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Reduction of a kinetic model for Na+ channel activation, and fast and slow inactivation
within a neural or cardiac membrane
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A 15-state kinetic model for Na+ channel gating that describes the coupling between three activation sensors,
a two-stage fast inactivation process, and slow inactivated states may be reduced to equations for a 6-state system
by application of the method of multiple scales. By expressing the occupation probabilities for closed states and
the open state in terms of activation and fast inactivation variables, and assuming that activation has a faster
relaxation than inactivation and that the activation sensors are mutually independent, the kinetic equations may
be further reduced to rate equations for activation, and coupled fast and slow inactivation that describe spike
frequency adaptation, a repetitive bursting oscillation in the neural membrane, and a cardiac action potential
with a plateau oscillation. The fast inactivation rate function is, in general, dependent on the activation variable
m(t ) but may be approximated by a voltage-dependent function, and the rate function for entry into the slow
inactivated state is dependent on the fast inactivation variable.
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I. INTRODUCTION

During prolonged or repetitive depolarization, in addition
to the fast inactivation of Na channels that contributes to re-
polarization of the membrane [1], a slow inactivation process
reduces the number of Na+ channels available for activation.
The increase in slow inactivation of Na+ channels during
depolarization is associated with a delay to the next spike or a
reduction in the firing frequency (spike frequency adaptation)
[2] and is the result of a structural rearrangement in the
selectivity filter region of the ion channel that generally occurs
following the inactivation of the pore [3]. Slow inactivation of
the transient and persistent components of the Na+ current in
a mesencephalic V neuron is associated with the termination
of a bursting oscillation, and the increase in the amplitude
of the subthreshold oscillation between bursts occurs during
the recovery from slow inactivation [4]. In subicular neurons
adjacent to the hippocampus, the transition from bursting to
single spiking is influenced by the slow inactivation of Na+

channels, and this may provide a mechanism for enhancing
the effect of input signals [5].

The Na+ channel protein is composed of four domains DI
to DIV that surround the ion pore, and in response to mem-
brane depolarization, the transverse motion of the charged S4
segments of DI to DIII is associated with activation, and the
slower movement of DIV is correlated with fast inactivation
[6]. A recent study of the effect of molecular inhibitors on
Na+ channel gating has proposed that fast and slow Na+

channel inactivation are sequential processes [7], and that the
activation of the DIV sensor has an essential role in each type
of inactivation [8].

Based on the measurement of voltage clamp currents and
the slow cumulative adaptation of spike firing for neocortical
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neurons, the Na+ current INa may be described by the expres-
sion m3hs(VNa − V ) [2] where VNa is the equilibrium potential,
the activation variable m, the fast inactivation variable h, and
the slow inactivation variable s satisfy the equations

dm

dt
= αm − m(t )(αm + βm), (1)

dh

dt
= αh − h(t )(αh + βh), (2)

ds

dt
= αs − s(t )(αs + βs), (3)

and the rate functions αg and βg are dependent on the mem-
brane potential V for g = m, h, and s. The Na+ current may
also be expressed as O(t )(VNa − V ) where O(t ) is the open
state probability that is determined by a kinetic model where
transitions between states represent the activation of three
S4 voltage sensors to open the channel, a two-stage fast
inactivation process [9] and subsequent slow inactivation [10].

Single-channel recording techniques have demonstrated
that ion channels are thermally activated between closed and
open states [11], and therefore, the Hodgkin Huxley (HH)
equations describe the behavior of a large number of stochas-
tic Na+ and K+ channels. The probability distribution for the
number N of open Na+ channels satisfies a master equation,
and for sufficiently large N , by application of a system size
expansion, the master equation may be approximated by a
Fokker-Planck equation [12]. As the diffusion terms are small,
it may be further reduced to deterministic equations that are
equivalent to the rate equations for the activation variable m
and the inactivation variable h.

Assuming that each voltage sensor is a Brownian particle in
an energy landscape, the master equation for the random walk
within the membrane may be reduced to a Smoluchowski
equation that is dependent on a diffusion parameter and a
potential of mean force [13]. As the relaxation within each
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deep well is rapid, the probability density may be expressed
as the product of the stationary distribution and a survival
probability that is the solution of a rate equation [14]. By
approximating the potential function for the voltage sensor
by a square well potential, the low-frequency component of
the solution of the Smoluchowski equation may be expressed
as differential equations for the survival probabilities of the
closed and open states [15,16] and is similar to that obtained
from a numerical solution [17].

For a system of differential equations that has a separation
of timescales, a reduced system may be derived explicitly
by expressing the solution as an asymptotic expansion that
is dependent on the fast and slow times [18]. A variable that
attains a quasisteady state after an initial fast transient, is the
solution of an approximate algebraic equation that may be
obtained as the lowest order term in an asymptotic expansion
of the solution of the full system, and therefore, the long-time
behavior is governed by the dynamics of the slow variables
that form a subsystem of lower dimension. The method of
multiple scales and other singular perturbation techniques
have been applied to the equations in many areas of physics
and biology, such as orbital mechanics, coupled nonlinear
oscillators, and biochemical and enzyme reactions [18,19].

In this paper, it is shown that by taking account of the
large relative magnitude of the transition rates between some
states, a fifteen state kinetic model that describes Na+ channel
gating with three activation sensors, a two-stage fast inactiva-
tion process, and a slow transition to additional inactivated
states, may be approximated by equations for a six state
system. Assuming that the activation sensors are mutually
independent and activation has a smaller relaxation time than
fast inactivation, the inactivation rate function is, in general,
dependent on the activation variable m(t ) but may be ap-
proximated by a voltage-dependent function, and the slow
inactivation rate function is dependent on the fast inactivation
variable h f (t ). The kinetic model describing Na+ channel
gating may be reduced to rate equations for activation, and fast
and slow inactivation with a solution that may exhibit spike
frequency adaptation, a repetitive bursting oscillation and a
cardiac action potential with a plateau oscillation.

II. REDUCTION OF A KINETIC MODEL FOR Na+

CHANNEL ACTIVATION AND FAST INACTIVATION

By assuming that Na+ channel activation and inactivation
are independent, the Hodgkin-Huxley (HH) rate equations for
Na+ and K+ channels and the membrane current equation
provide a good account of the action potential waveform, the
threshold potential, and subthreshold oscillations in the squid
axon membrane [1], and the approach has been applied to a
wide range of voltage-dependent ion channels in nerve, mus-
cle and cardiac membranes [6]. However, subsequent experi-
mental studies have shown that the probability of Na+ channel
fast inactivation increases with the degree of activation of the
channel [20], the recovery from inactivation is more probable
following deactivation [21], and the kinetic equations for
coupled Na+ activation and inactivation processes describe
ion channel states and their transitions, and account for the
ionic and gating currents during a voltage clamp [9].

FIG. 1. State diagram for Na+ channel gating where horizontal
transitions represent the activation of three voltage sensors (DI, DII,
and DIII) that open the pore, and vertical transitions represent the
two-stage fast inactivation process of the DIV voltage sensor and the
inactivation motif.

If the Na+ channel conductance is dependent on the activa-
tion of three voltage sensors coupled to a two-stage inactiva-
tion process, then the kinetics may be described by a 12-state
model (see Fig. 1) where the occupation probabilities of the
closed states C1, C2, C3, A1, A2, and A3, the open states O and
A4 and the inactivated states I1, I2, I3, and I4 are determined
by the equations

dC1

dt
= −(αC1 + αi1)C1(t ) + βC1C2(t ) + βi1A1(t ), (4)

dC2

dt
= −(αC2 + βC1 + αi2)C2(t ) + αC1C1(t )

+βC2C3(t ) + βi2A2(t ), (5)

dC3

dt
= −(αO + βC2 + αi3)C3(t ) + αC2C2(t )

+βOO(t ) + βi3A3(t ), (6)

dO

dt
= −(βO + αi4)O(t ) + αOC3(t ) + βi4A4(t ), (7)

dA1

dt
= −(αA1 + βi1 + γi1)A1(t ) + αi1C1(t )

+ δi1I1(t ) + βA1A2(t ), (8)

dA2

dt
= −(αA2 + βA1 + βi2 + γi2)A2(t )

+αi2C2(t ) + δi2I2(t ) + αA1A1(t ) + βA2A3(t ) (9)
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dA3

dt
= −(αA3 + βA2 + βi3 + γi3)A3(t )

+αi3C3(t ) + δi3I3(t ) + αA2A2(t ) + βA3A4(t ), (10)

dA4

dt
= −(βA3 + βi4 + γi4)A4(t )

+αi4O(t ) + δi4I4(t ) + αA3A3(t ), (11)

dI1

dt
= −(αI1 + δi1)I1(t ) + γi1A1(t ) + βI1I2(t ), (12)

dI2

dt
= −(αI2 + βI1 + δi2)I2(t )

+ γi2A2(t ) + αI1I1(t ) + βI2I3(t ), (13)

dI3

dt
= −(αI3 + βI2 + δi3)I3(t )

+ γi3A3(t ) + αI2I2(t ) + βI3I4(t ), (14)

dI4

dt
= −(βI3 + δi4)I4(t ) + γi4A4(t ) + αI3I3(t ), (15)

and the transition rates satisfy microscopic reversibility. The
model is based on the measurement of currents for wild
type and mutant Na+ channels where the majority of the
gating charge of the voltage sensors in domains DI to DIV
is neutralized. Tke kinetic scheme describes the activation of
the DI to DIII voltage sensors and pore opening, as well as the
activation of the DIV sensor followed by occlusion of the ion
pore by the inactivation motif [9].

It is assumed that Na+ channels depolarize the membrane,
K+ and leakage channels repolarize the membrane, and the
K+ conductance is proportional to n(t )4 where the activation
variable n(t ) satisfies the equation [1]

dn

dt
= αn − n(t )(αn + βn), (16)

and αn and βn are voltage-dependent rate functions. This
equation may be derived from a kinetic model for K+ channel
gating where the voltage dependence of αn and βn may be
expressed in terms of the transition rates for a two-stage volt-
age sensor activation process [22,23]. The membrane current
equation is

C
dV

dt
= ie − ḡNaO(t )(V − VNa) − ḡKn(t )4(V − VK)

− ḡL(V − VL ), (17)

where ḡ j is the conductance, Vj is the equilibrium potential for
each channel j (Na+, K+, and leakage), and ie is the external
current.

