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Reduction of a kinetic model for Na* channel activation, and fast and slow inactivation
within a neural or cardiac membrane
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A 15-state kinetic model for Nat channel gating that describes the coupling between three activation sensors,
a two-stage fast inactivation process, and slow inactivated states may be reduced to equations for a 6-state system
by application of the method of multiple scales. By expressing the occupation probabilities for closed states and
the open state in terms of activation and fast inactivation variables, and assuming that activation has a faster
relaxation than inactivation and that the activation sensors are mutually independent, the kinetic equations may
be further reduced to rate equations for activation, and coupled fast and slow inactivation that describe spike
frequency adaptation, a repetitive bursting oscillation in the neural membrane, and a cardiac action potential
with a plateau oscillation. The fast inactivation rate function is, in general, dependent on the activation variable
m(¢) but may be approximated by a voltage-dependent function, and the rate function for entry into the slow
inactivated state is dependent on the fast inactivation variable.
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I. INTRODUCTION

During prolonged or repetitive depolarization, in addition
to the fast inactivation of Na channels that contributes to re-
polarization of the membrane [1], a slow inactivation process
reduces the number of Na™ channels available for activation.
The increase in slow inactivation of Nat channels during
depolarization is associated with a delay to the next spike or a
reduction in the firing frequency (spike frequency adaptation)
[2] and is the result of a structural rearrangement in the
selectivity filter region of the ion channel that generally occurs
following the inactivation of the pore [3]. Slow inactivation of
the transient and persistent components of the Na™ current in
a mesencephalic V neuron is associated with the termination
of a bursting oscillation, and the increase in the amplitude
of the subthreshold oscillation between bursts occurs during
the recovery from slow inactivation [4]. In subicular neurons
adjacent to the hippocampus, the transition from bursting to
single spiking is influenced by the slow inactivation of Na™
channels, and this may provide a mechanism for enhancing
the effect of input signals [5].

The Na* channel protein is composed of four domains DI
to DIV that surround the ion pore, and in response to mem-
brane depolarization, the transverse motion of the charged S4
segments of DI to DIII is associated with activation, and the
slower movement of DIV is correlated with fast inactivation
[6]. A recent study of the effect of molecular inhibitors on
Na* channel gating has proposed that fast and slow Na™
channel inactivation are sequential processes [7], and that the
activation of the DIV sensor has an essential role in each type
of inactivation [8].

Based on the measurement of voltage clamp currents and
the slow cumulative adaptation of spike firing for neocortical
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neurons, the Na™ current Iy, may be described by the expres-
sion m>hs(Via — V') [2] where Vy, is the equilibrium potential,
the activation variable m, the fast inactivation variable %, and
the slow inactivation variable s satisfy the equations

dm 1
o = G = m) @+ ). (D
dh
= o = (), + ). 2)
ds 3
i ay — s(t) (o5 + By), 3)

and the rate functions « and B, are dependent on the mem-
brane potential V for g = m, h, and s. The Na* current may
also be expressed as O(t)(Vna — V) where O(¢) is the open
state probability that is determined by a kinetic model where
transitions between states represent the activation of three
S4 voltage sensors to open the channel, a two-stage fast
inactivation process [9] and subsequent slow inactivation [10].

Single-channel recording techniques have demonstrated
that ion channels are thermally activated between closed and
open states [11], and therefore, the Hodgkin Huxley (HH)
equations describe the behavior of a large number of stochas-
tic Nat and K* channels. The probability distribution for the
number N of open Na't channels satisfies a master equation,
and for sufficiently large N, by application of a system size
expansion, the master equation may be approximated by a
Fokker-Planck equation [12]. As the diffusion terms are small,
it may be further reduced to deterministic equations that are
equivalent to the rate equations for the activation variable m
and the inactivation variable &.

Assuming that each voltage sensor is a Brownian particle in
an energy landscape, the master equation for the random walk
within the membrane may be reduced to a Smoluchowski
equation that is dependent on a diffusion parameter and a
potential of mean force [13]. As the relaxation within each
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deep well is rapid, the probability density may be expressed
as the product of the stationary distribution and a survival
probability that is the solution of a rate equation [14]. By
approximating the potential function for the voltage sensor
by a square well potential, the low-frequency component of
the solution of the Smoluchowski equation may be expressed
as differential equations for the survival probabilities of the
closed and open states [15,16] and is similar to that obtained
from a numerical solution [17].

For a system of differential equations that has a separation
of timescales, a reduced system may be derived explicitly
by expressing the solution as an asymptotic expansion that
is dependent on the fast and slow times [18]. A variable that
attains a quasisteady state after an initial fast transient, is the
solution of an approximate algebraic equation that may be
obtained as the lowest order term in an asymptotic expansion
of the solution of the full system, and therefore, the long-time
behavior is governed by the dynamics of the slow variables
that form a subsystem of lower dimension. The method of
multiple scales and other singular perturbation techniques
have been applied to the equations in many areas of physics
and biology, such as orbital mechanics, coupled nonlinear
oscillators, and biochemical and enzyme reactions [18,19].

In this paper, it is shown that by taking account of the
large relative magnitude of the transition rates between some
states, a fifteen state kinetic model that describes Na* channel
gating with three activation sensors, a two-stage fast inactiva-
tion process, and a slow transition to additional inactivated
states, may be approximated by equations for a six state
system. Assuming that the activation sensors are mutually
independent and activation has a smaller relaxation time than
fast inactivation, the inactivation rate function is, in general,
dependent on the activation variable m(¢) but may be ap-
proximated by a voltage-dependent function, and the slow
inactivation rate function is dependent on the fast inactivation
variable hs(t). The kinetic model describing Na™ channel
gating may be reduced to rate equations for activation, and fast
and slow inactivation with a solution that may exhibit spike
frequency adaptation, a repetitive bursting oscillation and a
cardiac action potential with a plateau oscillation.

II. REDUCTION OF A KINETIC MODEL FOR Na*
CHANNEL ACTIVATION AND FAST INACTIVATION

By assuming that Na™ channel activation and inactivation
are independent, the Hodgkin-Huxley (HH) rate equations for
Na't and K* channels and the membrane current equation
provide a good account of the action potential waveform, the
threshold potential, and subthreshold oscillations in the squid
axon membrane [1], and the approach has been applied to a
wide range of voltage-dependent ion channels in nerve, mus-
cle and cardiac membranes [6]. However, subsequent experi-
mental studies have shown that the probability of Na™ channel
fast inactivation increases with the degree of activation of the
channel [20], the recovery from inactivation is more probable
following deactivation [21], and the kinetic equations for
coupled Na™ activation and inactivation processes describe
ion channel states and their transitions, and account for the
ionic and gating currents during a voltage clamp [9].
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FIG. 1. State diagram for Na™ channel gating where horizontal
transitions represent the activation of three voltage sensors (DI, DII,
and DIII) that open the pore, and vertical transitions represent the
two-stage fast inactivation process of the DIV voltage sensor and the
inactivation motif.

If the Na™ channel conductance is dependent on the activa-
tion of three voltage sensors coupled to a two-stage inactiva-
tion process, then the kinetics may be described by a 12-state
model (see Fig. 1) where the occupation probabilities of the
closed states Cy, G, C3, Ay, Az, and A3, the open states O and
A4 and the inactivated states I, I, I3, and I; are determined
by the equations

dC
— = (@ +anCi@) + faCa(n) + fadi@). (@)
dc,
o —(acy + Be1 + a)Co(t) + aciCr(2)
+ B2C3(t) + BinAa(t), )
dcC
d_tS = —(ao + B2 + ai3)C3(t) + acaCa(t)
+ BoO(1) + BinAs(t), (6)
do
o= —(Bo + ain)O(t) + apCs(t) + BiuAs(t), (7)
dA,
e —(aa1 + Bit + yi)A1(t) + i Ci (1)
+8nli(t) + BaiAa(2), (8)
dA;
o —(aaz + Bar + Bio + vi2)Ax(2)

+apC(t) + 0inh (t) + axtAi(t) + Ba2As(t)  (9)
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dA;
= = —(aaz + Baz + Biz + vin)As(t)
+apCs(t) + 835 (t) + aanAr(t) + BazAs(t), (10)
dAy
= —(Baz + Bis + vis)A4(t)
+ i O(t) + 8ials(t) + ca3As(t), (1)
dl
d—t‘ = —(an + DL ) + yuAi () + L), (12)
dl
T —(ap2 4 Bri + 82) (1)
+ YAr(t) + anli(t) + Brls(1), (13)
dl;
T —(op3 + Bro + 8i3)3(1)
+vi3Asz(t) + aph() + Bi3la(t), (14)
dL
Ef:_4m3+&nhay+wmaw+ambux (15)

and the transition rates satisfy microscopic reversibility. The
model is based on the measurement of currents for wild
type and mutant Na* channels where the majority of the
gating charge of the voltage sensors in domains DI to DIV
is neutralized. Tke kinetic scheme describes the activation of
the DI to DIII voltage sensors and pore opening, as well as the
activation of the DIV sensor followed by occlusion of the ion
pore by the inactivation motif [9].

It is assumed that Na*t channels depolarize the membrane,
K™ and leakage channels repolarize the membrane, and the
K* conductance is proportional to n(¢)* where the activation
variable n(t) satisfies the equation [1]

dn
— =ap — n(t)(en + ), (16)
dt

and «, and B, are voltage-dependent rate functions. This
equation may be derived from a kinetic model for K* channel
gating where the voltage dependence of o, and B, may be
expressed in terms of the transition rates for a two-stage volt-
age sensor activation process [22,23]. The membrane current
equation is

dv
C— =i, — BNaO)(V — Vo) — Bxn()*(V — Vk)

dt
—g.(V —=V), (17)

where g; is the conductance, V; is the equilibrium potential for
each channel j (Na™, K*, and leakage), and i, is the external
current.

