3〉. (A2)

FIG. 12. Phase diagrams for c = 100, N = 1000, ωD = 0.2,
	a = 5.3 × 10−4, 	d = 7.6 × 10−4, γ ∗ = 0.2, and ωD∗ = 0.1. Solid
lines denote phase transition for δ = 1.1, while dotted lines are those
obtained for δ = 1.5. Color code running from orange to red rep-
resents the transition from shrinkage to growth phase as calculated
from Eq. (A3) for δ = 1.1.

Similarly, rate of change in lattice length can be calculated as

∂N

∂t
= γ ρ1 + γ ∗(1 − ρ1) − δωDρ1ρ2 − δ2ωDρ1ρ2ρ3

−ωD∗ (1 − ρ1). (A3)

Based on the similar mathematical techniques as discussed
in Sec. III, we solved the above systems of equations and
calculated the phase diagram for γ ∗ = 0.20 and ωD∗ = 0.1
[22] shown in Fig. 12. The additional processes do not affect
system dynamics significantly and no qualitative changes are
observed in the phase diagram. As evident from the figure,
we obtained the same four steady-state phases which were
observed earlier, ignoring the additional polymerization and
depolymerization processes. Besides, an increase in γ ∗ only
leads to shifting of phase boundaries and does not produce
any new phase.

APPENDIX B

Here for better insight, we discuss the derivation for the
solution of Eq. (14). In this direction, from Eq. (13), we can
obtain

ρ = c	a + 	d

2
= 1 − γ ρ1 + δwDρ1ρ2(1 + δρ3)

2
(B1)

or
dρ

dx
= −B. (B2)

Integrating the above equation,

ρ(x) = −Bx + const. (B3)

Applying boundary conditions ρ(0) = ρ3 and ρ(1) = α

which are responsible for high and low density phases, respec-
tively, results in

ρ(x) = ρ3 − Bx, (B4)

ρ(x) = α + B(1 − x). (B5)
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Combining the above solutions, we obtain the solution as
given in Eq. (15).

APPENDIX C

For further clarity, we incorporate the detailing of Eq. (18)
as derived from Eq. (17). Equation (17) reads as

∂xσ (x) + ∂x ln |σ (x)| = −	d (K + 1)2

H
. (C1)

We can also write above equation in following way:

∂x ln | exp [σ (x)]| + ∂x ln |σ (x)| = −	d (K + 1)2

H
, (C2)

∂x ln |σ (x) exp [σ (x)]| = −	d (K + 1)2

H
. (C3)

Integrating from x0 to x leads to

ln |σ (x) exp [σ (x)]| = ln |σ (x0) exp [σ (x0)]|

− 	d (K + 1)2

H
(x − x0), (C4)

|σ (x)| exp [σ (x)] = |σ (x0)| exp[σ (x0)

− 	d (K + 1)2

H
(x − x0)]. (C5)

APPENDIX D

We provide an alternative approach to determine the solu-
tions of Eq. (12). Integrating Eq. (12), we have

2(ρb − ρ) + (
1 − γ ρ1 + δωDρ1ρ2(1 + δρ3) − 2c	a

c	a + 	d

)

× log

[
ρ(c	a + 	d ) − c	a

ρb(c	a + 	d ) − c	a

]
= (c	a + 	d )(x − xb),

(D1)

leading to

ρ(c	a + 	d ) − c	a

ρb(c	a + 	d ) − c	a
= exp(Q) (D2)

with Q = (c	a+	d )(x−xb)−2(ρb−ρ)
1−γ ρ1+δωDρ1ρ2(1+δρ3 )− 2c	a

c	a+	d

. Here, xb represents the

position of the boundary and ρb denotes the boundary density.
xb = 0 signifies left boundary while xb = 1 represents right
end of the lattice. Note that when density profile satisfies the
condition at the left boundary, xb = 0, then the corresponding
boundary density is the density at site 3, i.e., ρ(0) = ρ3. The
obtained profile corresponds to high density phase. Similarly,
for the density profile satisfying the boundary condition at
the other end, xb = 1, the observed boundary density from
Eq. (11) results in ρ(1) = α. This density profile signifies low
density phase. The shock location can be obtained by equating
the current from low and high density phases. It is to be noted
that this technique provides implicit solution, whereas one can
extract explicit density profiles using Lambert W function as
discussed in the main text. Moreover, as expected, the density
profiles obtained using this technique exactly overlap with
those observed from Lambert W function, thus validating our
theoretical outcomes as well.
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