When the fast inactivation transition rates αik � γik , δik �
βik , and γik + βik is greater than the activation and deactiva-
tion rate functions, for each k, the occupation probabilities of
A1 to A4 attain quasistationary values in a time that is smaller
than the relaxation of the membrane potential and the closed,
open and inactivated states [24], and Eqs. (4)–(15) may be
reduced to an eight-state system by expressing the solution
as a two-scale asymptotic expansion and eliminating secular

FIG. 2. The state diagram for Na+ channel gating in Fig. 1 may
be reduced to an eight-state model when βik � δik , γik � αik , and
γik + βik is greater than the activation and deactivation rate functions,
for each k, where the derived rate functions ρk and σk are defined in
Eqs. (26) and (27).

terms [18] (see Fig. 2 and Appendix A)

dC1

dt
= −(αC1 + ρ1)C1(t ) + βC1C2(t ) + σ1I1(t ), (18)

dC2

dt
= −(αC2 + βC1 + ρ2)C2(t ) + αC1C1(t )

+βC2C3(t ) + σ2I2(t ), (19)

dC3

dt
= −(αO + βC2 + ρ3)C3(t ) + αC2C2(t )

+βOO(t ) + σ3I3(t ), (20)

dO

dt
= −(βO + ρ4)O(t ) + αOC3(t ) + σ4I4(t ), (21)

dI1

dt
= −(αI1 + σ1)I1(t ) + ρ1C1(t ) + βI1I2(t ), (22)

dI2

dt
= −(αI2 + βI1 + σ2)I2(t ) + αI1I1(t )

+βI2I3(t ) + ρ2C2(t ), (23)

dI3

dt
= −(αI3 + βI2 + σ3)I3(t ) + αI2I2(t ) + βI3I4(t )

+ρ3C3(t ), (24)

dI4

dt
= −(βI3 + σ4)I4(t ) + αI3I3(t ) + ρ4O(t ), (25)

where the derived rate functions for Na+ channel inactivation
and recovery are, for each k,

ρk = αikγik

βik + γik
, (26)

σk = δikβik

βik + γik
. (27)

If the fast inactivation rates γik and βik are decreased by an
order of magnitude, then the occupation probabilities A1 to
A4 are not constant during the relaxation of the closed, open,
and inactivated states, and the error of the approximation is
increased. The Na+ channel activation rate functions between
closed and open states may also be expressed in terms of the
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FIG. 3. The state diagram for Na+ channel gating in Fig. 2 may
be reduced to a seven-state model when αI1 � ρ1 and σ1 � βI1,
where the derived rate functions ρ̂1 and σ̂1 are defined in Eqs. (30)
and (31).

transition rates of a two or three-stage process [22], which
are dependent on electrostatic and hydrophobic forces on the
charged residues of the S4 voltage sensor [25].

If it is assumed that the inactivation sensor and the three
activation sensors are independent, then the HH rate equations
for Na+ channel activation and inactivation are exact solutions
of an eight-state kinetic model for channel gating [6,26].
However, activation and inactivation are coupled processes,
and if αI1 � ρ1 and σ1 � βI1 for membrane potentials in the
physiological range, based on empirical rate functions for a
Na+ channel [9], by expressing the solution as an asymptotic
expansion that is dependent on fast and slow timescales and
solving the equations to lowest order [18] (see Appendix B),
then Eqs. (18) and (23) may be approximated by (see Fig. 3)

dC1

dt
= −(αC1 + ρ̂1)C1(t ) + βC1C2(t ) + σ̂1I2(t ), (28)

dI2

dt
= −(αI2 + σ̂1 + σ2)I2(t ) + βI2I3(t )

+ ρ̂1C1(t ) + ρ2C2(t ), (29)

where

ρ̂1 = ρ1αI1

αI1 + σ1
, (30)

σ̂1 = σ1βI1

αI1 + σ1
, (31)

I1(t ) ≈ ρ1C1(t ) + βI1I2(t )

αI1 + σ1
, (32)

and n and V are determined by Eqs. (16) and (17) (see Fig. 4).
If αI1 + σ1 is reduced by a factor of three, then the relaxation
of I1 is slower and a deviation occurs between the solutions of
the full system and the reduced equations.

In Eqs. (24), (25), and (29), it is assumed that for each
membrane potential, the transition rates between fast inacti-
vated states with occupation probabilities I2, I3, and I4 are
an order of magnitude larger than inactivation and recovery
rates, and larger than activation and deactivation rates between
closed and open states, and therefore, by expressing the so-
lution as a two-scale asymptotic expansion and eliminating
secular terms [18], it may be shown that Eqs. (18) to (25)
may be reduced to a five state kinetic model (see Fig. 5 and
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FIG. 4. During the action potential solution of Eqs. (18)–
(25) for C1, C2, C3, O, and I1–I4 (solid line), Eqs. (18),
(22), and (23) for C1, I1, and I2 may be approximated by
Eqs. (28), (29), and (32) (dotted line), when αI1 � ρ1 and
σ1 � βI1, and n and V are determined by Eqs. (16) and
(17). The rate functions are αm = 0.1(V + 35)/{1 − exp[−(V +
35)/10]}, βm = 4 exp[−(V + 60)/18], αC1 = 3αm, βC1 = βm, αC2 =
2αm, βC2 = 2βm, αO = αm, βO = 3βm, αI1 = αC1, βI1 = 0.016βC1,
αI2 = 2αC2, βI2 = 2βC2, αI3 = 2αO, βI3 = 2βO, αik = 1, γik =
22.2, βik = exp[−V/10], δi1 = 2.5, δi2 = δi3 = δi4 = 0.04, ρk =
αik/(1 + βik/γik ) for k = 1 to 4, σ1 = δi1/(1 + γi1/βi1), σ2 = σ3 =
σ4 = 0.016σ1, αn = 0.01(V + 50)/(1 − exp[−(V + 50)/10]), βn =
0.125 exp[−(V + 60)/80] (ms−1), and ḡNa = 120 mS/cm2, ḡK =
36 mS/cm2, ḡL = 0.3 mS/cm2, VNa = 55 mV, VK = −75 mV, VL =
−60 mV, C = 1 μF/cm2, and ie = 1 μA/cm2.

Appendix C for an ion channel with fast and slow inactivated
states)

dC1

dt
= −(αC1 + ρ1)C1(t ) + βC1C2(t ) + σ̂1rI (t ), (33)

dC2

dt
= −(αC2 + βC1 + ρ2)C2(t ) + αC1C1(t )

+βC2C3(t ) + σ2rI (t ), (34)
dC3

dt
= −(αO + βC2 + ρ3)C3(t ) + αC2C2(t )

+βOO(t ) + σ3rI (t ), (35)
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FIG. 5. State diagram for Na+ channel gating in Fig. 3 may be
reduced to a five state model when the transition rates between fast
inactivated states are larger than inactivation and recovery rates.

dO

dt
= −(βO + ρ4)O(t ) + αOC3(t ) + σ4rI (t ), (36)

dI

dt
= −(σ̂1r + σ2r + σ3r + σ4r )I (t )

+ ρ̂1C1(t ) + ρ2C2(t ) + ρ3C3(t ) + ρ4O(t ), (37)

where C1(t ) + C2(t ) + C3(t ) + O(t ) + I (t ) = 1 and

σ̂1r = σ̂1βI2βI3

αI2αI3 + αI2βI3 + βI2βI3
, (38)

σ2r = σ2βI2βI3

αI2αI3 + αI2βI3 + βI2βI3
, (39)

σ3r = σ3αI2βI3

αI2αI3 + αI2βI3 + βI2βI3
, (40)

σ4r = σ4αI2αI3

αI2αI3 + αI2βI3 + βI2βI3
. (41)

Following an initial transient, it may be shown that I2(t ), I3(t ),
and I4(t ) are approximated by

I2(t ) ≈ βI2βI3I (t )

αI2αI3 + αI2βI3 + βI2βI3
, (42)

I3(t ) ≈ αI2βI3I (t )

αI2αI3 + αI2βI3 + βI2βI3
, (43)

I4(t ) ≈ αI2αI3I (t )

αI2αI3 + αI2βI3 + βI2βI3
, (44)

where I (t ) = I2(t ) + I3(t ) + I4(t ) (see Appendix C). Equa-
tions (42)–(44) may also be obtained by application of sin-
gular perturbation analysis to a kinetic model for a cardiac
Na+ channel [27]. During an action potential, the solution
of Eqs. (18)–(25) may be approximated by the solution of
Eqs. (33)–(37), where n and V are determined by Eqs. (16)
and (17), and I1 to I4 are calculated from Eqs. (32) and
(42)–(44) (see Fig. 6).

Assuming that C1(t ) = m1(t )h(t ), C2(t ) = m2(t )h(t ),
C3(t ) = m3(t )h(t ), O(t ) = mO(t )h(t ) and I (t ) = 1 − h(t ),
where m1(t ), m2(t ), m3(t ), and mO(t ) are activation variables
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FIG. 6. The solution of a Na+ channel eight-state kinetic model,
Eqs. (18)–(25) for C1, C2, C3, O, and I1–I4 (solid line) may be
approximated by the solution of a five state model, Eqs. (33)–
(37) (dotted line), where I1–I4 are calculated from Eqs. (32)
and (42)–(44), and n and V are determined by Eqs. (16) and
(17). The rate functions are αm = 0.1(V + 35)/{1 − exp[−(V +
35)/10]}, βm = 4 exp[−(V + 60)/18], αC1 = 3αm, βC1 = βm, αC2 =
2αm, βC2 = 2βm, αO = αm, βO = 3βm, αI1 = αC1, βI1 = 0.016βC1,
αI2 = 2αC2, βI2 = 2βC2, αI3 = 2αO, βI3 = 2βO, αik = 1, γik =
22.2, βik = exp[−V/10], δi1 = 2.5, δi2 = δi3 = δi4 = 0.04, ρk =
αik/(1 + βik/γik ) for k = 1 to 4, σ1 = δi1/(1 + γi1/βi1), σ2 =
σ3 = σ4 = 0.016σ1, αn = 0.01(V + 50)/{1 − exp[−(V + 50)/10]},
βn = 0.125 exp[−(V + 60)/80] (ms−1), and ḡNa = 120 mS/cm2,
ḡK = 36 mS/cm2, ḡL = 0.3 mS/cm2, VNa = 55 mV, VK = −75 mV,
VL = −60 mV, C = 1 μF/cm2, and ie = 1 μA/cm2.

and h(t ) is an inactivation variable, Eqs. (33)–(37) may be
expressed as

dm1

dt
= −[αC1 + ρ1 − ρ(t ) + σ (t )]m1(t ) + βC1m2(t )

+ σ̂1r[1/h(t ) − 1], (45)

dm2

dt
= −[αC2 + βC1 + ρ2 − ρ(t ) + σ (t )]m2(t )

+αC1m1(t ) + βC2m3(t ) + σ2r[1/h(t ) − 1], (46)
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dm3

dt
= −[αO + βC2 + ρ3 − ρ(t ) + σ (t )]m3(t )

+αC2m2(t ) + βOmO(t ) + σ3r[1/h(t ) − 1], (47)
dmO

dt
= −[βO + ρ4 − ρ(t ) + σ (t )]mO(t ) + αOm3(t )

+σ4r[1/h(t ) − 1], (48)
dh

dt
= σ̂1r + σ2r + σ3r + σ4r

−h(t )[σ̂1r + σ2r + σ3r + σ4r + ρ(t )], (49)

where

ρ(t ) = ρ̂1m1(t ) + ρ2m2(t ) + ρ3m3(t ) + ρ4mO(t ), (50)

σ (t ) = (σ̂1r + σ2r + σ3r + σ4r )[1/h(t ) − 1]. (51)

The inactivation rates ρk and recovery rates σk , for each k, are
an order of magnitude smaller than the activation and deacti-
vation rates, and therefore, from an asymptotic expansion of
the solution, it may be shown to lowest order that Eqs. (45)–
(48) for the activation variables may be approximated by (see
Fig. 7)

dm1

dt
= −αC1m1(t ) + βC1m2(t ), (52)

dm2

dt
= −(αC2 + βC1)m2(t ) + αC1m1(t ) + βC2m3(t ), (53)

dm3

dt
= −(αO + βC2)m3(t ) + αC2m2(t ) + βOmO(t ), (54)

dmO

dt
= −βOmO(t ) + αOm3(t ). (55)

That is, the inactivation and recovery rates, and the vari-
able h(t ), generally only have a small effect on the time-
dependence of the activation variables.