When the fast inactivation transition rates oy << ik, O K
Bir, and y; + B is greater than the activation and deactiva-
tion rate functions, for each k, the occupation probabilities of
A] to Ay attain quasistationary values in a time that is smaller
than the relaxation of the membrane potential and the closed,
open and inactivated states [24], and Eqgs. (4)—(15) may be
reduced to an eight-state system by expressing the solution
as a two-scale asymptotic expansion and eliminating secular

Ac1 Ac2 Ao
Cy C, Cs 0
Ber Be2 Bo
O1 || P1 Oz || P2 O3 || P3 Oa || Pa
11 A1 A13
I, 1, i 1,
Br11 Br2 B13z

FIG. 2. The state diagram for Na™ channel gating in Fig. 1 may
be reduced to an eight-state model when B; > 8i, Y > o, and
Vi« + Bix 1s greater than the activation and deactivation rate functions,
for each k, where the derived rate functions p; and oy are defined in
Eqgs. (26) and (27).

terms [18] (see Fig. 2 and Appendix A)

dC
—+ = (@ + DGO + faiCr) + oih(1). (18)
dc,
ke —(ac2 + Bt + p2)Ca(t) + ac1Cr (1)
+ Bc2C3(t) + o2 (1), (19)
dC;
= = —(ao + Bz + p3)C (1) + ac2Ca(t)
+ BoO) + o313(1), (20)
dO
P —(Bo + p4)O@) + apCs(t) + oaly(t),  (21)
dl
d_t] = —(an + o)1 (t) + p1C1(@) + Bl (1), (22)
dl
i —(ap + B +02)hL(t) + anli(t)
+ Bl (t) + p2Ca(2), (23)
drl
= (@ + B+ o)) + anh(t) + frsli(r)
+p03C3(1), (24)
dly
o= —(Brz + o)1) + apl(t) + psO(t),  (25)

where the derived rate functions for Na™ channel inactivation
and recovery are, for each k,

Qik Vik

ok =, (26)
“7 B+ v
Sik Bi
op = ﬂ Q27)
Bix + Vi

If the fast inactivation rates y; and By are decreased by an
order of magnitude, then the occupation probabilities A; to
A4 are not constant during the relaxation of the closed, open,
and inactivated states, and the error of the approximation is
increased. The Na™ channel activation rate functions between
closed and open states may also be expressed in terms of the
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FIG. 3. The state diagram for Na™ channel gating in Fig. 2 may D 0.6 0.6
be reduced to a seven-state model when «;; > p; and o > By, E 0.4 5 0.4
where the derived rate functions p; and &, are defined in Egs. (30) 0.2 0.2 LM
and (31). 0 0
0 5 10 15 20 0 5 10 15 20
t (ms) t (ms)
1 1
transition rates of a two or three-stage process [22], which 0.8 0.8
are dependent on electrostatic and hydrophobic forces on the © 0.6 0 0.6
charged residues of the S4 voltage sensor [25]. o 8 '; o 8 ';L j\
If it is assumed that the inactivation sensor and the three o L o
activation sensors are independent, then the HH rate equations 0 5 10 15 20 0 5 10 15 20
for Na™t channel activation and inactivation are exact solutions t (ms) t (ms)
of an eight-state kinetic model for channel gating [6,26]. 1 1
However, activation and inactivation are coupled processes, .. 0.8 .. 0.8
. . L 0.6 D 0.6
and if a;; > p; and o1 > By for membrane potentials in the ~0a o0
physiological range, based on empirical rate functions for a D o.2 P o.2
Na™ channel [9], by expressing the solution as an asymptotic Ot 0
expansion that is dependent on fast and slow timescales and o 5 10 15 20 o 5 10 15 20
solving the equations to lowest order [18] (see Appendix B), £ (ms) £ (ms)
then Egs. (18) and (23) may be approximated by (see Fig. 3) 0. é 0. ;
L 0.6 v 0.6
dC, . A 0.4 +0.4
e —(ac1 + p1)Ci1(t) + Bc1Ca(t) + 614L(1),  (28) 0'3 A J& O'i
dl, A 0 5 10 15 20 0 5 10 15 20
i —(ann + 61+ 02)h(t) + Brah(1) t (ms) t (ms)
+ 021G (1) + p2Ga (1), (29 FIG. 4. During the action potential solution of Egs. (18)-
(25) for Cy, G, GCs;, O, and I,-I; (solid line), Egs. (18),
where (22), and (23) for Cy, I, and I, may be approximated by
Eqgs. (28), (29), and (32) (dotted line), when o« > p; and
o101 01> B, and n and V are determined by Egs. (16) and
p=— (30) (17). The rate functions are «,, = 0.1(V + 35)/{1 — exp[—(V +
anton 35)/101}, B = 4 expl—(V + 60)/18], acy = 3an, fer = B, o2 =
. o181 204, Bcr = 2B, o = om, Bo = 3Bm, an = aci, fn = 0.016fc|,
01 = antor G ap =200, Bn=2Bc2 o =200, Ps=2Po, =1 yu=
222, ,Bik = eXp[—V/]O], (S,'l = 25, 8,‘2 = 8,‘3 = 5,‘4 = 004, Pr =
p1C1 () + Bnb(t) ap /(L + Bi/yu) for k=110 4, o1 = 8;/(1 + yi/Bir), 02 = 03 =
hy~ — "~ (B2) 6, =0.01601, @, = 0.01(V + 50)/(1 — exp[—(V + 50)/10]), B, =

and n and V are determined by Eqgs. (16) and (17) (see Fig. 4).
If oj; 4 o7 is reduced by a factor of three, then the relaxation
of 1; is slower and a deviation occurs between the solutions of
the full system and the reduced equations.

In Egs. (24), (25), and (29), it is assumed that for each
membrane potential, the transition rates between fast inacti-
vated states with occupation probabilities I, I3, and Iy are
an order of magnitude larger than inactivation and recovery
rates, and larger than activation and deactivation rates between
closed and open states, and therefore, by expressing the so-
lution as a two-scale asymptotic expansion and eliminating
secular terms [18], it may be shown that Egs. (18) to (25)
may be reduced to a five state kinetic model (see Fig. 5 and

0.125exp[—(V + 60)/80] (ms™"), and gn, = 120 mS/cm?, 3x =
36 mS/cm?, g; = 0.3 mS/cm?, Wy, = 55mV, Vx = -75mV, V; =
—60mV, C =1 uF/cm?, and i, = 1 uA/cm?.

Appendix C for an ion channel with fast and slow inactivated
states)

dd% = —(ac1 + p1)C1(t) + Bc1C2(t) + 61,1(2), (33)
dc,
= —(aca + Ber + 02)Ca(t) + aciCi(¢)
+ BeaCa(t) + 00,1 (1), 34
a;l—: = —(ao + P2 + p3)C3(1) + a2 Ga (1)
+ BoO) + o3, 1(1), (35)
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FIG. 5. State diagram for Na™ channel gating in Fig. 3 may be
reduced to a five state model when the transition rates between fast
inactivated states are larger than inactivation and recovery rates.

do

E = —(ﬁo + ,04)0(l) + OloC3 (t) + O‘4r1(l‘)s (36)
dl N
E = — (61, + 02 + 03, + 04, )1 (1)

+ 01C1(1) + p2Go (1) + p3C3(1) + p4O(),  (37)

where Ci(¢) + Co(t) + C3(t) + O(t) + 1(t) = 1 and

51, — 618n2B13 ’ (38)
apa +apfis + Brbis

oy = 02812813 ’ (39)
apap +apfis + Brbis

S o3B3 ’ (40)
apar +apfi + Brbis

o = 04003 41)

apas +apfi+ Brbi

Following an initial transient, it may be shown that I(¢), I;(¢),
and I,(¢) are approximated by

BBzl (1)
b(t) ~ : 42
2(6) apap +apfi + Brbis “2)
anfrl(t)
L(t) ~ , 43
3(1) anpap + anpfi + Brfni 43)
) ~ apapl(t) (44)

apai +anpfi + Brbin’

where I(t) = L (t) + I3(t) + I4(t) (see Appendix C). Equa-
tions (42)—(44) may also be obtained by application of sin-
gular perturbation analysis to a kinetic model for a cardiac
Na't channel [27]. During an action potential, the solution
of Egs. (18)—(25) may be approximated by the solution of
Egs. (33)—(37), where n and V are determined by Eqs. (16)
and (17), and I; to Iy are calculated from Egs. (32) and
(42)—(44) (see Fig. 6).

Assuming that Ci(t) = m(t)h(t), Cy(t) = ma(t)h(t),
G(t) = m3()h(r), O@t) =mo(t)h(t) and I(t) =1— h(1),
where my (1), my(t), m3(t), and mp(t) are activation variables

1
30 0.8
5 0 QO.GN_‘
= -30 5 0.4
~60 0.2
~90 0
0 5 10 15 20 0 5 10 15 20
t (ms) t (ms)
1 1
0.8 0.8
0.6 0.6
50.4 50.4
0.2 o.zLM
0 0
0 5 10 15 20 0 5 10 15 20
t (ms) t (ms)
1 1
0.8 0.8
v 0.6 5 0.6
0.4 ~ 0.4
©0.21} Oo.zj\
0 0
0 5 10 15 20 0 5 10 15 20
t (ms) t (ms)
1 1
0.8 0.8
50.6 0.6
50.4 50.4
0.2 0.2
] 0
0 5 10 15 20 0 5 10 15 20
t (ms) t (ms)
1 1
0.8 0.8
0.6 0.6
50.4 30.4
0.2 71 0.2
0 0
0 5 10 15 20 0 5 10 15 20
t (ms) t (ms)

FIG. 6. The solution of a Na* channel eight-state kinetic model,
Egs. (18)-(25) for Cy, G, G5, O, and I,-I; (solid line) may be
approximated by the solution of a five state model, Egs. (33)-
(37) (dotted line), where I;—I; are calculated from Egs. (32)
and (42)—(44), and n and V are determined by Egs. (16) and
(17). The rate functions are «, = 0.1(V + 35)/{1 —exp[—(V +
35)/10]}9 ,Bm = 4eXP[—(V + 60)/18], Qcp = 30["19 ,BCI = lgnw ey =
20, Ber = 2Bu> Ao = s Bo = 3B, o = aci1, Bri = 0.0168¢,
ap =2ac2, B =2P0c2 o =200, Bz=2P0, au=1, vu=
22.2, ,Bik = eXp[—V/]O], (S,'l = 2.5, 8,‘2 = 8,-3 = 5,‘4 =0.04, Pr =
ai/(L+ Bi/yu) for k=1 to 4, oy =38;/(1+vyu/Bu) 02=
o3 = 04 = 0.0160,, a, = 0.01(V 4 50)/{1 — exp[—(V + 50)/10]},
Bn = 0.125exp[—(V + 60)/80] (ms™!), and zn, = 120 mS/cm?,
gx = 36 mS/cm?, g; = 0.3 mS/cm?, Wy, = 55mV, Vg = —75mV,
V. = —60mV,C =1 uF/cm?, and i, = 1 uA/cm?.

and A(¢) is an inactivation variable, Egs. (33)—(37) may be
expressed as

dm1

7 = —[(XCI + P1 — p(t) + U(t)]ml(t) + ,3C1m2(t)
+61,[1/h(1) — 11, (45)

dm2

= = —[aca + Ber + p2 — p(t) + o (t)Ima(t)

+oacim(t) + Beams(t) + oo [1/h(2) — 1], (46)
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dl/I13
o = —lao + Bea + p3 — p(t) + o (t)m3(t)
+acomy(t) + Bomo(t) + o3, [1/h(t) — 1], (47)
d
% = —[Bo + ps — p(t) + o (O)Imo(t) + aoms(t)
+o4,[1/h(t) — 1], (48)
dn .
— = 01, + 02 + 03, + 04
dt
—h(t)[61, + 02y + 03, + 04 + p(2)], (49)
where

p(t) = pim(t) + pama(t) + p3m3(t) + pamo(t), (50)

o(t) = (61, + 02 + 03, + 04)[1/h(t) = 1].  (51)

The inactivation rates p; and recovery rates oy, for each k, are
an order of magnitude smaller than the activation and deacti-
vation rates, and therefore, from an asymptotic expansion of
the solution, it may be shown to lowest order that Eqs. (45)—
(48) for the activation variables may be approximated by (see
Fig. 7)

dm1
7 = —Uc1my (t) + ﬂClmZ(t)7 (52)
dmz
dr —(oc2 + Per)ma(t) + acymi (1) + Beams(1),  (53)
d
% = —(ao + Bc2)ms(t) + acomy(t) + Bomo(t),  (54)
dmo
= —Bomo(t) + aoms(1). (55)

That is, the inactivation and recovery rates, and the vari-
able h(t), generally only have a small effect on the time-
dependence of the activation variables.

If the activation sensors are mutually independent

(aCI = SO(m’ ey = 20[m, Qo = Uy, IBCI = IBmv ﬂCZ = 2/3ma
Bo =3Bu), then Egs. (52)-(55) have the solution
mi(t) = [1 —m@®)P, my(t) =3m@)[1 —m@®)?, ms@t) =
3m@)?[1 — m()], mo(t) = m(t), where m(¢) satisfies

d_m
dt
and therefore, from Eq. (50),
p(t) = pill — m®)1 + 3pam(@)[1 — m(t)]?
+303m(t)*[1 — m(t)] + pam(t)’. (57)

However, as the activation variable m(t) generally has a faster
time constant than A(z), p(¢) may be approximated by

= oty — m(t)(@m + Bm), (56)

Br = p1(1 — mog)® + 3pamoe(1 — meo)?
+3p3m3 (1 — moo) + pam,, (58)

where meo = &, /(& + Bn) for each membrane potential,
and B, is a voltage-dependent function, as assumed by HH [1].
The activation function m, and each inactivation rate p; has
an exponential voltage dependence for a small depolarization
but for larger potentials, the variation has a plateau, and
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FIG. 7. If the Na' channel inactivation and recovery rates are an
order of magnitude smaller than the activation and deactivation rates,
then the occupation probabilities C, = mh, C; = myh, C; = msh,
and O = moh calculated from the solution of Egs. (45)—-(49) for m,,
my, m3, mp, and h (solid line) may be approximated by the open and
closed state probabilities obtained from the solution of Eqs. (49) and
(52)—(55) (dotted line), where n and V are determined by Eqgs. (16)
and (17). The rate functions are o, = 0.1(V + 35)/{1 — exp[—(V +
35)/101}, B = 4exp[—(V + 60)/18], act = 3, Bt = Bms A2 =
20{,", :8C2 = 2ﬁm9 Qo = U, ,80 = 3ﬂmv = Qci, ﬂll = 0-016ﬂCI7
ap =2ac, B =20c2 a3 =200, Bz=2P0, an=1, ya=
22.2, Bi =exp[=V/10], pr = auyu/(Bu + yu) for k=1 to 4,
8i1 = 2.5, 8np = 83 = 8 = 0.04, 0y = i /(1 + v /Bi), 02 = 03 =
oy = 0.01601, o, = 0.01(V 4 50)/{1 — exp[—(V + 50)/10]}, B, =
0.125 exp[—(V + 60)/80] (ms~!), and gn, = 120 mS/cm?, gx =
36 mS/cm?, g, = 0.3 mS/cm?, Vo = 55mV, Vx = =75mV, V, =
—60mV, C =1 uF/cm?, and i, = 1 uA/cm?.
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rate (ms™!)
o O o o

o N b O 0O DN

-100-80 -60 -40 -20 O 20 40
V (mV)

FIG. 8. The voltage dependence of the Na™ channel HH inactiva-
tion rate function o, + B, (dotted line), where o), = 0.07 exp[—(V +
60)/20] and B, = 1/{1 +exp[—(V + 30)/10]} may be approx-
imated by the expressions in Egs. (58) and (60) where the
rate functions are defined as «,, = 0.1(V 4 35)/(1 —exp[—(V +
35)/101), B = 4exp[—(V + 60)/18], ac1 = 3, Bc1 = Bum» 2 =
20, Bcr = 2Bms o = iy, Bo = 3B, an = aci, B = 0.0168¢1,
ap = 2ac2, B2 = 2Bca, a3 = 200, B3 = 2P0, aix = 1, ya = 22.2,
Bix = exp[=V/10], 8;1 = 2.5, 8o = 8i3 = 6ia = 0.04, pp = /(1 +
Bi/vi) for k=1 to 4, o1 =8:1/(1 +vu/Bi), 02 =03 =04 =
0.0160; (ms™!).

therefore, accounts for the voltage dependence of B; (see
Fig. 8).
Equation (49) may be expressed as

dh

il h(t) (o, + Br), (59)
where

ap = 61, + 02 + 03, + 0y, (60)

and as oy, 03,, 04y K 61, @ = G61,. For a moderate hyper-
polarization (o > oy1, B11), 61, = &1 = Bj1, and therefore,
the voltage dependence of «y, is approximately exponential
[1] (see Fig. 8), but it may attain a plateau value for a large
hyperpolarization [9,21,24].

If the previous conditions for each stage of reduction
are satisfied, then the solution of the twelve state kinetic
model, Egs. (4)—(15), may be approximated by closed, open,
and inactivated state probabilities that are dependent on the
solution of Egs. (56) and (59) for m and h, where n and V
are determined by Egs. (16) and (17)—see Fig. 9 for a Na™
channel with an inactivation rate independent of the closed
or open state [1], and Fig. 10 for a channel where the Na™
inactivation rate increases with the degree of activation of the
channel [9] (the ion channel rate functions and parameters
are summarized in Table I). Therefore, a HH model of a
Na*t channel may be expressed as a kinetic scheme that
is consistent with the ion channel structure and the energy
landscape of each S4 sensor during activation and inactivation
processes. Although it is often assumed that the independence
of Na™ channel inactivation and activation is required for
the Na™ channel conductance expression m’h [6], strongly
coupled activation and inactivation is also compatible with the
open state probability O(t) = m(t)>h(z).

40
20
Y 50
> -40
-60
-80
0 5 10 15 20
t (ms)
1 1
0.8 0.8
5 0.6 0.6
50.4 50.4
0.2 o.zL.—“M
0 0
0 5 10 15 20 0 5 10 15 20
t (ms) t (ms)
1 1
0.8 0.8
L 0.6 5 0.6
0.4 =~ 0.4
©0.2(4 oo.zj\
0 0
0 5 10 15 20 0 5 10 15 20
t (ms) t (ms)
1 1
0.8 0.8
0.6 jo.ef\m
0.4 5 0.4
0.2 0.2
0 0

0 5 10 15 20 0 5 10 15 20
t (ms) t (ms)

FIG. 9. The solution of a Na™ channel 12-state kinetic model,
Eqs. (4)-(15) (solid line) may be approximated by C; = (1 —
m)h, C; =3m(1 —m)*h, C3 =3m>(1 —m)h, O =m’h, [ =1, +
L+ 1y =1—h (dotted line), where m and h satisfy Egs. (56)
and (59), and n and V are determined by Eqgs. (16) and (17).
The conditions for the reduction are that (1) the two-stage in-
activation process satisfies By > 8 and yu > ay, for each k
(see Fig. 1), (2) an > p1 and oy > B (see Fig. 2), and (3)
the transition rates between fast inactivated states are an order
of magnitude larger than inactivation and recovery rates (see
Fig. 3). The rate functions are o, = 0.1(V + 35)/{1 —exp[—(V +
35)/101}, B = 4exp[—(V + 60)/18], aci = 3w, Bct = Bm» ez =
20, Ber = 2Bm> 2o = i, Bo = 3Bm, an = aci, B = 0.0168¢,
ap =2ac2, B =2Bc ap =200, PBiz=2P0, ax=1, ya =
222, ,Bik = exp[—V/lO], 5,‘1 = 25, 8,‘2 = 8,‘3 = 81’4 = 004, Pr =
/(I + Bu/va) for k=1 to 4, o =381/(1 +vu/Bi) 02=
03 =04 = 0.0160,, o, = 0.01(V +50)/{1 — exp[—(V + 50)/10]},
B, = 0.125exp[—(V + 60)/80] (ms~!), and 2n, = 120 mS/cm?,
gk =36 mS/cm?, g, = 0.3 mS/cm?, Wy, = 55mV, Vk = —75mV,
V. = —60mV,C =1 uF/cm?, and i, = 1 uA/cm?.

III. REDUCTION OF A KINETIC MODEL FOR Na*
CHANNEL ACTIVATION, AND FAST AND SLOW
INACTIVATION

In this section, it is assumed that the activation of three
voltage sensors regulating the Na channel conductance is
coupled to a two-stage inactivation process, and that slow
inactivation is accessible from fast inactivated states [7], and
therefore, the kinetics may be described by a 15-state model
(see Fig. 11):

dC,

w7l —(act +a;))Ci(t) + Bc1Co(t) + BuAi(t),  (61)
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40 TABLE I. Rate functions, channel conductance, and equilibrium
. 20 potentials for kinetic models with fast inactivation of the Na™
E —28 channel.
5 -40
e Figs. 4, 6-9 Fig. 10
0 5 10 15 20 Rate (ms_])
t (ms) o 0.01(V+50) 0.01(V+50)
1 1 n 1—exp[—(V+50)/10] 1—exp[—(V+50)/10]
0.8 0.8 B. 0.125 exp[—(V + 60)/80] 0.125 exp[—(V + 60)/80]
Do0.6 D0.6 . T 7.45 exp[0.5V/25]
) 8.421 \»/'/’) & 8 -‘21 L/"/_’__ B 4exp[—(V + 60)/18] 0.8 exp[—0.9V/25]
: 0 ’ 0 acy 3a, 3a,,
0 5 10 15 20 0 5 10 15 20 'BC] '8'" ‘3”’
t (ms) t (ms) @c2 20ty 2aty,
1 1 ﬂCZ zﬂm Zﬁm
0.8 0.8 (275} Ay oy
L 0.6 5 0.6 Bo 3B 3B
Jg;&w og:g}\ an aci aci
5 5 B 0.016fc; 0.01c,
0 5 10 15 20 0 5 10 15 20 on 202 202
t (ms) t (ms) ﬂ12 2562 0-213C2
1 1 an 200 2a0
0.8 0.8 B3 280 0.280
E 0.6 E 0.6 Qi 1 2.1
o2 g 83/\M Vic 2.2 25
0 0 Bil exp(—V/10) 2000 exp(—2.4V/25)
0 5 10 15 20 o 5 10 15 20 Be exp(=V/10) 200 exp(—2.4V/25)
t (ms) t (ms) Bis exp(—V/10) 20exp(—2.4V/25)
Bis exp(—V/10) 2exp(—2.4V/25)
FIG. 10. The solution of a Na* channel 12-state kinetic i 2.5 1
model, Egs. (4)-(15) (solid line) may be approximated by 8in 0.0166;, 0.164
Ci = (1 —mPh, C =3m(l —m)*h, Cs = 3m>(1 — m)h, O = mh, 85 0.0168;, 0.18;
I=L+L+1;,=1—h (dotted line), where m and h satisfy Sia 0.0168; 0.16;
Egs. (56) and (59), and n and V are determined by Eqgs. (16) Conductance
and (17). The rate functions are «,, = 7.45exp[0.5V/25], B, = (mS/cm?)
0.8 CXP[—09V/25], Oc1 = 30(,,,, ﬂc] = ﬂm, Ocy = 20(,,1, ﬂcz = 2ﬂmv gNa 120 20
Qo =y, Bo = 3Bum, an = ac1, B = 0.018c1, ap =202, Brn = gx 36 10
0.28c2, a3 = 20, B3 = 0.280, Bi1 = 2000 exp[—2.4V/25], B;» = 8L 0.3 1
200 exp[—2.4V/25], Biz = 20exp[—2.4V/25], By = 2exp[—2.4V/ Equilibrium
25], Sdu=1, 6p=063=0u4=0.1, ag=2.1, yu =25 pm= potential (mV)
/(1 + Bix/Vi)s ok = 8 /(1 + vie/Bix), for k=1 to 4, a, = WNa 55 40
0.01(V +50)/{1 — exp[—(V 4+ 50)/101}, B, = 0.125exp[—(V + Vk =75 -90
60)/80] (ms~!), and gy, =20 mS/cm?, 3zx =10 mS/cm? Vi —60 —80
2, =1 mS/cm?, Vg, =40mV, Vg =-90mV, V; = —-80mV, i,(uA/cm?) 1 1
C =1 pF/ecm? and i, = 1 uA/cm?. C(uF/cm?) 1 1
dcC
d_t2 = —(ac2 + Ber + @) () + a1 Ci(7)
+ Bc2G5(1) + BinAa(2), (62) "
dCs =2 = (a3 + Bz + Bis + y)As (1) + aisCs(0)
e —(ao + Bz + ai3)C3(1) + ac2Ca () dt 5 B B .
+ BoO(1) + BizAs(1), (63) +8i303(t) + axAs(t) + BazAs(t), (67)
do dAy
yrie —(Bo + ai)O@t) + apCs(t) + BuAs(t), (64) o= —(Baz + Bia + via)A4(t) + i O(2)
dA 8ials(t) + aazAs(t), 68
L = —an + B+ A + @G0 g o endo o0
480 () + BuAa(r), 65) prle (p + &)L (1) + vanAL(t) + Bnb(t),  (69)
dAz d12
el —(aa2 + Bar + Bz + vi2)A2(t) + anCa(t) o —(app + Bri + 8 + wWh(1t)
+8nh(t) + aa1A1(t) + BarAs(t), (66) +vAx(t) +anli(t) + Bph(t) +vSa (), (70)
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Oc1 Oc2
Cl T - C2 T - C3 T - @)
Bea Bez Bo