If the activation sensors are mutually independent
(αC1 = 3αm, αC2 = 2αm, αO = αm, βC1 = βm, βC2 = 2βm,

βO = 3βm), then Eqs. (52)–(55) have the solution
m1(t ) = [1 − m(t )]3, m2(t ) = 3m(t )[1 − m(t )]2, m3(t ) =
3m(t )2[1 − m(t )], mO(t ) = m(t )3, where m(t ) satisfies

dm

dt
= αm − m(t )(αm + βm), (56)

and therefore, from Eq. (50),

ρ(t ) = ρ̂1[1 − m(t )]3 + 3ρ2m(t )[1 − m(t )]2

+ 3ρ3m(t )2[1 − m(t )] + ρ4m(t )3. (57)

However, as the activation variable m(t ) generally has a faster
time constant than h(t ), ρ(t ) may be approximated by

βh = ρ̂1(1 − m∞)3 + 3ρ2m∞(1 − m∞)2

+ 3ρ3m2
∞(1 − m∞) + ρ4m3

∞, (58)

where m∞ = αm/(αm + βm) for each membrane potential,
and βh is a voltage-dependent function, as assumed by HH [1].
The activation function m∞ and each inactivation rate ρk has
an exponential voltage dependence for a small depolarization
but for larger potentials, the variation has a plateau, and
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FIG. 7. If the Na+ channel inactivation and recovery rates are an
order of magnitude smaller than the activation and deactivation rates,
then the occupation probabilities C1 = m1h, C2 = m2h, C3 = m3h,
and O = mOh calculated from the solution of Eqs. (45)–(49) for m1,
m2, m3, mO, and h (solid line) may be approximated by the open and
closed state probabilities obtained from the solution of Eqs. (49) and
(52)–(55) (dotted line), where n and V are determined by Eqs. (16)
and (17). The rate functions are αm = 0.1(V + 35)/{1 − exp[−(V +
35)/10]}, βm = 4 exp[−(V + 60)/18], αC1 = 3αm, βC1 = βm, αC2 =
2αm, βC2 = 2βm, αO = αm, βO = 3βm, αI1 = αC1, βI1 = 0.016βC1,
αI2 = 2αC2, βI2 = 2βC2, αI3 = 2αO, βI3 = 2βO, αik = 1, γik =
22.2, βik = exp[−V/10], ρk = αikγik/(βik + γik ) for k = 1 to 4,
δi1 = 2.5, δi2 = δi3 = δi4 = 0.04, σ1 = δi1/(1 + γi1/βi1), σ2 = σ3 =
σ4 = 0.016σ1, αn = 0.01(V + 50)/{1 − exp[−(V + 50)/10]}, βn =
0.125 exp[−(V + 60)/80] (ms−1), and ḡNa = 120 mS/cm2, ḡK =
36 mS/cm2, ḡL = 0.3 mS/cm2, VNa = 55 mV, VK = −75 mV, VL =
−60 mV, C = 1 μF/cm2, and ie = 1 μA/cm2.
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FIG. 8. The voltage dependence of the Na+ channel HH inactiva-
tion rate function αh + βh (dotted line), where αh = 0.07 exp[−(V +
60)/20] and βh = 1/{1 + exp[−(V + 30)/10]} may be approx-
imated by the expressions in Eqs. (58) and (60) where the
rate functions are defined as αm = 0.1(V + 35)/(1 − exp[−(V +
35)/10]), βm = 4 exp[−(V + 60)/18], αC1 = 3αm, βC1 = βm, αC2 =
2αm, βC2 = 2βm, αO = αm, βO = 3βm, αI1 = αC1, βI1 = 0.016βC1,
αI2 = 2αC2, βI2 = 2βC2, αI3 = 2αO, βI3 = 2βO, αik = 1, γik = 22.2,
βik = exp[−V/10], δi1 = 2.5, δi2 = δi3 = δi4 = 0.04, ρk = αik/(1 +
βik/γik ) for k = 1 to 4, σ1 = δi1/(1 + γi1/βi1), σ2 = σ3 = σ4 =
0.016σ1 (ms−1).

therefore, accounts for the voltage dependence of βh (see
Fig. 8).

Equation (49) may be expressed as

dh

dt
= αh − h(t )(αh + βh), (59)

where

αh = σ̂1r + σ2r + σ3r + σ4r, (60)

and as σ2r, σ3r, σ4r � σ̂1r , αh ≈ σ̂1r . For a moderate hyper-
polarization (σ1 � αI1, βI1), σ̂1r ≈ σ̂1 ≈ βI1, and therefore,
the voltage dependence of αh is approximately exponential
[1] (see Fig. 8), but it may attain a plateau value for a large
hyperpolarization [9,21,24].

If the previous conditions for each stage of reduction
are satisfied, then the solution of the twelve state kinetic
model, Eqs. (4)–(15), may be approximated by closed, open,
and inactivated state probabilities that are dependent on the
solution of Eqs. (56) and (59) for m and h, where n and V
are determined by Eqs. (16) and (17)—see Fig. 9 for a Na+

channel with an inactivation rate independent of the closed
or open state [1], and Fig. 10 for a channel where the Na+

inactivation rate increases with the degree of activation of the
channel [9] (the ion channel rate functions and parameters
are summarized in Table I). Therefore, a HH model of a
Na+ channel may be expressed as a kinetic scheme that
is consistent with the ion channel structure and the energy
landscape of each S4 sensor during activation and inactivation
processes. Although it is often assumed that the independence
of Na+ channel inactivation and activation is required for
the Na+ channel conductance expression m3h [6], strongly
coupled activation and inactivation is also compatible with the
open state probability O(t ) = m(t )3h(t ).
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FIG. 9. The solution of a Na+ channel 12-state kinetic model,
Eqs. (4)–(15) (solid line) may be approximated by C1 = (1 −
m)3h, C2 = 3m(1 − m)2h, C3 = 3m2(1 − m)h, O = m3h, I = I2 +
I3 + I4 = 1 − h (dotted line), where m and h satisfy Eqs. (56)
and (59), and n and V are determined by Eqs. (16) and (17).
The conditions for the reduction are that (1) the two-stage in-
activation process satisfies βik � δik and γik � αik , for each k
(see Fig. 1), (2) αI1 � ρ1 and σ1 � βI1 (see Fig. 2), and (3)
the transition rates between fast inactivated states are an order
of magnitude larger than inactivation and recovery rates (see
Fig. 3). The rate functions are αm = 0.1(V + 35)/{1 − exp[−(V +
35)/10]}, βm = 4 exp[−(V + 60)/18], αC1 = 3αm, βC1 = βm, αC2 =
2αm, βC2 = 2βm, αO = αm, βO = 3βm, αI1 = αC1, βI1 = 0.016βC1,
αI2 = 2αC2, βI2 = 2βC2, αI3 = 2αO, βI3 = 2βO, αik = 1, γik =
22.2, βik = exp[−V/10], δi1 = 2.5, δi2 = δi3 = δi4 = 0.04, ρk =
αik/(1 + βik/γik ) for k = 1 to 4, σ1 = δi1/(1 + γi1/βi1), σ2 =
σ3 = σ4 = 0.016σ1, αn = 0.01(V + 50)/{1 − exp[−(V + 50)/10]},
βn = 0.125 exp[−(V + 60)/80] (ms−1), and ḡNa = 120 mS/cm2,
ḡK = 36 mS/cm2, ḡL = 0.3 mS/cm2, VNa = 55 mV, VK = −75 mV,
VL = −60 mV, C = 1 μF/cm2, and ie = 1 μA/cm2.

III. REDUCTION OF A KINETIC MODEL FOR Na+

CHANNEL ACTIVATION, AND FAST AND SLOW
INACTIVATION

In this section, it is assumed that the activation of three
voltage sensors regulating the Na channel conductance is
coupled to a two-stage inactivation process, and that slow
inactivation is accessible from fast inactivated states [7], and
therefore, the kinetics may be described by a 15-state model
(see Fig. 11):

dC1

dt
= −(αC1 + αi1)C1(t ) + βC1C2(t ) + βi1A1(t ), (61)
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FIG. 10. The solution of a Na+ channel 12-state kinetic
model, Eqs. (4)–(15) (solid line) may be approximated by
C1 = (1 − m)3h, C2 = 3m(1 − m)2h, C3 = 3m2(1 − m)h, O = m3h,
I = I2 + I3 + I4 = 1 − h (dotted line), where m and h satisfy
Eqs. (56) and (59), and n and V are determined by Eqs. (16)
and (17). The rate functions are αm = 7.45 exp[0.5V/25], βm =
0.8 exp[−0.9V/25], αC1 = 3αm, βC1 = βm, αC2 = 2αm, βC2 = 2βm,
αO = αm, βO = 3βm, αI1 = αC1, βI1 = 0.01βC1, αI2 = 2αC2, βI2 =
0.2βC2, αI3 = 2αO, βI3 = 0.2βO, βi1 = 2000 exp[−2.4V/25], βi2 =
200 exp[−2.4V/25], βi3 = 20 exp[−2.4V/25], βi4 = 2 exp[−2.4V/

25], δi1 = 1, δi2 = δi3 = δi4 = 0.1, αik = 2.1, γik = 25, ρk =
αik/(1 + βik/γik ), σk = δik/(1 + γik/βik ), for k = 1 to 4, αn =
0.01(V + 50)/{1 − exp[−(V + 50)/10]}, βn = 0.125 exp[−(V +
60)/80] (ms−1), and ḡNa = 20 mS/cm2, ḡK = 10 mS/cm2,
ḡL = 1 mS/cm2, VNa = 40 mV, VK = −90 mV, VL = −80 mV,
C = 1 μF/cm2, and ie = 1 μA/cm2.

dC2

dt
= −(αC2 + βC1 + αi2)C2(t ) + αC1C1(t )

+βC2C3(t ) + βi2A2(t ), (62)

dC3

dt
= −(αO + βC2 + αi3)C3(t ) + αC2C2(t )

+βOO(t ) + βi3A3(t ), (63)
dO

dt
= −(βO + αi4)O(t ) + αOC3(t ) + βi4A4(t ), (64)

dA1

dt
= −(αA1 + βi1 + γi1)A1(t ) + αi1C1(t )

+ δi1I1(t ) + βA1A2(t ), (65)
dA2

dt
= −(αA2 + βA1 + βi2 + γi2)A2(t ) + αi2C2(t )

+ δi2I2(t ) + αA1A1(t ) + βA2A3(t ), (66)

TABLE I. Rate functions, channel conductance, and equilibrium
potentials for kinetic models with fast inactivation of the Na+

channel.