Bii||otix  Bizf|iz  Biz||Aiz  Bial||Xia

Oi1|[vi1  Siz2||viz  Sisl|¥iz  Oia||Yia

12 | 13
S3 v - 84

/312 BI?;

FIG. 11. State diagram for Na* channel gating where horizontal
transitions represent the activation of three voltage sensors (in the
domains DI, DII, and DIII) that open the pore, and vertical transitions
represent the two-stage fast inactivation process to states /(¢) to
I4(1), and slow inactivation to states S,(¢) to S4(¢) (in domain DIV).

SZ\

dl;
e — (g3 + B2 + 83 + )I3(¢)
+ Y343 (@) +aphb@) + Bialy(r) +vS3(r), (71)
dly
yri —(Br3 + 8is + w)la(t)
+ VisAs(t) + apl(t) + vS4(2), (72)
das,
T —(opp +V)S2(t) + BraS3(t) + uhr(t),  (73)
ds
— = (B vISi0) + anSa(0) + BrsSi(t) + uls ().
(74)
dSy
e —(Br3 +)84(t) + ap3S3(t) + ula(t),  (75)

where S,(t), S3(¢), and S4(¢t) are the occupational proba-
bilities for the slow inactivated states, and u and v are
voltage-dependent transition rates that are at least an or-
der of magnitude smaller than the corresponding fast in-
activation rates. As [;(t) =~ 0 following a transient, it may
be assumed that entry into the slow inactivated state cor-
responding to I; is also small, and has no effect on the
dynamics.

It is assumed that the K™ and leakage channels repolarize
the membrane, and if the K* conductance is proportional to
n(t)) where j is the number of voltage sensors such that 1 <
J < 4, and the activation variable n(t) satisfies Eq. (16), the
membrane current equation is

dVv . _ _ .
C— =i, — gnaO(V — Viyo) — ggxn(t) (V — Vi)

dt
—2.(V — V). (76)

By expressing the solution as a two-scale asymptotic ex-
pansion and eliminating secular terms [18], Egs. (61)—(75)
may be reduced to an 11-state system when the two-stage
inactivation transitions satisfy o < v, Six < Bix, and yi +
Bir is greater than the activation and deactivation rate func-
tions, for each k [24] (see Fig. 12 and Appendix A)

dC
—+ = (@ + PG + faiCr) + ik (1), (T7)
dC,
= —(acr + Ber + p2)Ca(t) + aciCi (1)
+ BcaCs(t) + o2 (1), (78)
dCs
el —(ap + Bz + p3)C (1) + a2 Ca(t)
+ BoO(t) + a313(t), (79)
dO
o= —(Bo + p4)O@) + apCs(t) + o4l4(t),  (80)
dl
— =~ +oDh®)+pCi(O) + puh@).  BD)
db
o —(app+ B+ o2+ L)+ o 11 (¢)
+ Brbl(t) + prCo(t) + vSa(2), (82)
dlz
o —(a3 + B2 + o3 + Wh(t) + aph(t)
+ Bi3la(t) + p3C3(t) + vS3(1), (83)
dl
=~ (B + o+ () + k() + pa0(0) + Sa).
(84)
as,
T —(opp +V)S2(t) + BraS3(t) + nh(t),  (85)
dsS;
o —(ap3 + B +v)S3(1) + apSa(t)
+ Br3Sa(t) + puh(2), (86)
dSy
e —(Br3 +v)S4(t) + ap3S3(t) + uls(r).  (87)

Assuming that o;; > p; and o7 > By [9], Eqs. (77) and (82)
may be approximated by (see Appendix B)

dC
d_tl = —(act + p1)Ci(t) + Bc1Co(t) + 615L(2), (88)
dh .
o —(ap + 61 + 0 + wh(t) + Bl (1) + vSa (1)
+01C1 (1) + p2Ca(2), (89)
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Ac1 Ac2 Ao o o
Cy C, Cs 0 =, 0o, o
Bea Be2 Bo et ¢ ©
o1 P1 02 P2 93 P3 O4 Pa G1:N\\P1 O2:r\P2 O3://03 Oar/Pa
O11 12 13
I, 1, I, I,
Br11 B12 B1s I
v u v u Y u
v |1
12 13
S S3 Syq
Br2 B13z
S

FIG. 12. State diagram for Nat channel gating in Fig. 11 may
be reduced to an eleven state model when B > 8y, Yix > o, and
Vi« + Bix 1s greater than the activation and deactivation rate functions,
for each k, where the derived rate functions are p; and o} defined in
Egs. (26) and (27).

where p; and &, are defined in Egs. (30) and (31), and the
kinetics may be represented by the ten state model in Fig. 13.

In Egs. (83)—(87) and (89), it is assumed that for each
membrane potential, the transition rates between fast inacti-
vated states I, I3, and I, and between slow inactivated states
S, S3, and S4, are an order of magnitude larger than the
corresponding inactivation and recovery rates, and larger than
the activation and deactivation rates between closed and open
states, and therefore, by expressing the solution as a three-
scale asymptotic expansion and eliminating secular terms,
Eqgs. (77)—(87) are reducible to a six-state kinetic model (see
Fig. 14 and Appendix C):

dc, N
= —(ac1 + p)C1(#) + Be1Ca(t) + 61,1(2),  (90)
dc,
e —(ac2 + Ber + p2)C2(t) + a1 Ci (1)
+ Bc2G3(t) + 02,1 (1), 1)
Ac1 Ac2 Ao
C1 C Cs 0
Ber Bez Bo
G1N\\p1 O2||P2 O3||P3 O4(|O4
A1z a13
I, I I,
/312 /313
M Nl M
A12 a13
S2 S3 S4
B2 B3

FIG. 13. The 11-state system for Na* channel gating in Fig. 12
may be reduced to a 10-state system when «;; > p; and o7 > By,
where the derived rate functions p; and &, are defined in Egs. (30)
and (31).

FIG. 14. The ten state system for Nat channel gating in Fig. 13
may be reduced to a six-state system when the transition rates
between fast inactivated states ,(¢) to I;(¢), and between slow inac-
tivated states S,(7) to S4(z) are larger than inactivation and recovery
rates.

dCs
el —(ao + Bea + p3)C3 (1) + ac2Ga (1)
+ BoO(t) + 03,1(1), (92)
do
o= —(Bo + pa)O@) + apCs(t) + 04 1(t), (93)
dl
E = _(61r + 02 + 03 + 04y + ,LL)I([) + Iblcl (t)
+ 02Co(t) + p3C3(t) + p4O) + vS(2), %94)
a5 _ I(t) —vS() 95)
a M PR,

where &1,, 02,, 03, and oy, are defined in Egs. (38)—(41),
Ci(t)+C(t)+C3(t) +0@)+ 1)+ S(t) = 1, and follow-
ing a transient, the inactivation probabilities I,(t), I3(¢), and
14(t) may be approximated by Eqs. (42)—(44), and the slow
inactivation probabilities S»(¢), S3(t), and S4(r) may be ex-
pressed as

Br2Bi3S(t)
S ~ , 96
2(6) apai +apfis + Brbis (%6)
S5(1) ~ apBS() ’ ©7)
apam +opfn + Brbis
Su(1) ~ apapS(t) 98)

anais +anBi + Brbin’

where S(t) = S>(t) + S3(¢) + S4(2).

Writing C;(t) = mi(t)h(t), Cy(t) = mp(t)h(t), Cs3(t) =
m3(t)h(t), O@) =mo)h(t), and h(t)=1—1()— S@),
where m(t), my(t), ms(t), and mp(t) are activation vari-
ables and A(t) is an inactivation variable, and assuming that
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the activation sensors are independent (oc; = 3, cr =
20, @0 =y, Bc1 = Bm, Bc2 = 2Bm, Bo = 3Bw), and that
the inactivation rates are an order of magnitude smaller
than the activation rates in Egs. (90)-(93), it may be
shown that m; () = [1 — m(@)]?, ma(t) = 3m()[1 — m(t)]?,
ms(t) = 3m@)*[1 — m(t)], mo(t) = m(t)?, where m(t) satis-
fies Eq. (56), h(t) and S(¢) satisfy

dh
- = o[l = S(#)] — ht)(en + Br)s 99)

ds
e = p[l = h@)] = S@)(n+v), (100)

and B, and «, are defined in Eqgs. (58) and (60).
Defining total inactivation 7(¢) = I(t) + S(t) = 1 — h(?),
Egs. (99) and (100) may be written as

daT

— = B+ anS@t) — T () an + Br),

7 (101)

45 _ T(t)—SE)(u+v)
E—M( (1 +v).

(102)
Assuming that A(t) = hs(¢)[1 — S(¢)], where hs(t) is a fast
inactivation variable, Egs. (99) and (100) may be expressed as

dh
— =y - hf(r){ah + B — ull — hy(0)] +

vS(t) }
dt

1-S@)
(103)

ds
77 = M= hp O] = SOl = hp (O] + v},

(104)
and the forward rate for slow inactivation is dependent on
hy(t), similar to the dependence of the fast inactivation rate
p(t) = By, on the activation variable m(¢) in Eq. (57). Defining
s(t) =1— S(t), Egs. (103) and (104) are equivalent to

dh 1
d_tf =ay —hf(l){ah + B —M[l—hf(t)]+v(ﬁ - )}

(105)

dS _ 1 l’l
- =V = sOW + pll = A1)

(106)

During a voltage clamp potential V, of the Nat channel
membrane, /¢(t) approaches hyoo (V) = an/(an + Bp), and
from Eq. (106), we may write

a_ oy — s(t) (a5 + By, (107)
dt

where oy = v and B; ~ w(l — hy). If 1 has a weak voltage
dependence, then there is a plateau in the voltage dependence
of B, for a large depolarization potential, consistent with the
slow inactivation voltage clamp data for a Na* channel [2].

Equation (105) may be approximated by

dhy
o T T hye(@) oy + Buy), (108)
where
1
Brr = Bn — (1 —hfoo)+V(— — 1), (109)
Soo

apy = oy, and s (Vo) = a/(as + Bs). As O = m3hfs,
Eq. (76) may be expressed as

av oo _
C— =i, — gnamhps(V — Vo) — 8x/ (V — Vi)

dt
=8V = V), (110)

where Eqgs. (16), (56), (107), (108), and (110) are the empirical
equations that describe spike frequency adaptation [2]. Al-
though the voltage clamp data for an excitable membrane may
be described by linear rate equations [1,2,4,6], more generally,
during the action potential, the fast inactivation rate function
is dependent on the activation variable m(t), and the rate
function for entry into the slow inactivated state is dependent
on the fast inactivation variable hs(z), and therefore, the
equations for 2y and s, Eqs. (105) and (106), are nonlinear
in the rate variables.

The variation in the probability S that the inactivation
sensor occupies a slow inactivation state is several orders of
magnitude slower than for the fast inactivation probability I,
and S may be treated as a parameter that modifies the stability
of the stationary state of the (n,m,T,V) subsystem (see
Appendix D). During a spike train, the increase in the value of
the slow inactivation variable S is associated with a delay to
the next spike, and when the stationary state of the subsystem
becomes stable, the system returns to the resting potential.
The solution of Egs. (61) to (75) may be approximated by
the solution of Egs. (56), (105), and (106) where n and V are
determined by Eqs. (16) and (110) (see Fig. 15, and Table II).

A similar process occurs during a repetitive bursting os-
cillation where slow inactivation increases until the station-
ary state of the subsystem becomes stable; however, in this
case, as the slow variable relaxes during the subthreshold
oscillation, the stationary state of the subsystem loses its
stability when the recovery rate v for slow inactivation is
sufficiently large, and the bursting oscillation resumes (see
Fig. 16). In a mesencephalic trigeminal neuron, a HH model
that includes fast and slow components of the Na™ current
simulates a bursting oscillation that is frequently observed
during stereotypic pattern generated behaviors such as lo-
comotion and respiration [4]. Although the 15 differential
equations in the full kinetic model have been reduced to 3
equations, the number of arithmetic operations per time step
in the Euler numerical method of solution for each system
is similar because the decrease in the number of variables is
partially offset by an increase in the number of operations to
compute the derived rate functions p; and oy,. However, the
computation time for the reduced system is approximately one
third that of the full system because the number of required
time steps is decreased when the fast processes are eliminated.
An additional advantage of the reduced system is that it is
defined by a smaller number of parameters with values that
may be estimated from the voltage clamp data.
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FIG. 15. The solution of a Na™ channel 15-state kinetic model,
Eqgs. (61)—(75) (solid line) may be approximated by C; = (1 —
m)3hfs, C, =3m(l — m)zhfs, Cy = 3m?(1 — m)hss, O = m3hfs,
I=L+L+1;=(1—h¢)s,and S =S, + 53 + 54 = 1 — s (dotted
line), where m, hy, and s satisfy Egs. (56), (105), and (106),
and n and V are determined by Eqgs. (16) and (76). The con-
ditions for the reduction are that (1) the two-stage inactivation
process satisfies By > 8y and yu > oy, for each k (see Fig. 11),
(2) anp > p1 and o; > B (see Fig. 12), and (3) the transition
rates between fast inactivated states ,—I;, and between slow inac-
tivated states S,—S, are at least an order of magnitude larger than
inactivation and recovery rates (see Fig. 13). The decrease in the
slow inactivation probability s limits the number of spikes (spike
frequency adaptation), and the stationary state of the system is
stable when the recovery rate v for slow inactivation is sufficiently
small. The rate functions are o, = 0.1(V +43.9)/(1 — exp[—(V +
43.9)/101), B = 0.11exp[—V/19.1], ac1 = 3, Bct = Bums Ctc2 =
20, Bez = 2Bms @0 = &, Bo = 3Bum, an = aci, B = 0.01358¢1,
ap = oc2, B2 = Beas a3 = o, Bz = Po,a = 0.9, vy = 25, By =
2exp[—V/10], 8;; = 2.5, 8;p = 8i3 = 8ia = 0.01356;1, pr = o/ (1 +
Bix/Vix)» or = /(1 + yie/Bix), for k=1 to 4, u=0.047/{1 +
exp[—(V + 17)/10]}, v = 0.00001 exp(—V/25) «, = 0.007(V +
58.9)/{1 — exp[—(V + 58.9)/10]}, B, = 0.038 exp(—V/80) (ms™"),
and gn, = 12 mS/cm?, gx = 3 mS/cm?, 3; = 0.03 mS/cm?, Wy, =
50mV, Vg = -7TmV,V, = -544mV, j=4,C=1 ;/.F/cmz, and
i, =1pA/cm?.

The experimental data for wild type and AKPQ Na%t
channels may be simulated by a Markovian system with
transitions between activated, and fast and slow inactivated
states [10]. By incorporating K™ and Ca™ ™ currents as well as
intracellular ion concentration changes, the model can account
for the effect of the fast inactivation recovery rate of the

TABLE II. Rate functions, channel conductance and equilibrium
potentials for kinetic models with fast and slow inactivation of the
Na* channel. The parameters for Fig. 16 are the same as Fig. 15 but
n=0.141/(1 + exp[—(V + 17)/10]), v = 0.0001 exp(—V/25) and
8;1 = 5.5, and the parameters for Fig. 18 are the same as Fig. 17 but

5,‘1 == 012

Fig. 15 Fig. 17
Rate (ms™!)
o 0.007(V +58.9) 0.000015(V+25)
n 1—exp[—(V+58.9)/10] 1—exp[—(V+25)/10]
B 0.038 exp[—V/80]  0.0005 exp[—(V + 65)/80]
0.1(V+43.9) 0.1(V+34.3)
% 1—exp[—(V+43.9)/10] 1—exp[—(V+34.3)/15]
B 0.11exp[—V/19.1] 4exp[—(V +59.3)/25]
acy 3a,, 3a,,
ﬂCl /3»1 :3»1
[0 %) 2a,, 2a,,
.BCZ 2/3”” 2;3m
(075) oy oy
ﬂO 3.8171 3/31;1
arn Qci Qci
B 0.01358¢; 0.01358¢;
ap Qca 10ctc>
Br Bea Bea
ars ®o ®o
Brs Bo Bo
g 0.9 0.012
Vik 25 25
Bil 2exp(—V/10) 79 exp(—2.3V/25)
Bix 2exp(—V/10) 79 exp(—2.3V/25)
Bis 2exp(—V/10) 79 exp(—2.3V/25)
Bia 2exp(—V/10) 79 exp(—2.3V/25)
8il 2.5 0.1
S 0.01356;; 0.01356;;
i3 0.01356; 0.001356;
Si4 0.01356;; 0.001356;
m % 0.00011 exp(0.1V/25)
v 0.00001 exp(—V/25) 0.000025 exp(—1.95V/25)
Conductance
(mS/cmz)
ZNa 12 36
8k 3 3
gL 0.03 2
Equilibrium
potential (mV)
VNa 50 55
Vk =77 —80
\ 73 —54.4 —58.5
i, (LA /cm?) 1 27
C(uF/cm?) 1 12

AKPQ mutant on the plateau of the cardiac ventricular action
potential. For a simplified model of the action potential that is
dependent only on Nat, K™, and leakage currents, if the rate
of recovery from Na™ channel fast inactivation is increased,
then the stationary state of the subsystem is stable for small
values of § = 1 — s, but it may lose its stability as S increases
and, therefore, the plateau may develop an oscillation (see
Figs. 17 and 18, and Table II).
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FIG. 16. The solution of a Na® channel 15-state kinetic
model, Eqs. (61)—(75) (solid line) may be approximated by
C=(- m)3hfs, C, =3m(l — m)zhfs, Cy =3m?(1 — m)hys,
O :m3h/-s, 1 :Iz +I} +I4 = (1 —hj)s and S :S2+S3 +S4 =
1 — s (dotted line), where m, hy, and s satisfy Egs. (56), (105),
and (106), and n and V are determined by Eqgs. (16) and (76).
The decrease in the slow inactivation probability s terminates
the burst of spikes, and as the slow variable relaxes during the
subthreshold oscillation, the stationary state of the subsystem
loses its stability when the recovery rate v for slow inactivation is
sufficiently large, and the bursting oscillation resumes. The rate
functions are o, = 0.1(V +43.9)/{1 — exp[—(V +43.9)/10]},
Bn =0.11exp[—V/19.1], «aci =30,  Bei = Bms 2 = 20,
Bcr =2Bm, 2o =, Bo=3Bu, an =oaci, PBn = 0.01358¢1,
ap =oac, B =B, an=do, Prn=Po, ax =09, yix =25
ﬁik = Zexp[—V/IO], 8“ = 55, 5,‘2 = 6[3 = 8;4 = 001358”,
P = /(1 + Bi/Vie)s 0k = 8i/(L + vi/Bix), for k=1 to 4,
n=0.141/{1 + exp[—(V 4+ 17)/10]}, v = 0.0001 exp(—V/25),
a, = 0.007(V 4+ 58.9)/{1 —exp[—(V + 58.9)/10]}, B, =0.038
exp[—V/80], (ms™!), and gn, = 12 mS/cm?, gx =3 mS/cm?,
2. = 0.03 mS/cm?, Vg, = 50mV, Vg = —=77mV, V, = —54.4mV,
j=4,C=1puF/cm? andi, = 1 uA/cm?.

IV. CONCLUSION

Based on an empirical description of the voltage clamp K
and Na* channel currents and the calculation of the mem-
brane potential from the ion current equation, the HH model
accounts for subthreshold oscillations and the action potential
in the squid axon membrane [1]. The slow cumulative adapta-
tion of spike firing during prolonged depolarization is associ-
ated with a reduction in the number of Na™ channels available
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FIG. 17. The solution of a Na™ channel 15-state kinetic model,
Eqgs. (61)—(75) (solid line) may be approximated by C; = (1 —
m)3hfs, C, =3m(l — m)zhfs, C; =3m*(1 — m)hss, O = m3hfs,
I=L+L+1;=(1—h¢)s,and S =8, + 53 + 54 = 1 — s (dotted
line), where m, hy, and s satisfy Egs. (56), (105), and (106), n
and V are determined by Egs. (16) and (76), and the rate of
recovery from inactivation o, is sufficiently small to generate a
cardiac plateau. The rate functions are o, = 0.1(V + 34.3)/{1 —
exp[—(V + 34.3)/151}, B. = dexp[—(V 4+ 59.3)/25], aci = 3,
Bet = Bus aca =20, Bea =2Bm, %o =y, Bo=3Bn, an =
act, B = 0.01358¢1, ap = 10ac2, B = B2, o =ap, Bz =
Bo, oix =0.012, yyu =25, By =T9exp(-2.3V/25), §; =0.1,
8in = 0.01358;1, i3 = 8ia = 0.001356;; pox = ai/(1 + Bir/Vir)» ok =
8/ (1 + yi/Bix), for k=1 to 4 (ms™!), u = 0.11exp(0.1V/25)
(s, v = 0.025exp(—1.95V/25) (s7"), a, = 0.015(V +25)/{1 —
exp[—(V + 25)/101}, B, = 0.5exp[—(V + 65)/80] (s7'), and gn, =
36 mS/cm?, gx =3 mS/cm?, 3, =2 mS/cm?, Vi, =55mV,
Vk =—80mV, V;, = —58.5mV, j =1, C =12 uF/cm?, and i, =
27 uA/cm?.