Figs. 4, 6–9 Fig. 10

Rate (ms−1)
αn

0.01(V +50)
1−exp[−(V +50)/10]

0.01(V +50)
1−exp[−(V +50)/10]

βn 0.125 exp[−(V + 60)/80] 0.125 exp[−(V + 60)/80]
αm

0.1(V +35)
1−exp[−(V +35)/10] 7.45 exp[0.5V/25]

βm 4 exp[−(V + 60)/18] 0.8 exp[−0.9V/25]
αC1 3αm 3αm

βC1 βm βm

αC2 2αm 2αm

βC2 2βm 2βm

αO αm αm

βO 3βm 3βm

αI1 αC1 αC1

βI1 0.016βC1 0.01βC1

αI2 2αC2 2αC2

βI2 2βC2 0.2βC2

αI3 2αO 2αO

βI3 2βO 0.2βO

αik 1 2.1
γik 22.2 25
βi1 exp(−V/10) 2000 exp(−2.4V/25)
βi2 exp(−V/10) 200 exp(−2.4V/25)
βi3 exp(−V/10) 20 exp(−2.4V/25)
βi4 exp(−V/10) 2 exp(−2.4V/25)
δi1 2.5 1
δi2 0.016δi1 0.1δi1

δi3 0.016δi1 0.1δi1

δi4 0.016δi1 0.1δi1

Conductance
(mS/cm2)
ḡNa 120 20
ḡK 36 10
ḡL 0.3 1
Equilibrium
potential (mV)
VNa 55 40
VK −75 −90
VL −60 −80
ie(μA/cm2) 1 1
C(μF/cm2) 1 1

dA3

dt
= −(αA3 + βA2 + βi3 + γi3)A3(t ) + αi3C3(t )

+ δi3I3(t ) + αA2A2(t ) + βA3A4(t ), (67)

dA4

dt
= −(βA3 + βi4 + γi4)A4(t ) + αi4O(t )

+ δi4I4(t ) + αA3A3(t ), (68)
dI1

dt
= −(αI1 + δi1)I1(t ) + γi1A1(t ) + βI1I2(t ), (69)

dI2

dt
= −(αI2 + βI1 + δi2 + μ)I2(t )

+ γi2A2(t ) + αI1I1(t ) + βI2I3(t ) + νS2(t ), (70)
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FIG. 11. State diagram for Na+ channel gating where horizontal
transitions represent the activation of three voltage sensors (in the
domains DI, DII, and DIII) that open the pore, and vertical transitions
represent the two-stage fast inactivation process to states I1(t ) to
I4(t ), and slow inactivation to states S2(t ) to S4(t ) (in domain DIV).

dI3

dt
= −(αI3 + βI2 + δi3 + μ)I3(t )

+ γi3A3(t ) + αI2I2(t ) + βI3I4(t ) + νS3(t ), (71)

dI4

dt
= −(βI3 + δi4 + μ)I4(t )

+ γi4A4(t ) + αI3I3(t ) + νS4(t ), (72)

dS2

dt
= −(αI2 + ν)S2(t ) + βI2S3(t ) + μI2(t ), (73)

dS3

dt
= −(αI3+βI2+ν)S3(t ) + αI2S2(t ) + βI3S4(t ) + μI3(t ),

(74)

dS4

dt
= −(βI3 + ν)S4(t ) + αI3S3(t ) + μI4(t ), (75)

where S2(t ), S3(t ), and S4(t ) are the occupational proba-
bilities for the slow inactivated states, and μ and ν are
voltage-dependent transition rates that are at least an or-
der of magnitude smaller than the corresponding fast in-
activation rates. As I1(t ) ≈ 0 following a transient, it may
be assumed that entry into the slow inactivated state cor-
responding to I1 is also small, and has no effect on the
dynamics.

It is assumed that the K+ and leakage channels repolarize
the membrane, and if the K+ conductance is proportional to
n(t ) j where j is the number of voltage sensors such that 1 �
j � 4, and the activation variable n(t ) satisfies Eq. (16), the
membrane current equation is

C
dV

dt
= ie − ḡNaO(t )(V − VNa) − ḡK n(t ) j (V − VK )

− ḡL(V − VL ). (76)

By expressing the solution as a two-scale asymptotic ex-
pansion and eliminating secular terms [18], Eqs. (61)–(75)
may be reduced to an 11-state system when the two-stage
inactivation transitions satisfy αik � γik , δik � βik , and γik +
βik is greater than the activation and deactivation rate func-
tions, for each k [24] (see Fig. 12 and Appendix A)

dC1

dt
= −(αC1 + ρ1)C1(t ) + βC1C2(t ) + σ1I1(t ), (77)

dC2

dt
= −(αC2 + βC1 + ρ2)C2(t ) + αC1C1(t )

+βC2C3(t ) + σ2I2(t ), (78)

dC3

dt
= −(αO + βC2 + ρ3)C3(t ) + αC2C2(t )

+βOO(t ) + σ3I3(t ), (79)

dO

dt
= −(βO + ρ4)O(t ) + αOC3(t ) + σ4I4(t ), (80)

dI1

dt
= −(αI1 + σ1)I1(t ) + ρ1C1(t ) + βI1I2(t ), (81)

dI2

dt
= −(αI2 + βI1 + σ2 + μ)I2(t ) + αI1I1(t )

+βI2I3(t ) + ρ2C2(t ) + νS2(t ), (82)

dI3

dt
= −(αI3 + βI2 + σ3 + μ)I3(t ) + αI2I2(t )

+βI3I4(t ) + ρ3C3(t ) + νS3(t ), (83)

dI4

dt
= −(βI3 + σ4 + μ)I4(t ) + αI3I3(t ) + ρ4O(t ) + νS4(t ),

(84)

dS2

dt
= −(αI2 + ν)S2(t ) + βI2S3(t ) + μI2(t ), (85)

dS3

dt
= −(αI3 + βI2 + ν)S3(t ) + αI2S2(t )

+βI3S4(t ) + μI3(t ), (86)

dS4

dt
= −(βI3 + ν)S4(t ) + αI3S3(t ) + μI4(t ). (87)

Assuming that αI1 � ρ1 and σ1 � βI1 [9], Eqs. (77) and (82)
may be approximated by (see Appendix B)

dC1

dt
= −(αC1 + ρ̂1)C1(t ) + βC1C2(t ) + σ̂1I2(t ), (88)

dI2

dt
= −(αI2 + σ̂1 + σ2 + μ)I2(t ) + βI2I3(t ) + νS2(t )

+ρ̂1C1(t ) + ρ2C2(t ), (89)
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FIG. 12. State diagram for Na+ channel gating in Fig. 11 may
be reduced to an eleven state model when βik � δik , γik � αik , and
γik + βik is greater than the activation and deactivation rate functions,
for each k, where the derived rate functions are ρk and σk defined in
Eqs. (26) and (27).

where ρ̂1 and σ̂1 are defined in Eqs. (30) and (31), and the
kinetics may be represented by the ten state model in Fig. 13.

In Eqs. (83)–(87) and (89), it is assumed that for each
membrane potential, the transition rates between fast inacti-
vated states I2, I3, and I4, and between slow inactivated states
S2, S3, and S4, are an order of magnitude larger than the
corresponding inactivation and recovery rates, and larger than
the activation and deactivation rates between closed and open
states, and therefore, by expressing the solution as a three-
scale asymptotic expansion and eliminating secular terms,
Eqs. (77)–(87) are reducible to a six-state kinetic model (see
Fig. 14 and Appendix C):

dC1

dt
= −(αC1 + ρ1)C1(t ) + βC1C2(t ) + σ̂1rI (t ), (90)

dC2

dt
= −(αC2 + βC1 + ρ2)C2(t ) + αC1C1(t )

+βC2C3(t ) + σ2rI (t ), (91)

FIG. 13. The 11-state system for Na+ channel gating in Fig. 12
may be reduced to a 10-state system when αI1 � ρ1 and σ1 � βI1,
where the derived rate functions ρ̂1 and σ̂1 are defined in Eqs. (30)
and (31).

ΑC1
ΒC1

ΑC2
ΒC2

ΑO
ΒO

Ρ2Σ2rΡ1Σ1r Ρ3Σ3r Ρ4Σ4r

ΜΝ

C1 C2 C3 O

I

S

FIG. 14. The ten state system for Na+ channel gating in Fig. 13
may be reduced to a six-state system when the transition rates
between fast inactivated states I2(t ) to I4(t ), and between slow inac-
tivated states S2(t ) to S4(t ) are larger than inactivation and recovery
rates.

dC3

dt
= −(αO + βC2 + ρ3)C3(t ) + αC2C2(t )

+βOO(t ) + σ3rI (t ), (92)

dO

dt
= −(βO + ρ4)O(t ) + αOC3(t ) + σ4rI (t ), (93)

dI

dt
= −(σ̂1r + σ2r + σ3r + σ4r + μ)I (t ) + ρ̂1C1(t )

+ ρ2C2(t ) + ρ3C3(t ) + ρ4O(t ) + νS(t ), (94)

dS

dt
= μI (t ) − νS(t ), (95)

where σ̂1r , σ2r , σ3r , and σ4r are defined in Eqs. (38)–(41),
C1(t ) + C2(t ) + C3(t ) + O(t ) + I (t ) + S(t ) = 1, and follow-
ing a transient, the inactivation probabilities I2(t ), I3(t ), and
I4(t ) may be approximated by Eqs. (42)–(44), and the slow
inactivation probabilities S2(t ), S3(t ), and S4(t ) may be ex-
pressed as

S2(t ) ≈ βI2βI3S(t )

αI2αI3 + αI2βI3 + βI2βI3
, (96)

S3(t ) ≈ αI2βI3S(t )

αI2αI3 + αI2βI3 + βI2βI3
, (97)

S4(t ) ≈ αI2αI3S(t )

αI2αI3 + αI2βI3 + βI2βI3
, (98)

where S(t ) = S2(t ) + S3(t ) + S4(t ).
Writing C1(t ) = m1(t )h(t ), C2(t ) = m2(t )h(t ), C3(t ) =

m3(t )h(t ), O(t ) = mO(t )h(t ), and h(t ) = 1 − I (t ) − S(t ),
where m1(t ), m2(t ), m3(t ), and mO(t ) are activation vari-
ables and h(t ) is an inactivation variable, and assuming that
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the activation sensors are independent (αC1 = 3αm, αC2 =
2αm, αO = αm, βC1 = βm, βC2 = 2βm, βO = 3βm), and that
the inactivation rates are an order of magnitude smaller
than the activation rates in Eqs. (90)–(93), it may be
shown that m1(t ) = [1 − m(t )]3, m2(t ) = 3m(t )[1 − m(t )]2,
m3(t ) = 3m(t )2[1 − m(t )], mO(t ) = m(t )3, where m(t ) satis-
fies Eq. (56), h(t ) and S(t ) satisfy

dh

dt
= αh[1 − S(t )] − h(t )(αh + βh), (99)

dS

dt
= μ[1 − h(t )] − S(t )(μ + ν), (100)

and βh and αh are defined in Eqs. (58) and (60).
Defining total inactivation T (t ) = I (t ) + S(t ) = 1 − h(t ),

Eqs. (99) and (100) may be written as

dT

dt
= βh + αhS(t ) − T (t )(αh + βh), (101)

dS

dt
= μT (t ) − S(t )(μ + ν). (102)

Assuming that h(t ) = h f (t )[1 − S(t )], where h f (t ) is a fast
inactivation variable, Eqs. (99) and (100) may be expressed as

dh f

dt
= αh − h f (t )

{
αh + βh − μ[1 − h f (t )] + νS(t )

1 − S(t )

}

(103)

dS

dt
= μ[1 − h f (t )] − S(t ){μ[1 − h f (t )] + ν}, (104)

and the forward rate for slow inactivation is dependent on
h f (t ), similar to the dependence of the fast inactivation rate
ρ(t ) ≈ βh on the activation variable m(t ) in Eq. (57). Defining
s(t ) = 1 − S(t ), Eqs. (103) and (104) are equivalent to

dh f

dt
= αh − h f (t )

{
αh + βh − μ[1− h f (t )] + ν

(
1

s(t )
−1

)}
,

(105)

ds

dt
= ν − s(t ){ν + μ[1 − h f (t )]}. (106)

During a voltage clamp potential Vc of the Na+ channel
membrane, h f (t ) approaches h f ∞(Vc) = αh/(αh + βh), and
from Eq. (106), we may write

ds

dt
= αs − s(t )(αs + βs), (107)

where αs = ν and βs ≈ μ(1 − h f ∞). If μ has a weak voltage
dependence, then there is a plateau in the voltage dependence
of βs for a large depolarization potential, consistent with the
slow inactivation voltage clamp data for a Na+ channel [2].