for activation, and the Na™ current may be described by the
expression m3hs(Vna — V), where the HH equations for Na™
activation m and fast inactivation 4 are supplemented by an
independent rate equation for the slow inactivation variable s
[2]. However, recently it has been proposed that fast and slow
Na™ channel inactivation are sequential processes, and there-
fore, fast and slow inactivation are mutually dependent [7].
In this paper, it has been shown that during an action
potential, for a Na®* channel with three activation sensors
coupled to a two-stage inactivation process, by expressing the
solution as a two-scale asymptotic expansion and eliminating
secular terms, a 12-state kinetic model may be reduced to a
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FIG. 18. The solution of a Na® channel 15-state Kkinetic
model, Eqs. (61)—=(75) (solid line) may be approximated by
C=(- m)3hfs, C, =3m(l — m)zhfs, Cy =3m?(1 — m)hys,
0:m3h/-s, I:IZ +I}+I4 = (l —hf)S, and S:SZ+S3+S4 =
1 — s (dotted line), where m, hy, and s satisfy Eqgs. (56), (105),
and (106), n and V are determined by Egs. (16) and (76), and
the rate of recovery from inactivation o is increased to generate
a cardiac action potential with a plateau oscillation. The rate
functions are o, = 0.1(V 4+ 34.3)/(1 — exp[—(V + 34.3)/15]),
B = 4exp[—(V +59.3)/25], aci = 3ctm, Be1 = Bms c2 = 20y,
Bca =2Bm, @0 =, Po=3Bu, an =aci, Bn = 0.01358¢,
ap = 10ac2, Bz = Bc2, a3 = @o, B3 = Bo, o = 0.012, y = 25,

ﬂik =179 exp(—23V/25), 5,‘1 = 012, 8,’2 = 00135(31]5 8,‘3 =
8is = 0.0013568;;  px = au/(1 + Bi/Vi)» ox = S/ (1 + Yie/ Bix),
for k=1 to 4 (ms™"), wu=0.11exp[0.1V/25] (s71),

v =0.025exp[—1.95V/25]  (s7'), @&, = 0.015(V +25)/{1 —
exp[—(V +25)/10]}, B, =0.5exp[—(V + 65)/80] (™Y, and
8ne = 36 mS/cm?, g = 3mS/cm?, 3, = 2mS/cm?, Vi, = 55mV,
Vk =-80mV, V, =-585mV, j=1,C=12 /LF/cmz, and
i, =27 pA/cm?.

7-state system when the first forward and backward inac-
tivation transitions are rate limiting, and the recovery rate
from the first inactivated state, oy > fB;;. If the transition
rates between the fast inactivated states I, and I are larger

J

than the corresponding inactivation and recovery rates, and
the occupation probabilities for closed states and the open
state are expressed in terms of activation and fast inactivation
variables, then the model may be further reduced to a system
of equations in the activation variables m,, my, ms, mgo and the
inactivation variable A.

The rate of recovery from inactivation oy, is dependent
on the rate functions «;; and B, and the recovery rate oy,
as o0y, 03, 04 K o1, but for a moderate hyperpolarization, the
voltage dependence of «;, may be approximated by the expo-
nential function fj;, in agreement with experimental studies
on Na® channel gating [1,9,21]. Assuming that the activa-
tion sensors are mutually independent, the expression for the
inactivation rate p(¢) is dependent on m(¢), and the forward
transition rates p; of the DIV sensor, and if m(¢) has a faster
relaxation than A(¢), p(¢#) may be approximated by a voltage
dependent function B, as assumed by HH [1]. However, it
may be shown that the inactivation rates oy, the recovery rates
o and the inactivation variable h(t) generally only have a
small effect on the time-dependence of the activation variable
m(t).

If the Na channel permits a slow transition to additional
inactivated states, by expressing the solution as a three-scale
asymptotic expansion and eliminating secular terms, then the
kinetic model for Na* channel gating may be reduced to
a six-state system of equations when the slow inactivation
and recovery rates are at least an order of magnitude smaller
than the corresponding fast inactivation rates. The reduced
system requires a smaller number of parameters with values
that may be estimated by comparison with experimental data,
and for a repetitive action potential, the computation time for
the solution of the full system is decreased when the fast
processes are eliminated. Assuming that the activation sensors
are mutually independent, a 15-state kinetic model of Na™
channel gating may be reduced to equations for activation,
and fast and slow inactivation that approximate the empirical
linear rate equations that describe spike frequency adaptation
in a neural membrane, a repetitive bursting oscillation that is
modulated by the slow inactivation of Nat channels, and a
plateau oscillation during a cardiac action potential.

APPENDIX A

For a Na™ channel described by the twelve state kinetic
model of Egs. (4)—-(15) (see Fig. 1), it is assumed that o <
Yiks 0ix K Bik, and yi + Bir is greater than the activation and
deactivation rate functions. The six-state equations for a single
activation sensor and an inactivation sensor may be reduced
to a four state system when the occupation probabilities for
Az and A4 rapidly decay to quasistationary values before the
relaxation of the other states, and a similar analysis may be
applied to the full system of equations. Egs. (6), (7), (10), (11),
(14), (15), and (17) may be expressed as

dcC "
wld_T3 = —n(ap + ai3)C3(t) + nBoO() + %’ (A1)
do A
h ar I %’ (A2)
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dA; w1 (Biz + vi3)As(t)
- = —nas3Az(t) — 1(Pis + ¥is)As + naizCa(t) + ndi3l3(t) + nPaszAs(t),
dT Bi+vi
dA w1(Bia + Via)Aa(t)
W — = —nBazAs(t) — 10Pu + yis)As + Noia O(t) + ndiads(t) + naazAs (1),
dT Bi +vi
dl w1yi3A3(1)
— = — 8i3)13(¢ Ii(t _—
1 n(ays + 83)h(t) + nBrla(t) + Bt 7
dly w1YisA4(1)
—_— == Sia )4 (1 I(t _
o1 (B3 + di)ls(t) + nap (1) + Bt v,
dv . _ 4 -
wlcd_T = nlic — gnaO@)(V — Wa) — gxn(t)"(V — Vk) — g (V — V)1,

(A3)

(A4)

(AS5)

(A6)

(AT)

where T = (B; + vi)t, Bi = Bia(Ve), vi = via(V,), T = w1(V,)t, w is the fast inactivation rate constant, V, is a constant potential
(for example, the resting or subthreshold potential), and n = w(V,)/(B; + ¥;) < 1. For the three-state system (O, A4, I4) that

describes the transitions of the DIV sensor between open and fast inactivated states, it may be shown that

QisYis + Sis(ais + Bia)
W) = < Qg + 8 K Bia + Via-
Bia + Via

(A8)

The solution of Eqs. (A1)—(A7) for Cs(¢), O(t), Ax(t), I (t) k = 3,4, and V (t) may be expressed as an asymptotic series where

the terms are assumed to be functions of two timescales, the slow time 7 and the fast time 7T,

G(t) = Co(r, T) +nCai(z, T) + - - -,
O@) = O0o(t, T)+nO0i(z, T)+ -+,
Ac(t) = Ao (T, T) + nAi (T, T) + - -+,
(@) = Lo(t, T) + nla(z, T) + -+ -,

V)=V, T)+nVi(t,T)+ -,

and, using the chain rule, to first order

dC3 dC3p 0C3 0C59
ar ~ ot T"ar T
dO 00y 00, 90q
aT = ST + ﬂﬁ + 778__[,
dAy  0Ap 0A;1 Ao
ar = ar "ot T
dly, 9l 0l dlko
ar ~ ot TTor T
av. W Vi W
at ~ ot ot T
Equating coefficients of powers of 5 in Egs. (A1)—(A7), and Eqs. (A14)-(A18), we may write

’

0G0 _ BizAs
T Bty
900 _ iAo
T Bi+vi
0Ar0 (B + Yi)Aro
oT Bi + vi
Ao VikAro
T Bi+v
Vo
aT
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(A12)
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(Al6)

(A17)
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(A19)

(A20)

(A21)

(A22)
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and

w1 Bi3Az1 w1 BVIAz

]

0G31 | 3Gy
w1 +—— ) = —(ao +a3)C0 + BoOo +

T Bi +vi Bi+ Vi
N
w (3;)4;1 + %) = —auAs + ai3Co + 83l + BazAao — wl(,BZi-:_J;;)Asl o (ﬁ{gﬂj‘ri)V]Aw,
w1 (854;1 4 %) = —BazAs + 24 Og + Sialyo + a3Azg — 0)1(,3;1))//5:1)A41 B a)1(/3;4ﬂ;|'—£’,;4/i)V1A40
(23173"1 + %) = —(a3 + 8i3)30 + Br3lao + a;iyit' wl};:igrlzm’
(ZI;I %) = —(B13 + 8u)lao + azlzo + a;iyi“;il wl;i:fl:m’

oT | ot

where B, = dBiu/dV (Vy) and y; = dyu/dV (Vp) for k = 3, 4.
Eliminating A3, from Eqgs. (A24), (A26), and (A28), and A4; from Eqgs. (A25), (A27), and (A29), we may write

aC p J0A aC y 0A
w1( I Bis 31>=—w1< 0 Biz 30

3V1 BA% . _ _ 4 _
wC + — ) =i, — 8NaO0o(Vo — Vna) — 8xn(t) (Vo — V) — 8. (Vo — V1),

) — (o + p3)C30 + BoOo

Bis +vi T ot Ba+ys 0t
Bis w1ViAso (Bivis — BisVi
+ 2 (83l + BasAso — aasAso) + : =,
Bz + v Bi+vi Biz + v
00, Bia 3A41) (300 Bia 81440)
o =+ 77— ) =—oi| — + ———— ] — (Bo + p4)O0p + apCx
( Bia + Via 0T ! Bia + via 9T
Bia w1ViAgo ( BisVia — BisViy
+ 2 (Sialao + a3z — BazAso) + : =)
Bia + Via A A Bi+vi Bia + via
0131 vis  0A3; 010 vis 0430
Sy M PO ) (22 BT (4 03 + Bisl
1< Bty T w) Bt yn Ot (ar3 + 03)30 + Bralao
Vi3 w1ViAso (vi3Bi3 — visBi
+ 22 (@3Cs0 + BasAao — aazAso) + ( : =,
Biz +vi3 AT A Bi +vi Biz +vi3
014 Yia  0Aq > <3140 Vi 8A4O)
o\ = +—— =-o| —+—— — (B3 + 04)lao + a3lz
( Bia + via 0T Bia +via 0T
o1ViAgo ((VisBis — ViaBiy
—(az400 + aa3Azo0 — BazAso) + ( : =,
Bia + Yia Bi +vi Bia + Via
where
P Ak Vik
= —,
Bix + Yik
P
Bix + vk

The solution of Eqs. (A19)-(A23) for k = 3,4 is
Co(1, T) = C§) (x) + C5) (x) exp(A3T),
O(t. T) = 0" (r) + OF () exp(rsT),
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Aro(t, T) = A () exp(MT), (A39)
Lo(t, T) = 1)) (t) + 1) (1) exp( T, (A40)
Vo(z, T) = V" (1), (A41)

where Ay = —(Bi + vir)/(Bi + ;) and is dependent on the membrane potential V. Substituting from Eqs. (A37)-(A41), the
sum of the terms that are independent of 7" must vanish to eliminate the secular terms on integration of Eqgs. (A31)-(A34) and
therefore, as C5(t) ~ Cé('))(r), I(t) = If(l))(r), for each k, O(¢) =~ OBI)(I) andV(t) = Vo(l)(l') for longer times

dCs

—= = —(@o+p)C3(1) + PoO(1) + o315 (0), (A42)
do
- = —(Bo + p2)O(t) + apCs(t) + o4ly(t), (A43)
dl
2 = e+ o)B®) + pC(0) + Fl@), (Ad4)
dl
I —(Biz + 0)ls(t) + p2O(t) + a3 (1), (A45)
wv _ 4 -
oy "l ENaOO[V () — WNal — gxn(@)'[V () — Vk] — 8LV () — VL] (A46)

In Egs. (A26) and (A27), the sum of the terms that are independent of 7 also vanish, and therefore, following a transient,
Ai(t) ~ Ay and

3C3(t i3z (t
A3(t)%a3 3(1) + 33()’ (A47)
Biz + vis
4 O(t Sials(t
Aut) ~ M. (A48)
Bia + via
APPENDIX B

For the eight-state kinetic model of Egs. (18)—(25), it is assumed that the rate functions satisfy «;; > p; and o7 > B [9],
and therefore, the occupation probability of the inactivated state /; rapidly decays to a quasistationary value before the relaxation
of the other states. Equations (18), (22), and (23), and the current equation, Eq. (17), may be expressed as

26— e + G0 + nBer Gty + — 20D (B1)
Vgp = T Meer T pURR Pt T Vo + 8a (Vo)
dly w1 (op; + o) (t)

o1 =P G0 + Bub ()] — PRCATS AR (B2)
wdﬁ——(a + B+ 02)h(1) + nBh (1) + C(t)+M (B3)

tgr = e T P o)t PRt e ) T s (Vo)

dv o . _

@ C = = lie = B0V = W) = gxn()*(V = Vi) = 2V = V)], (B4)

where T = [a;1(V,) + 81 (V)]t, T = w1(V,.)t, w is the rate constant for inactivation from the first closed state, V. is a constant
potential, n = w; (V.)/(an1(V:) + 8;1(V.)) < 1, and §;; ~ o1 when the membrane potential V is hyperpolarized. For the three-
state system (Cy, I, I>) that describes inactivation from the first closed state, it may be shown that

arpr + Bri(or + p1)

W) = < p1+Bn Ko +oa. (BS)
o1+
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The solution for C;(¢), I,(t), L(¢), and V() may be expressed as an asymptotic series where the terms are assumed to be
functions of the slow time t and the fast time T,

C(t)=Co(t, T)+nCi(z, T)+---, (B6)
Li(t) =Lo(t, T)+nly(z, T)+ -, ®B7)
L(t) = ho(t, T) +nbi(t, T)+ -, (B8)
V) =W, T)+nqVi(z, T)+---, B9)

and using the chain rule, to first order,

dcC aC aC aC
L _ %0 I 10

atr _ , BI10
ar ~ ot " Tor T (B10)
d[l 3110 3111 8110
il B ., Bi1
ar ot T "ar T (B11)
dl, 9l a1 a1
2 _ 2 22 (B12)

ar — ot T"ar T
v v, oV, oV,
A (U AL B13
ar a1 Tt Tt (B13)

Equating coefficients of powers of 1, we may write

aC 1
0 _ o1l ’ (B14)
aT an(Ve) + 8 (Ve)
ol 1
o _ (ap + o1l ’ (B15)
aT an(Ve) +8ia(Ve)
ar 1
0420 _ arilio ’ (B16)
oT o (Vo) + 6 (Ve)
W _ (B17)
ar
and
aCi1  9Cyo wiol w1o{Vilio
1L )= C C , B18
“’1< TR ) (et pCot e 4 o 50V an (o) + 60 (Vo) (BIS)
al 3110) wi(an +oDh wi(ay, +0)Vilp
o[ 2+ 20 = piCio + Bribo — - : B19
‘<aT ar ) =Pt P T an(Vo + 51 (V) B19)
b 3120) wianli wra, Vilio
o\ —+— ) =—(ap + + o2)ho + L+ pC + R B20
‘<8T ot (2t Pt b+ Pl + G O s ) T an(Vo) + 60 (Vo) (520
A% BA% . _ _ 4 _
wC 3T + 97 ) Tk~ gNaO@) (Vo — Wa) — gxn(t) (Vo — Vi) — 8. (Vo — V1), (B21)
where o = doy/dV (Vy) and o, = doy /dV (V).
Eliminating /{; from Eqs. (B18) and (B20),
aC1y o1 0l aCyo o1 9l
Sy o o) (& el c c
wl(&T +Ol11+01 3T> CO]( 0T +Ol11+0’1 31’) (CYC1+,01) 10+’3C1 2
(o5 601V1[10 0’1/0111 — Ulol;l>
+ Cio + Bril) + B22
ap + o (1Cro + Prnkzo) 0611(Vc)+3i1(Vc)< ay + oy (B22)
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o2y e SN (Yo en ON0) o Byt ono + ks + poC
o7 "y +oy 0T "ot "y +or ot SRS

ar w1Vl (06}101 — 061101/)
+ Cio + Bnho) + . B23
an oy Pt A S\ an o (B23)

The solution of Eqs. (B14)-(B17) is

Cio(t, T) = Cjg (1) + C3 (1) exp(ai T), (B24)
Lo(r. T) = Iy (t) exp(u T), (B25)
by(r. T) = Iy (1) + I () exp(A, T), (B26)
Vo(t. T) = Vg (1), (B27)
where A = —(ay; + 01)/[an (Vo) + 6i1(Ve)] and is sufficiently large at each membrane potential that /; attains the quasi-

stationary value before the relaxation of C; and I,. Substituting from Eqs. (B24)—(B27), the sum of the terms that are independent
of T vanish to eliminate the secular terms on integration of Eqs. (B21)—(B23), and therefore, as C;(¢) & Cl((l))(l'), L(t) ~ 12%)(1:),

and V(¢) ~ Vo(l)(t), the reduced equations may be expressed as

dcC
d_tl = —(ac1 + p1)C1() + Bc1Ca (1) + 616L(2), (B28)
db N o
o= —(ap + 61+ 02)h(t) + p1C1 (1) + p2Ca(t) + Bralz(2), (B29)
aV . _ B 4 _
CE =i, — ZNaOOIV () — Wa]l — 8xn(@)*[V (1) — Vk] — 2V (@) — VL], (B30)
where
P1U]1
. , B31
£1 po—— (B3D)
o181
61 = . B32
61 P (B32)

In Eq. (B19) the sum of the terms that are independent of T vanish, and therefore, following a transient,

_ mCi@)+ Bnh()
o + oy '

L) (B33)

APPENDIX C

If the transition rates between fast inactivated states, and between slow inactivated states are at least an order of magnitude
larger than the corresponding inactivation and recovery rates, and also larger than the activation and deactivation rates, then
Egs. (77)—(87) and the current equation, Eq. (76), may be expressed as

dc
wld_Tl = nl—(aci + pC1 (1) + Bc1Ca(t) + 61L(1)], 1
dc,
w1 T - Nl—(acz + Bc1 + p2)Ca(t) + ac1Ci(t) + B2 G (t) + 02L(2)], (C2)
dCs
o = n[—(ao + Bca + p3)C3(t) + acrCa(t) + BoO(t) + o31:(2)], (3)
do
o = n[—(Bo + p4)Ot) + apCs(t) + o4ls(1)] )
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dr —opl I
on T2 = WD OLPRBOL 5, 4 00 4 100) +9520) + PG + 220,
o+ B
1% _ oil=(e3 + f)B@) + apb(@) + Bsla®)] 4 nl=(03 + () + psCs(t) + vS3 (0],
o+ B
dl — Bl I
o = LB slmtoa+ L)+ p100) + V810,
dS;  wil-apSi(1) + BnS:(1)] _
o = s + n[—v8$: () + ub ()],
601% _ oil=(a + Br)S3(1) + anSa(t) + Br3Sa(t)] - n[—vSs() + phs ()],
o+ B
dSs  o1[—Br3Ss(t) + 3S3(1)] _
w1 = o 1B + n[—vS4(t) + uly(1)],
dv . _ _
1Cp = nlie = gxaOOV = Vra) = gxn’(V —Vk) — & (V = V)l

(C5)

(C6)

(C7)

(C8)

(C9)

(C10)

(C11)

where T = (o + B)t, o = ap(Ve), Br = Br2(Ve), V. is a constant potential, 71 = w;(V,)f, w; is the rate constant of fast
inactivation, 7, = w,(V,)t, w, is the rate constant of slow inactivation, n = t;/T = w(V,)/(o; + B;) < 1, and € is defined

by en® = 1o/T = (Vo) /(s + ) <K 1.
The solution of Egs. (C1)~(C11) may be expressed as, for each k,

Ci(t) = Cuo(t1, 12, T) + nCii (11, 72, T) + n°Cra(t1, 02, T) + -+ -,
0(t) = Oy(t1, 12, T) + 001 (11, 12, T) + N Oa(t1, 12, T) + - - -,
L(t) = Lo(t1, 22, T) + nha (11, 2. T) 4+ n*Ia(t1, 12, T) + -+,

Si(t) = Sko(t1, T, T) + 1S (11, 2, T) + 0’Sia(r1, 22, T) + -+

V() =Volr, o, T) + nVi(ty, @, T) + n*Va(ty, @, T) + - - -,

(C12)

(C13)

(C14)

(C15)

(C16)

where the terms are assumed to be functions of the fast time 7', the fast inactivation time 7;, and the slow inactivation time 7.