Equation (105) may be approximated by

dh f

dt
= αh f − h f (t )(αh f + βh f ), (108)

where

βh f = βh − μ(1 − h f ∞) + ν

(
1

s∞
− 1

)
, (109)

αh f = αh, and s∞(Vc) = αs/(αs + βs). As O = m3h f s,
Eq. (76) may be expressed as

C
dV

dt
= ie − ḡNam3h f s(V − VNa) − ḡKn j (V − VK)

− ḡL (V − VL ), (110)

where Eqs. (16), (56), (107), (108), and (110) are the empirical
equations that describe spike frequency adaptation [2]. Al-
though the voltage clamp data for an excitable membrane may
be described by linear rate equations [1,2,4,6], more generally,
during the action potential, the fast inactivation rate function
is dependent on the activation variable m(t ), and the rate
function for entry into the slow inactivated state is dependent
on the fast inactivation variable h f (t ), and therefore, the
equations for h f and s, Eqs. (105) and (106), are nonlinear
in the rate variables.

The variation in the probability S that the inactivation
sensor occupies a slow inactivation state is several orders of
magnitude slower than for the fast inactivation probability I,
and S may be treated as a parameter that modifies the stability
of the stationary state of the (n, m, T,V ) subsystem (see
Appendix D). During a spike train, the increase in the value of
the slow inactivation variable S is associated with a delay to
the next spike, and when the stationary state of the subsystem
becomes stable, the system returns to the resting potential.
The solution of Eqs. (61) to (75) may be approximated by
the solution of Eqs. (56), (105), and (106) where n and V are
determined by Eqs. (16) and (110) (see Fig. 15, and Table II).

A similar process occurs during a repetitive bursting os-
cillation where slow inactivation increases until the station-
ary state of the subsystem becomes stable; however, in this
case, as the slow variable relaxes during the subthreshold
oscillation, the stationary state of the subsystem loses its
stability when the recovery rate ν for slow inactivation is
sufficiently large, and the bursting oscillation resumes (see
Fig. 16). In a mesencephalic trigeminal neuron, a HH model
that includes fast and slow components of the Na+ current
simulates a bursting oscillation that is frequently observed
during stereotypic pattern generated behaviors such as lo-
comotion and respiration [4]. Although the 15 differential
equations in the full kinetic model have been reduced to 3
equations, the number of arithmetic operations per time step
in the Euler numerical method of solution for each system
is similar because the decrease in the number of variables is
partially offset by an increase in the number of operations to
compute the derived rate functions ρk and σkr . However, the
computation time for the reduced system is approximately one
third that of the full system because the number of required
time steps is decreased when the fast processes are eliminated.
An additional advantage of the reduced system is that it is
defined by a smaller number of parameters with values that
may be estimated from the voltage clamp data.
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FIG. 15. The solution of a Na+ channel 15-state kinetic model,
Eqs. (61)–(75) (solid line) may be approximated by C1 = (1 −
m)3hf s, C2 = 3m(1 − m)2hf s, C3 = 3m2(1 − m)hf s, O = m3hf s,
I = I2 + I3 + I4 = (1 − hf )s, and S = S2 + S3 + S4 = 1 − s (dotted
line), where m, hf , and s satisfy Eqs. (56), (105), and (106),
and n and V are determined by Eqs. (16) and (76). The con-
ditions for the reduction are that (1) the two-stage inactivation
process satisfies βik � δik and γik � αik , for each k (see Fig. 11),
(2) αI1 � ρ1 and σ1 � βI1 (see Fig. 12), and (3) the transition
rates between fast inactivated states I2–I4, and between slow inac-
tivated states S2–S4 are at least an order of magnitude larger than
inactivation and recovery rates (see Fig. 13). The decrease in the
slow inactivation probability s limits the number of spikes (spike
frequency adaptation), and the stationary state of the system is
stable when the recovery rate ν for slow inactivation is sufficiently
small. The rate functions are αm = 0.1(V + 43.9)/(1 − exp[−(V +
43.9)/10]), βm = 0.11 exp[−V/19.1], αC1 = 3αm, βC1 = βm, αC2 =
2αm, βC2 = 2βm, αO = αm, βO = 3βm, αI1 = αC1, βI1 = 0.0135βC1,
αI2 = αC2, βI2 = βC2, αI3 = αO, βI3 = βO, αik = 0.9, γik = 25, βik =
2 exp[−V/10], δi1 = 2.5, δi2 = δi3 = δi4 = 0.0135δi1, ρk = αik/(1 +
βik/γik ), σk = δik/(1 + γik/βik ), for k = 1 to 4, μ = 0.047/{1 +
exp[−(V + 17)/10]}, ν = 0.00001 exp(−V/25) αn = 0.007(V +
58.9)/{1 − exp[−(V + 58.9)/10]}, βn = 0.038 exp(−V/80) (ms−1),
and ḡNa = 12 mS/cm2, ḡK = 3 mS/cm2, ḡL = 0.03 mS/cm2, VNa =
50 mV, VK = −77 mV, VL = −54.4 mV, j = 4, C = 1 μF/cm2, and
ie = 1 μA/cm2.

The experimental data for wild type and 	KPQ Na+

channels may be simulated by a Markovian system with
transitions between activated, and fast and slow inactivated
states [10]. By incorporating K+ and Ca++ currents as well as
intracellular ion concentration changes, the model can account
for the effect of the fast inactivation recovery rate of the

TABLE II. Rate functions, channel conductance and equilibrium
potentials for kinetic models with fast and slow inactivation of the
Na+ channel. The parameters for Fig. 16 are the same as Fig. 15 but
μ = 0.141/(1 + exp[−(V + 17)/10]), ν = 0.0001 exp(−V/25) and
δi1 = 5.5, and the parameters for Fig. 18 are the same as Fig. 17 but
δi1 = 0.12.

Fig. 15 Fig. 17

Rate (ms−1)
αn

0.007(V +58.9)
1−exp[−(V +58.9)/10]

0.000015(V +25)
1−exp[−(V +25)/10]

βn 0.038 exp[−V/80] 0.0005 exp[−(V + 65)/80]
αm

0.1(V +43.9)
1−exp[−(V +43.9)/10]

0.1(V +34.3)
1−exp[−(V +34.3)/15]

βm 0.11 exp[−V/19.1] 4 exp[−(V + 59.3)/25]
αC1 3αm 3αm

βC1 βm βm

αC2 2αm 2αm

βC2 2βm 2βm

αO αm αm

βO 3βm 3βm

αI1 αC1 αC1

βI1 0.0135βC1 0.0135βC1

αI2 αC2 10αC2

βI2 βC2 βC2

αI3 αO αO

βI3 βO βO

αik 0.9 0.012
γik 25 25
βi1 2 exp(−V/10) 79 exp(−2.3V/25)
βi2 2 exp(−V/10) 79 exp(−2.3V/25)
βi3 2 exp(−V/10) 79 exp(−2.3V/25)
βi4 2 exp(−V/10) 79 exp(−2.3V/25)
δi1 2.5 0.1
δi2 0.0135δi1 0.0135δi1

δi3 0.0135δi1 0.00135δi1

δi4 0.0135δi1 0.00135δi1

μ 0.047
1+exp[−(V +17)/10] 0.00011 exp(0.1V/25)

ν 0.00001 exp(−V/25) 0.000025 exp(−1.95V/25)
Conductance
(mS/cm2)
ḡNa 12 36
ḡK 3 3
ḡL 0.03 2
Equilibrium
potential (mV)
VNa 50 55
VK −77 −80
VL −54.4 −58.5
ie(μA/cm2) 1 27
C(μF/cm2) 1 12

	KPQ mutant on the plateau of the cardiac ventricular action
potential. For a simplified model of the action potential that is
dependent only on Na+, K+, and leakage currents, if the rate
of recovery from Na+ channel fast inactivation is increased,
then the stationary state of the subsystem is stable for small
values of S = 1 − s, but it may lose its stability as S increases
and, therefore, the plateau may develop an oscillation (see
Figs. 17 and 18, and Table II).
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FIG. 16. The solution of a Na+ channel 15-state kinetic
model, Eqs. (61)–(75) (solid line) may be approximated by
C1 = (1 − m)3hf s, C2 = 3m(1 − m)2hf s, C3 = 3m2(1 − m)hf s,
O = m3hf s, I = I2 + I3 + I4 = (1 − hf )s and S = S2 + S3 + S4 =
1 − s (dotted line), where m, hf , and s satisfy Eqs. (56), (105),
and (106), and n and V are determined by Eqs. (16) and (76).
The decrease in the slow inactivation probability s terminates
the burst of spikes, and as the slow variable relaxes during the
subthreshold oscillation, the stationary state of the subsystem
loses its stability when the recovery rate ν for slow inactivation is
sufficiently large, and the bursting oscillation resumes. The rate
functions are αm = 0.1(V + 43.9)/{1 − exp[−(V + 43.9)/10]},
βm = 0.11 exp[−V/19.1], αC1 = 3αm, βC1 = βm, αC2 = 2αm,
βC2 = 2βm, αO = αm, βO = 3βm, αI1 = αC1, βI1 = 0.0135βC1,
αI2 = αC2, βI2 = βC2, αI3 = αO, βI3 = βO, αik = 0.9, γik = 25,
βik = 2 exp[−V/10], δi1 = 5.5, δi2 = δi3 = δi4 = 0.0135δi1,
ρk = αik/(1 + βik/γik ), σk = δik/(1 + γik/βik ), for k = 1 to 4,
μ = 0.141/{1 + exp[−(V + 17)/10]}, ν = 0.0001 exp(−V/25),
αn = 0.007(V + 58.9)/{1 − exp[−(V + 58.9)/10]}, βn = 0.038
exp[−V/80], (ms−1), and ḡNa = 12 mS/cm2, ḡK = 3 mS/cm2,
ḡL = 0.03 mS/cm2, VNa = 50 mV, VK = −77 mV, VL = −54.4 mV,
j = 4, C = 1 μF/cm2, and ie = 1 μA/cm2.

IV. CONCLUSION

Based on an empirical description of the voltage clamp K+
and Na+ channel currents and the calculation of the mem-
brane potential from the ion current equation, the HH model
accounts for subthreshold oscillations and the action potential
in the squid axon membrane [1]. The slow cumulative adapta-
tion of spike firing during prolonged depolarization is associ-
ated with a reduction in the number of Na+ channels available
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FIG. 17. The solution of a Na+ channel 15-state kinetic model,
Eqs. (61)–(75) (solid line) may be approximated by C1 = (1 −
m)3hf s, C2 = 3m(1 − m)2hf s, C3 = 3m2(1 − m)hf s, O = m3hf s,
I = I2 + I3 + I4 = (1 − hf )s, and S = S2 + S3 + S4 = 1 − s (dotted
line), where m, hf , and s satisfy Eqs. (56), (105), and (106), n
and V are determined by Eqs. (16) and (76), and the rate of
recovery from inactivation σ1 is sufficiently small to generate a
cardiac plateau. The rate functions are αm = 0.1(V + 34.3)/{1 −
exp[−(V + 34.3)/15]}, βm = 4 exp[−(V + 59.3)/25], αC1 = 3αm,
βC1 = βm, αC2 = 2αm, βC2 = 2βm, αO = αm, βO = 3βm, αI1 =
αC1, βI1 = 0.0135βC1, αI2 = 10αC2, βI2 = βC2, αI3 = αO, βI3 =
βO, αik = 0.012, γik = 25, βik = 79 exp(−2.3V/25), δi1 = 0.1,
δi2 = 0.0135δi1, δi3 = δi4 = 0.00135δi1 ρk = αik/(1 + βik/γik ), σk =
δik/(1 + γik/βik ), for k = 1 to 4 (ms−1), μ = 0.11 exp(0.1V/25)
(s−1), ν = 0.025 exp(−1.95V/25) (s−1), αn = 0.015(V + 25)/{1 −
exp[−(V + 25)/10]}, βn = 0.5 exp[−(V + 65)/80] (s−1), and ḡNa =
36 mS/cm2, ḡK = 3 mS/cm2, ḡL = 2 mS/cm2, VNa = 55 mV,
VK = −80 mV, VL = −58.5 mV, j = 1, C = 12 μF/cm2, and ie =
27 μA/cm2.

for activation, and the Na+ current may be described by the
expression m3hs(VNa − V ), where the HH equations for Na+

activation m and fast inactivation h are supplemented by an
independent rate equation for the slow inactivation variable s
[2]. However, recently it has been proposed that fast and slow
Na+ channel inactivation are sequential processes, and there-
fore, fast and slow inactivation are mutually dependent [7].

In this paper, it has been shown that during an action
potential, for a Na+ channel with three activation sensors
coupled to a two-stage inactivation process, by expressing the
solution as a two-scale asymptotic expansion and eliminating
secular terms, a 12-state kinetic model may be reduced to a
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FIG. 18. The solution of a Na+ channel 15-state kinetic
model, Eqs. (61)–(75) (solid line) may be approximated by
C1 = (1 − m)3hf s, C2 = 3m(1 − m)2hf s, C3 = 3m2(1 − m)hf s,
O = m3hf s, I = I2 + I3 + I4 = (1 − hf )s, and S = S2 + S3 + S4 =
1 − s (dotted line), where m, hf , and s satisfy Eqs. (56), (105),
and (106), n and V are determined by Eqs. (16) and (76), and
the rate of recovery from inactivation σ1 is increased to generate
a cardiac action potential with a plateau oscillation. The rate
functions are αm = 0.1(V + 34.3)/(1 − exp[−(V + 34.3)/15]),
βm = 4 exp[−(V + 59.3)/25], αC1 = 3αm, βC1 = βm, αC2 = 2αm,
βC2 = 2βm, αO = αm, βO = 3βm, αI1 = αC1, βI1 = 0.0135βC1,
αI2 = 10αC2, βI2 = βC2, αI3 = αO, βI3 = βO, αik = 0.012, γik = 25,
βik = 79 exp(−2.3V/25), δi1 = 0.12, δi2 = 0.0135δi1, δi3 =
δi4 = 0.00135δi1 ρk = αik/(1 + βik/γik ), σk = δik/(1 + γik/βik ),
for k = 1 to 4 (ms−1), μ = 0.11 exp[0.1V/25] (s−1),
ν = 0.025 exp[−1.95V/25] (s−1), αn = 0.015(V + 25)/{1 −
exp[−(V + 25)/10]}, βn = 0.5 exp[−(V + 65)/80] (s−1), and
ḡNa = 36 mS/cm2, ḡK = 3 mS/cm2, ḡL = 2 mS/cm2, VNa = 55 mV,
VK = −80 mV, VL = −58.5 mV, j = 1,C = 12 μF/cm2, and
ie = 27 μA/cm2.

7-state system when the first forward and backward inac-
tivation transitions are rate limiting, and the recovery rate
from the first inactivated state, σ1 � βI1. If the transition
rates between the fast inactivated states I2 and I4 are larger

than the corresponding inactivation and recovery rates, and
the occupation probabilities for closed states and the open
state are expressed in terms of activation and fast inactivation
variables, then the model may be further reduced to a system
of equations in the activation variables m1, m2, m3, mO and the
inactivation variable h.

The rate of recovery from inactivation αh is dependent
on the rate functions αI1 and βI1, and the recovery rate σ1,
as σ2, σ3, σ4 � σ1, but for a moderate hyperpolarization, the
voltage dependence of αh may be approximated by the expo-
nential function βI1, in agreement with experimental studies
on Na+ channel gating [1,9,21]. Assuming that the activa-
tion sensors are mutually independent, the expression for the
inactivation rate ρ(t ) is dependent on m(t ), and the forward
transition rates ρk of the DIV sensor, and if m(t ) has a faster
relaxation than h(t ), ρ(t ) may be approximated by a voltage
dependent function βh, as assumed by HH [1]. However, it
may be shown that the inactivation rates ρk , the recovery rates
σk and the inactivation variable h(t ) generally only have a
small effect on the time-dependence of the activation variable
m(t ).

If the Na channel permits a slow transition to additional
inactivated states, by expressing the solution as a three-scale
asymptotic expansion and eliminating secular terms, then the
kinetic model for Na+ channel gating may be reduced to
a six-state system of equations when the slow inactivation
and recovery rates are at least an order of magnitude smaller
than the corresponding fast inactivation rates. The reduced
system requires a smaller number of parameters with values
that may be estimated by comparison with experimental data,
and for a repetitive action potential, the computation time for
the solution of the full system is decreased when the fast
processes are eliminated. Assuming that the activation sensors
are mutually independent, a 15-state kinetic model of Na+

channel gating may be reduced to equations for activation,
and fast and slow inactivation that approximate the empirical
linear rate equations that describe spike frequency adaptation
in a neural membrane, a repetitive bursting oscillation that is
modulated by the slow inactivation of Na+ channels, and a
plateau oscillation during a cardiac action potential.

APPENDIX A

For a Na+ channel described by the twelve state kinetic
model of Eqs. (4)–(15) (see Fig. 1), it is assumed that αik �
γik , δik � βik , and γik + βik is greater than the activation and
deactivation rate functions. The six-state equations for a single
activation sensor and an inactivation sensor may be reduced
to a four state system when the occupation probabilities for
A3 and A4 rapidly decay to quasistationary values before the
relaxation of the other states, and a similar analysis may be
applied to the full system of equations. Eqs. (6), (7), (10), (11),
(14), (15), and (17) may be expressed as

ω1
dC3

dT
= −η(αO + αi3)C3(t ) + ηβOO(t ) + ω1βi3A3(t )

βi + γi
, (A1)

ω1
dO

dT
= −η(βO + αi4)O(t ) + ηαOC3(t ) + ω1βi4A4(t )

βi + γi
, (A2)
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ω1
dA3

dT
= −ηαA3A3(t ) − ω1(βi3 + γi3)A3(t )

βi + γi
+ ηαi3C3(t ) + ηδi3I3(t ) + ηβA3A4(t ), (A3)

ω1
dA4

dT
= −ηβA3A4(t ) − ω1(βi4 + γi4)A4(t )

βi + γi
+ ηαi4O(t ) + ηδi4I4(t ) + ηαA3A3(t ), (A4)

ω1
dI3

dT
= −η(αI3 + δi3)I3(t ) + ηβI3I4(t ) + ω1γi3A3(t )

βi + γi
, (A5)

ω1
dI4

dT
= −η(βI3 + δi4)I4(t ) + ηαI3I3(t ) + ω1γi4A4(t )

βi + γi
, (A6)

ω1C
dV

dT
= η[ie − ḡNaO(t )(V − VNa) − ḡKn(t )4(V − VK) − ḡL(V − VL )], (A7)

where T = (βi + γi )t , βi = βi4(Vc), γi = γi4(Vc), τ = ω1(Vc)t , ω1 is the fast inactivation rate constant, Vc is a constant potential
(for example, the resting or subthreshold potential), and η = ω1(Vc)/(βi + γi ) � 1. For the three-state system (O, A4, I4) that
describes the transitions of the DIV sensor between open and fast inactivated states, it may be shown that

ω1 = αi4γi4 + δi4(αi4 + βi4)

βi4 + γi4
< αi4 + δi4 � βi4 + γi4. (A8)

The solution of Eqs. (A1)–(A7) for C3(t ), O(t ), Ak (t ), Ik (t ) k = 3, 4, and V (t ) may be expressed as an asymptotic series where
the terms are assumed to be functions of two timescales, the slow time τ and the fast time T ,

C3(t ) = C30(τ, T ) + ηC31(τ, T ) + · · · , (A9)

O(t ) = O0(τ, T ) + ηO1(τ, T ) + · · · , (A10)

Ak (t ) = Ak0(τ, T ) + ηAk1(τ, T ) + · · · , (A11)

Ik (t ) = Ik0(τ, T ) + ηIk1(τ, T ) + · · · , (A12)

V (t ) = V0(τ, T ) + ηV1(τ, T ) + · · · , (A13)

and, using the chain rule, to first order
dC3

dT
= ∂C30

∂T
+ η

∂C31

∂T
+ η

∂C30

∂τ
, (A14)

dO

dT
= ∂O0

∂T
+ η

∂O1

∂T
+ η

∂O0

∂τ
, (A15)

dAk

dT
= ∂Ak0

∂T
+ η

∂Ak1

∂T
+ η

∂Ak0

∂τ
, (A16)

dIk

dT
= ∂Ik0

∂T
+ η

∂Ik1

∂T
+ η

∂Ik0

∂τ
, (A17)

dV

dT
= ∂V0

∂T
+ η

∂V1

∂T
+ η

∂V0

∂τ
. (A18)

Equating coefficients of powers of η in Eqs. (A1)–(A7), and Eqs. (A14)–(A18), we may write

∂C30

∂T
= βi3A30

βi + γi
, (A19)

∂O0

∂T
= βi4A40

βi + γi
, (A20)

∂Ak0

∂T
= − (βik + γik )Ak0

βi + γi
, (A21)

∂Ik0

∂T
= γikAk0

βi + γi
, (A22)

∂V0

∂T
= 0, (A23)
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and

ω1

(
∂C31

∂T
+ ∂C30

∂τ

)
= −(αO + αi3)C30 + βOOO + ω1βi3A31

βi + γi
+ ω1β

′
i3V1A30

βi + γi
, (A24)

ω1

(
∂O1

∂T
+ ∂O0

∂τ

)
= −(βO + αi4)O0 + αOC30 + ω1βi4A41

βi + γi
+ ω1β

′
i4V1A40

βi + γi
, (A25)

ω1

(
∂A31

∂T
+ ∂A30

∂τ

)
= −αA3A30 + αi3C30 + δi3I30 + βA3A40 − ω1(βi3 + γi3)A31

βi + γi
− ω1(β ′

i3 + γ ′
i3)V1A30

βi + γi
, (A26)

ω1

(
∂A41

∂T
+ ∂A40

∂τ

)
= −βA3A40 + αi4O0 + δi4I40 + αA3A30 − ω1(βi4 + γi4)A41

βi + γi
− ω1(β ′

i4 + γ ′
i4)V1A40

βi + γi
, (A27)

ω1

(
∂I31

∂T
+ ∂I30

∂τ

)
= −(αI3 + δi3)I30 + βI3I40 + ω1γi3A31

βi + γi
+ ω1γ

′
i3V1A30

βi + γi
, (A28)