Applying the chain rule, to second order,

- ) (e S )
c%k _ aas;o . (aas;l N aasfklo) L <385;2 N aas:ll +Eaasrk;)’

Equating coefficients of powers of 1, we may write,

9Cko _o,
oT
0, _
aT
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(C19)

(C20)

(c21)
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ar —apl I
Ao _ —anbo+ Brlo (C24)
oT ar + B
I Ly — ! ’
0Ly _ anhy (a3 + Br2)o + Bra 0 (C25)
aT ar + B
al Lo — B3l
Ol _ anlo — B 0 (C26)
aT ar + By
a —apS S
S0 _ —anS + S (C27)
oT o+ B
3 Sho — S S
S30 _ @S — (i3 + B)Sx0 + By 40 (C28)
oT ar+ pi
as. S30 — Bi3S
w0 _ oS — P 0 (C29)
T oy + ,31
aVy
Mo _y (C30)
aT
and to first order,
aC aC N N
w1 g1 + gxi0 ) _ —(aci + p1)Cio + Bc1Coo + 6110, (€30
oT 8‘[1
aC aC
! <8_T21 + ﬁ) = —(ac2 + Pe1 + p2)Co0 + ac1Cio + Pe2Cso + 0210, (€32)
1
aC aC
! ( 373"] + ﬁ) —(ao + Bca + p3)C30 + ac2Coo + BoOo + 0313, (€33)
1
a0 a0,
o1 = + == ) = —(Bo + p4)0 + aoCo + oalao, (C34)
aT aTy
RIoN 812°> o1(—aphy + Bl)  o1Vi(—apho + Bjlo)
o (220 0N o oy + 51Cio -+ paCa + (635
1( e (61 + 02)ho + P1C10 + p2C20 o+ B ar+ B (€35)

013 3130) o(—(a3 + Bk +aph + Bly) o\ Vi(—=(ag; + B + appho + Brslao)
o[ 22 + 22 ) = —o3h0 + 03C30 + + o
1<8T a1y 3430 — P3C30 @+ B o+ B
(C36)
041 3140) wi(ail — Prlsr)  w1Vilogsho — Brslo)
ol — + — ) = —oulyy + paOy + - - , C37
‘<3T Ty 40 T pato ar + B o+ B @
o) (3521 N 3520) _ o1(=anSu + BrSs1) o Vi(—ap, S0 + /31'2530)’ (C38)
T a1 a; + Br a; + Bi
0 0 — M S S. Vi(—(«) 'S S Y
w1( S31 n S30> _ wi(—(ar + Br2)S31 + @Szt + BraSar) Lo 1(=(ay3 + B1p)S30 + 1820 + B3 40)’ (C39)
aT a7 o+ B ar+ i
o (3541 n 8540) _ o (a3S31 — Br3Ss) @ Vi(ap;Sy — ,31/3540)’ (C40)
oT oT; oy + By ar+ B
aV, A%
wlc(a—T1 + a—j) = ic — 2na00(Vo — Vi) — k() (Vo — Vi) — 2.(Vo — V). (C41)
1

032407-21



S. R. VACCARO PHYSICAL REVIEW E 99,

032407 (2019)

where o}, = day/dV (Vo) and By, = d B /dV (V) for k = 2 to 3, and to second order,
aC aC aC
k2 9 9Gk

=0,
aT 87,'1 8‘1,'2
200 00 20,
e Tt N Sk
T 0Ty 0Ty
or or al
o =2+ 2 422 = —plyy + vy,
81'1 8‘[2
ol ol 31
o =2 + 2L =) = —pul3p + vS3,
31’] 812
oL ol 3]
[ S ) = —lyo + vSao,
87,'1 81’2
_ (0S» 3521 3520
— Sy + 1o,
60(8T 312 V920 + i
_ (383 3531 8530
= —vS Ly,
w(aT 8r2 V330 + (30
_ [0S 0S. 85
wz( 8;2 A 40) = —vS40 + ulyo,
av2 v

or o | on
where w, = w»/€ = w7, and only variables of lowest order are retained on the right side of Egs. (C42)—(C50).
The sum of Egs. (C35)—(C37) and Eqgs. (C38)—(C40) is

oby 0Ly | Oly\ 0hy 0l Ol
(8T tor T 8T>_ (811 + AT + a1y

08 0831 0S4 08 083 | 9S4
= —-w + + ).
oT oT oT 0 T 0 T1 8‘51

The sum of Egs. (C44)-(C46) and Eqgs. (C47)—(C49) is
_ (0hy 0L Oy _ (0l 9Ly 0ly
wz(aT tor T 8T)+w2<8rl toan T an)
by 9l 9l
= —w + — + — ) — o + o + L) + v(S20 + S30 + Ss0),
8r2 a'L'z 31’2
_ (08n 083 Sy _ (9352 n 0831 n 0841
17) @
\or " ar " ar o, am | am
080 083 | 9S4
- 0)2< 81’2 + a'L'z + 8‘52

The solution of Eqgs. (C22)—(C30), for each k, may be expressed as

) — V(820 + S30 + Sa0) + plloo + o + Lap).

Cio(t1, 12, T) = C (11, 1),
Oo(t1, 72, T) = 0(()1)(T1, 72),
_ 7 (2) 3)
Io(t1, 12, T) = Iy (71, 1) + Ly (71, ) exp(M T ) + Ly (t1, 2) exp(XoT),
_ ¢ 2) 3)
Sio(T, T) = Sy’ (11, 12) + i (71, ) exp M T ) + S, (1, 72) exp(A2T),

Vo(ti, &, T) = V) (11, 1),

032407-22

(C42)

(C43)

(C44)

(C45)

(C46)

(C47)

(C48)

(C49)

(C50)

—) — (61 + 02)h0 — 03130 — 04l40 + P1C10 + P2Co0 + 3C30 + 0400,

(C51)

(C52)

(C53)

(C54)

(C55)

(C56)

(C57)
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where
LY (1, w) = kBBl 1Y) (t1, ©) = kanpil’,
Ii(l))(fl, ©) = kapapl’, Sé(l))(fl, ) = kﬁlZ,BISS(()U,

1 1 1 1
S (T, 1) = kS, Sy (t1, ©) = kapansS’,

1P, w) = ) (11, @) + 1) (11, ©) + 1) (11, 1), (C58)

SV (w1, 1) = S5 (11, ) 4 S (71, 1) + S (71, 1), (C59)
1

(C60)

BBz + anPiz + aposs’

and Ay, A, are solutions of

e (0112 +oap+ B+ B )A | o +anfn + Brfni _o. C61)

ar + Bi (o7 + Br)?
If app = 2ay3 and B3 = 2Bp2, then Ay = —(ay3 + Br2)/ (a7 + Br) and Ay = —2(ay3 + Br2)/(er + By)-
Therefore, as (1) ~ I, (t1, T2) and S(t) ~ Sy (t1, ©2), for each k, defining 1(t) = L(t) + I5(t) + Is(t) and S(z) = S>(1) +
S3(1) + S4(1),

I(t
L) ~ Br2Br3l(t) , (C62)
anap +anfi + Brfn
I1(t
L) ~ apPpl(t) ’ (C63)
apopi +apfi + Brbis
apapl(t)
L) ~ , (C64)
! apas +apfin + Brbis
S(t
Sy(t) ~ BroBiaS(t) ’ (C65)
anpap +anpfi + Brfni
S(t
S5(t) ~ apfrS(t) ’ (C66)
apopi +apPi + Brbis
t
Sut) ~ apoS(t) (C67)

apai + anfi + B

For each membrane potential, the rates A; and A, are sufficiently large that, following a brief transient, the expressions for I, (¢)
to I4(t) and S,(¢) to S4(7) are in agreement with the solution of the full system.

Substituting from Eqgs. (C53)—(C57), the sum of the terms in Egs. (C31)—(C41) that are independent of T vanish, and the sum
of the terms in Egs. (C42)—(C50) that are independent of T and t; also vanish to eliminate the secular terms. Therefore, as

d d d
L o oy, C68
dt @1 0Ty +w231’2 ( )
the reduced equations are
dc, A
ke —(ac1 + p1)Ci1(t) + Bc1Ca(t) + 61,1 (1), (C69)
dc,
o —(ac2 + Ber + p2)C (1) + a1 Ci(#) + BeaC3(2) + 02,1 (1), (C70)
dGC;
el —(ao + Bea + p3)G (1) + a2 Ga(t) + BoO(r) + 03,1(2), (C71)
do
e —(Bo + p)O() + aoC3(1) + 04,1(1), (C72)
dl . N
i —(61r + 02 + 03 + 04y + ) + P1C1(2) + p2C2(2) + p3C3(1) + p4O@) + VS (@), (C73)
ds
o= ul(@®) —vS(t), (C74)
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where

6 — 61812813 ’ (C75)
apap +apfis + Brfis

oy = 02B2Br3 ’ (C76)
apap +apbi + Brfis

oy = ozapfni ’ 77
apas +apfis + Brbis

Our = 04003 ) (C78)

apa +apfis + Brbis

APPENDIX D

The stationary solution (ny, my, Ty, Sy, Vi) of Egs. (16), (56), (101), (102), and (110) is determined by the intersection of the

nullclines, and hence
1— gL(Vs - VL) + gKnoo(Vs)j(vx - VK) - ie _ .Bh(,u + V) (Dl)
ZNaMMoo(Vs)? (Ve — V) B +v) +apv’

where mq (V) = o, /(e + Bin) and noo(V) = o, /(oty + Bu). The stablhty of the stationary point may be computed by assuming
that n=ny+i,m=mg+in, T =T,+T,S=S;+8,V =V, +V and the eigenvalues may be obtained from the Jacobian
matrix of coefficients of the linearized equations in i, /i, T, S, and V. For a solution with a single burst of spikes, each eigenvalue
has a negative real part, but for a repetitive bursting oscillation, if two of the eigenvalues are complex conjugate, then the real
part is small and positive.

If the rate functions p < B, and v < «;, then the variable S may be treated as a parameter, and the stationary point of the
(n,m, T, V) subsystem, Eqgs. (16), (56), (101), and (110), is determined by the intersection of

Br + onS

fr(vV) = m (D2)

and
2LV = Vo) + 8xnee (V) (V = Vi) — i
gNamoo(V)3(VNa -V) '

For each value of S, the stability of the stationary point of the subsystem may be determined by assuming that n = n, + 7,
m=ms+m,T=T,+T,V =V, +V, where (n,, my, T;, V) is the stationary solution and we may write, to first order,

fV)y=1- (D3)

dit o
E = (ans + ﬂns)[_n + noo(vs)v]v (D4)
E = (ams + /Bms)[_’;h + m;O(Vs)V], (DS)
J7 o
o (atns + Bus)[=T + fr (Vo)V], (D6)
av se 4 o L
Cd_ = SgNdm (1 - T)(VNd -V )m gNd(VNd Vx)m‘yT - gNam:g(l - TY)V - ]gKng (Vv - VK)n - gKn{V - gLVv (D7)

where ags + o5 = 0o(V) + B, (Vi) for g = m, n, and h. The eigenvalues A of the Jacobian matrix M of coefficients of Egs. (D4)—
(D7) may be determined from the characteristic equation det(M — IA) = 0, and a Hopf bifurcation occurs at S = S| when there
exists an eigenvalue A = A, + iA,, A, = 0 such that dA,/dS # 0 [28].

By assuming that Na*t channel activation is instantaneous, the characteristic equation may be expressed as

—det(M — I1) = 1> + D1A> + DA + D3 = 0, (D8)
where
Dy =r+rr+ry,
Dy = rylrr + rv + n (VOF] + rrlry + F (Vo) fr (Vo]
D3 = ryrrlry + F (Vo) f7(Vs) 4+ n (Vo) Fx],
= %Kng + % — F'(V)(1 - T),
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F(V) — gNa

8K i
F = ]Eni "V, — Vi),

Fin = s + ﬁms»
Ty = Qs + IB}‘LYﬂ

T = Ops + Brs.

c Moo (V) (Vi — V),

If D\D> = D3 and D, > 0, then det(M — IA) = —(A + D;)(A> + D»), and therefore, two of the solutions of the characteristic
equation are pure imaginary and a Hopf bifurcation occurs at § = S, & S|, when activation is an order of magnitude faster than

inactivation, and S is determined from Eqs. (D4)—(D7).

If gx = 0 and the K™ activation variable n does not contribute to the membrane potential variation, then the characteristic

equation reduces to

A+ )\|:05hs + Bns + ‘%L - F'(Vpd — 7})] + (ops + ﬂhs)[% —F'(Vo)(1 = T)) + F(Vs)f%(Vs)} =0, (D9)

and A, = 0 when V; satisfies the equation

g F'(Vo@L(V,— V) —i.)
Vi Vi = — =0 D10
an(Vs) + Ba( )+C O (D10)
and
2 (Vo — Vi) — i,

T, =1— M (D11)
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