ω1

(
∂I41

∂T
+ ∂I40

∂τ

)
= −(βI3 + δi4)I40 + αI3I30 + ω1γi4A41

βi + γi
+ ω1γ

′
i4V1A40

βi + γi
, (A29)

ω1C

(
∂V1

∂T
+ ∂V0

∂τ

)
= ie − ḡNaO0(V0 − VNa) − ḡKn(t )4(V0 − VK) − ḡL(V0 − VL ), (A30)

where β ′
ik = dβik/dV (V0) and γ ′

ik = dγik/dV (V0) for k = 3, 4.
Eliminating A31 from Eqs. (A24), (A26), and (A28), and A41 from Eqs. (A25), (A27), and (A29), we may write

ω1

(
∂C31

∂T
+ βi3

βi3 + γi3

∂A31

∂T

)
= −ω1

(
∂C30

∂τ
+ βi3

βi3 + γi3

∂A30

∂τ

)
− (αO + ρ3)C30 + βOO0

+ βi3

βi3 + γi3
(δi3I30 + βA3A40 − αA3A30) + ω1V1A30

βi + γi

(
β ′

i3γi3 − βi3γ
′
i3

βi3 + γi3

)
, (A31)

ω1

(
∂O1

∂T
+ βi4

βi4 + γi4

∂A41

∂T

)
= −ω1

(
∂O0

∂τ
+ βi4

βi4 + γi4

∂A40

∂τ

)
− (βO + ρ4)O0 + αOC30

+ βi4

βi4 + γi4
(δi4I40 + αA3A30 − βA3A40) + ω1V1A40

βi + γi

(
β ′

i4γi4 − βi4γ
′
i4

βi4 + γi4

)
, (A32)

ω1

(
∂I31

∂T
+ γi3

βi3 + γi3

∂A31

∂T

)
= −ω1

(
∂I30

∂τ
+ γi3

βi3 + γi3

∂A30

∂τ

)
− (αI3 + σ3)I30 + βI3I40

+ γi3

βi3 + γi3
(αi3C30 + βA3A40 − αA3A30) + ω1V1A30

βi + γi

(
γ ′

i3βi3 − γi3β
′
i3

βi3 + γi3

)
, (A33)

ω1

(
∂I41

∂T
+ γi4

βi4 + γi4

∂A41

∂T

)
= −ω1

(
∂I40

∂τ
+ γi4

βi4 + γi4

∂A40

∂τ

)
− (βI3 + σ4)I40 + αI3I30

+ γi4

βi4 + γi4
(αi4O0 + αA3A30 − βA3A40) + ω1V1A40

βi + γi

(
γ ′

i4βi4 − γi4β
′
i4

βi4 + γi4

)
, (A34)

where

ρk = αikγik

βik + γik
, (A35)

σk = δikβik

βik + γik
. (A36)

The solution of Eqs. (A19)–(A23) for k = 3, 4 is

C30(τ, T ) = C(1)
30 (τ ) + C(2)

30 (τ ) exp(λ3T ), (A37)

O0(τ, T ) = O(1)
0 (τ ) + O(2)

0 (τ ) exp(λ4T ), (A38)
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Ak0(τ, T ) = A(2)
k0 (τ ) exp(λkT ), (A39)

Ik0(τ, T ) = I (1)
k0 (τ ) + I (2)

k0 (τ ) exp(λkT ), (A40)

V0(τ, T ) = V (1)
0 (τ ), (A41)

where λk = −(βik + γik )/(βi + γi ) and is dependent on the membrane potential V . Substituting from Eqs. (A37)–(A41), the
sum of the terms that are independent of T must vanish to eliminate the secular terms on integration of Eqs. (A31)–(A34) and
therefore, as C3(t ) ≈ C(1)

30 (τ ), Ik (t ) ≈ I (1)
10 (τ ), for each k, O(t ) ≈ O(1)

0 (τ ) and V (t ) ≈ V (1)
0 (τ ) for longer times

dC3

dt
= −(αO + ρ3)C3(t ) + βOO(t ) + σ3I3(t ), (A42)

dO

dt
= −(βO + ρ4)O(t ) + αOC3(t ) + σ4I4(t ), (A43)

dI3

dt
= −(αI3 + σ3)I3(t ) + ρ3C3(t ) + βI3I4(t ), (A44)

dI4

dt
= −(βI3 + σ4)I4(t ) + ρ4O(t ) + αI3I3(t ), (A45)

∂V

∂t
= ie − ḡNaO(t )[V (t ) − VNa] − ḡKn(t )4[V (t ) − VK] − ḡL[V (t ) − VL]. (A46)

In Eqs. (A26) and (A27), the sum of the terms that are independent of T also vanish, and therefore, following a transient,
Ak (t ) ≈ ηAk1 and

A3(t ) ≈ αi3C3(t ) + δi3I3(t )

βi3 + γi3
, (A47)

A4(t ) ≈ αi4O(t ) + δi4I4(t )

βi4 + γi4
. (A48)

APPENDIX B

For the eight-state kinetic model of Eqs. (18)–(25), it is assumed that the rate functions satisfy αI1 � ρ1 and σ1 � βI1 [9],
and therefore, the occupation probability of the inactivated state I1 rapidly decays to a quasistationary value before the relaxation
of the other states. Equations (18), (22), and (23), and the current equation, Eq. (17), may be expressed as

ω1
dC1

dT
= −η(αC1 + ρ1)C1(t ) + ηβC1C2(t ) + ω1σ1I1(t )

αI1(Vc) + δi1(Vc)
, (B1)

ω1
dI1

dT
= η[ρ1C1(t ) + βI1I2(t )] − ω1(αI1 + σ1)I1(t )

αI1(Vc) + δi1(Vc)
, (B2)

ω1
dI2

dT
= −η(αI2 + βI1 + σ2)I2(t ) + ηβI2I3(t ) + ηρ2C2(t ) + ω1αI1I1(t )

αI1(Vc) + δi1(Vc)
, (B3)

ω1C
dV

dT
= η[ie − ḡNaO(t )(V − VNa) − ḡKn(t )4(V − VK) − ḡL(V − VL )], (B4)

where T = [αI1(Vc) + δi1(Vc)]t , τ = ω1(Vc)t , ω1 is the rate constant for inactivation from the first closed state, Vc is a constant
potential, η = ω1(Vc)/(αI1(Vc) + δi1(Vc)) � 1, and δi1 ≈ σ1 when the membrane potential V is hyperpolarized. For the three-
state system (C1, I1, I2) that describes inactivation from the first closed state, it may be shown that

ω1 = αI1ρ1 + βI1(σ1 + ρ1)

σ1 + αI1
< ρ1 + βI1 � σ1 + αI1. (B5)
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The solution for C1(t ), I1(t ), I2(t ), and V (t ) may be expressed as an asymptotic series where the terms are assumed to be
functions of the slow time τ and the fast time T ,

C1(t ) = C10(τ, T ) + ηC11(τ, T ) + · · · , (B6)

I1(t ) = I10(τ, T ) + ηI11(τ, T ) + · · · , (B7)

I2(t ) = I20(τ, T ) + ηI21(τ, T ) + · · · , (B8)

V (t ) = V0(τ, T ) + ηV1(τ, T ) + · · · , (B9)

and using the chain rule, to first order,

dC1

dT
= ∂C10

∂T
+ η

∂C11

∂T
+ η

∂C10

∂τ
, (B10)

dI1

dT
= ∂I10

∂T
+ η

∂I11

∂T
+ η

∂I10

∂τ
, (B11)

dI2

dT
= ∂I20

∂T
+ η

∂I21

∂T
+ η

∂I20

∂τ
, (B12)

dV

dT
= ∂V0

∂T
+ η

∂V1

∂T
+ η

∂V0

∂τ
. (B13)

Equating coefficients of powers of η, we may write

∂C10

∂T
= σ1I10

αI1(Vc) + δi1(Vc)
, (B14)

∂I10

∂T
= − (αI1 + σ1)I10

αI1(Vc) + δi1(Vc)
, (B15)

∂I20

∂T
= αI1I10

αI1(Vc) + δi1(Vc)
, (B16)

∂V0

∂T
= 0, (B17)

and

ω1

(
∂C11

∂T
+ ∂C10

∂τ

)
= −(αC1 + ρ1)C10 + βC1C2 + ω1σ1I11

αI1(Vc) + δi1(Vc)
+ ω1σ

′
1V1I10

αI1(Vc) + δi1(Vc)
, (B18)

ω1

(
∂I11

∂T
+ ∂I10

∂τ

)
= ρ1C10 + βI1I20 − ω1(αI1 + σ1)I11

αI1(Vc) + δi1(Vc)
− ω1(α′

I1 + σ ′
1)V1I10

αI1(Vc) + δi1(Vc)
, (B19)

ω1

(
∂I21

∂T
+ ∂I20

∂τ

)
= −(αI2 + βI1 + σ2)I20 + βI2I3 + ρ2C2 + ω1αI1I11

αI1(Vc) + δi1(Vc)
+ ω1α

′
I1V1I10

αI1(Vc) + δi1(Vc)
, (B20)

ω1C

(
∂V1

∂T
+ ∂V0

∂τ

)
= ie − ḡNaO(t )(V0 − VNa) − ḡKn(t )4(V0 − VK) − ḡL(V0 − VL ), (B21)

where σ ′
1 = dσ1/dV (V0) and α′

I1 = dαI1/dV (V0).
Eliminating I11 from Eqs. (B18) and (B20),

ω1

(
∂C11

∂T
+ σ1

αI1 + σ1

∂I11

∂T

)
= −ω1

(
∂C10

∂τ
+ σ1

αI1 + σ1

∂I10

∂τ

)
− (αC1 + ρ1)C10 + βC1C2

+ σ1

αI1 + σ1
(ρ1C10 + βI1I20) + ω1V1I10

αI1(Vc) + δi1(Vc)

(
σ ′

1αI1 − σ1α
′
I1

αI1 + σ1

)
, (B22)
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ω1

(
∂I21

∂T
+ αI1

αI1 + σ1

∂I11

∂T

)
= −ω1

(
∂I20

∂τ
+ αI1

αI1 + σ1

∂I10

∂τ

)
− (αI2 + βI1 + σ2)I20 + βI2I3 + ρ2C2

+ αI1

αI1 + σ1
(ρ1C10 + βI1I20) + ω1V1I10

αI1(Vc) + δi1(Vc)

(
α′

I1σ1 − αI1σ
′
1

αI1 + σ1

)
. (B23)

The solution of Eqs. (B14)–(B17) is

C10(τ, T ) = C(1)
10 (τ ) + C(2)

10 (τ ) exp(λ1T ), (B24)

I10(τ, T ) = I (2)
10 (τ ) exp(λ1T ), (B25)

I20(τ, T ) = I (1)
20 (τ ) + I (2)

20 (τ ) exp(λ1T ), (B26)

V0(τ, T ) = V (1)
0 (τ ), (B27)

where λ1 = −(αI1 + σ1)/[αI1(Vc) + δi1(Vc)] and is sufficiently large at each membrane potential that I1 attains the quasi-
stationary value before the relaxation of C1 and I2. Substituting from Eqs. (B24)–(B27), the sum of the terms that are independent
of T vanish to eliminate the secular terms on integration of Eqs. (B21)–(B23), and therefore, as C1(t ) ≈ C(1)

10 (τ ), I2(t ) ≈ I (1)
20 (τ ),

and V (t ) ≈ V (1)
0 (τ ), the reduced equations may be expressed as

dC1

dt
= −(αC1 + ρ̂1)C1(t ) + βC1C2(t ) + σ̂1I2(t ), (B28)

dI2

dt
= −(αI2 + σ̂1 + σ2)I2(t ) + ρ̂1C1(t ) + ρ2C2(t ) + βI2I3(t ), (B29)

C
∂V

∂t
= ie − ḡNaO(t )[V (t ) − VNa] − ḡKn(t )4[V (t ) − VK] − ḡL[V (t ) − VL], (B30)

where

ρ̂1 = ρ1αI1

αI1 + σ1
, (B31)

σ̂1 = σ1βI1

αI1 + σ1
. (B32)

In Eq. (B19) the sum of the terms that are independent of T vanish, and therefore, following a transient,

I1(t ) ≈ ρ1C1(t ) + βI1I2(t )

αI1 + σ1
. (B33)

APPENDIX C

If the transition rates between fast inactivated states, and between slow inactivated states are at least an order of magnitude
larger than the corresponding inactivation and recovery rates, and also larger than the activation and deactivation rates, then
Eqs. (77)–(87) and the current equation, Eq. (76), may be expressed as

ω1
dC1

dT
= η[−(αC1 + ρ̂1)C1(t ) + βC1C2(t ) + σ̂1I2(t )], (C1)

ω1
dC2

dT
= η[−(αC2 + βC1 + ρ2)C2(t ) + αC1C1(t ) + βC2C3(t ) + σ2I2(t )], (C2)

ω1
dC3

dT
= η[−(αO + βC2 + ρ3)C3(t ) + αC2C2(t ) + βOO(t ) + σ3I3(t )], (C3)

ω1
dO

dT
= η[−(βO + ρ4)O(t ) + αOC3(t ) + σ4I4(t )] (C4)
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ω1
dI2

dT
= ω1[−αI2I2(t ) + βI2I3(t )]

αI + βI
+ η[−(σ̂1 + σ2 + μ)I2(t ) + νS2(t ) + ρ̂1C1(t ) + ρ2C2(t )], (C5)

ω1
dI3

dT
= ω1[−(αI3 + βI2)I3(t ) + αI2I2(t ) + βI3I4(t )]

αI + βI
+ η[−(σ3 + μ)I3(t ) + ρ3C3(t ) + νS3(t )], (C6)

ω1
dI4

dT
= ω1[−βI3I4(t ) + αI3I3(t )]

αI + βI
+ η[−(σ4 + μ)I4(t ) + ρ4O(t ) + νS4(t )], (C7)

ω1
dS2

dT
= ω1[−αI2S2(t ) + βI2S3(t )]

αI + βI
+ η[−νS2(t ) + μI2(t )], (C8)

ω1
dS3

dT
= ω1[−(αI3 + βI2)S3(t ) + αI2S2(t ) + βI3S4(t )]

αI + βI
+ η[−νS3(t ) + μI3(t )], (C9)

ω1
dS4

dT
= ω1[−βI3S4(t ) + αI3S3(t )]

αI + βI
+ η[−νS4(t ) + μI4(t )], (C10)

ω1C
dV

dT
= η[ie − ḡNaO(t )(V − VNa) − ḡKn j (V − VK) − ḡL(V − VL )], (C11)

where T = (αI + βI )t , αI = αI2(Vc), βI = βI2(Vc), Vc is a constant potential, τ1 = ω1(Vc)t , ω1 is the rate constant of fast
inactivation, τ2 = ω2(Vc)t , ω2 is the rate constant of slow inactivation, η = τ1/T = ω1(Vc)/(αI + βI ) � 1, and ε is defined
by εη2 = τ2/T = ω2(Vc)/(αI + βI ) � 1.

The solution of Eqs. (C1)–(C11) may be expressed as, for each k,

Ck (t ) = Ck0(τ1, τ2, T ) + ηCk1(τ1, τ2, T ) + η2Ck2(τ1, τ2, T ) + · · · , (C12)

O(t ) = O0(τ1, τ2, T ) + ηO1(τ1, τ2, T ) + η2O2(τ1, τ2, T ) + · · · , (C13)

Ik (t ) = Ik0(τ1, τ2, T ) + ηIk1(τ1, τ2, T ) + η2Ik2(τ1, τ2, T ) + · · · , (C14)

Sk (t ) = Sk0(τ1, τ2, T ) + ηSk1(τ1, τ2, T ) + η2Sk2(τ1, τ2, T ) + · · · , (C15)

V (t ) = V0(τ1, τ2, T ) + ηV1(τ1, τ2, T ) + η2V2(τ1, τ2, T ) + · · · , (C16)

where the terms are assumed to be functions of the fast time T , the fast inactivation time τ1, and the slow inactivation time τ2.
Applying the chain rule, to second order,

dCk

dT
= ∂Ck0

∂T
+ η

(
∂Ck1

∂T
+ ∂Ck0

∂τ1

)
+ η2

(
∂Ck2

∂T
+ ∂Ck1

∂τ1
+ ε

∂Ck0

∂τ2

)
, (C17)

dO

dT
= ∂O0

∂T
+ η

(
∂O1

∂T
+ ∂O0

∂τ1

)
+ η2

(
∂O2

∂T
+ ∂O1

∂τ1
+ ε

∂O0

∂τ2

)
, (C18)

dIk

dT
= ∂Ik0

∂T
+ η

(
∂Ik1

∂T
+ ∂Ik0

∂τ1

)
+ η2

(
∂Ik2

∂T
+ ∂Ik1

∂τ1
+ ε

∂Ik0

∂τ2

)
, (C19)

dSk

dT
= ∂Sk0

∂T
+ η

(
∂Sk1

∂T
+ ∂Sk0

∂τ1

)
+ η2

(
∂Sk2

∂T
+ ∂Sk1

∂τ1
+ ε

∂Sk0

∂τ2

)
, (C20)

dV

dT
= ∂V0

∂T
+ η

(
∂V1

∂T
+ ∂V0

∂τ1

)
+ η2

(
∂V2

∂T
+ ∂V1

∂τ1
+ ε

∂V0

∂τ2

)
. (C21)

Equating coefficients of powers of η, we may write,

∂Ck0

∂T
= 0, (C22)

∂O0

∂T
= 0, (C23)
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∂I20

∂T
= −αI2I20 + βI2I30

αI + βI
, (C24)

∂I30

∂T
= αI2I20 − (αI3 + βI2)I30 + βI3I40

αI + βI
, (C25)

∂I40

∂T
= αI3I30 − βI3I40

αI + βI
, (C26)

∂S20

∂T
= −αI2S20 + βI2S30

αI + βI
, (C27)

∂S30

∂T
= αI2S20 − (αI3 + βI2)S30 + βI3S40

αI + βI
, (C28)

∂S40

∂T
= αI3S30 − βI3S40

αI + βI
, (C29)

∂V0

∂T
= 0, (C30)

and to first order,

ω1

(
∂C11

∂T
+ ∂C10

∂τ1

)
= −(αC1 + ρ̂1)C10 + βC1C20 + σ̂1I20, (C31)

ω1

(
∂C21

∂T
+ ∂C20

∂τ1

)
= −(αC2 + βC1 + ρ2)C20 + αC1C10 + βC2C30 + σ2I20, (C32)

ω1

(
∂C31

∂T
+ ∂C30

∂τ1

)
= −(αO + βC2 + ρ3)C30 + αC2C20 + βOO0 + σ3I30, (C33)

ω1

(
∂O1

∂T
+ ∂O0

∂τ1

)
= −(βO + ρ4)O0 + αOC30 + σ4I40, (C34)

ω1

(
∂I21

∂T
+ ∂I20

∂τ1

)
= −(σ̂1 + σ2)I20 + ρ̂1C10 + ρ2C20 + ω1(−αI2I21 + βI2I31)

αI + βI
+ ω1V1(−α′

I2I20 + β ′
I2I30)

αI + βI
, (C35)

ω1

(
∂I31

∂T
+ ∂I30

∂τ1

)
= −σ3I30 + ρ3C30 + ω1(−(αI3 + βI2)I31 + αI2I21 + βI3I41)

αI + βI
+ ω1V1(−(α′

I3 + β ′
I2)I30 + α′

I2I20 + β ′
I3I40)

αI + βI
,

(C36)

ω1

(
∂I41

∂T
+ ∂I40

∂τ1

)
= −σ4I40 + ρ4O0 + ω1(αI3I31 − βI3I41)

αI + βI
+ ω1V1(α′

I3I30 − β ′
I3I40)

αI + βI
, (C37)

ω1

(
∂S21

∂T
+ ∂S20

∂τ1

)
= ω1(−αI2S21 + βI2S31)

αI + βI
+ ω1V1(−α′

I2S20 + β ′
I2S30)

αI + βI
, (C38)

ω1

(
∂S31

∂T
+ ∂S30

∂τ1

)
= ω1(−(αI3 + βI2)S31 + αI2S21 + βI3S41)

αI + βI
+ ω1V1(−(α′

I3 + β ′
I2)S30 + α′

I2S20 + β ′
I3S40)

αI + βI
, (C39)

ω1

(
∂S41

∂T
+ ∂S40

∂τ1

)
= ω1(αI3S31 − βI3S41)

αI + βI
+ ω1V1(α′

I3S30 − β ′
I3S40)

αI + βI
, (C40)

ω1C

(
∂V1

∂T
+ ∂V0

∂τ1

)
= ie − ḡNaO0(V0 − VNa) − ḡKn(t )4(V0 − VK) − ḡL(V0 − VL ), (C41)
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where α′
Ik = dαIk/dV (V0) and β ′

Ik = dβIk/dV (V0) for k = 2 to 3, and to second order,

∂Ck2

∂T
+ ∂Ck1

∂τ1
+ ε

∂Ck0

∂τ2
= 0, (C42)

∂O2

∂T
+ ∂O1

∂τ1
+ ε

∂O0

∂τ2
= 0, (C43)

ω2

(
∂I22

∂T
+ ∂I21

∂τ1
+ ε

∂I20

∂τ2

)
= −μI20 + νS20, (C44)

ω2

(
∂I32

∂T
+ ∂I31

∂τ1
+ ε

∂I30

∂τ2

)
= −μI30 + νS30, (C45)

ω2

(
∂I42

∂T
+ ∂I41

∂τ1
+ ε

∂I40

∂τ2

)
= −μI40 + νS40, (C46)

ω2

(
∂S22

∂T
+ ∂S21

∂τ1
+ ε

∂S20

∂τ2

)
= −νS20 + μI20, (C47)

ω2

(
∂S32

∂T
+ ∂S31

∂τ1
+ ε

∂S30

∂τ2

)
= −νS30 + μI30, (C48)

ω2

(
∂S42

∂T
+ ∂S41

∂τ1
+ ε

∂S40

∂τ2

)
= −νS40 + μI40, (C49)

∂V2

∂T
+ ∂V1

∂τ1
+ ε

∂V0

∂τ2
= 0, (C50)

where ω2 = ω2/ε = ω1η, and only variables of lowest order are retained on the right side of Eqs. (C42)–(C50).
The sum of Eqs. (C35)–(C37) and Eqs. (C38)–(C40) is

ω1

(
∂I21

∂T
+ ∂I31

∂T
+ ∂I41

∂T

)
= −ω1

(
∂I20

∂τ1
+ ∂I30

∂τ1
+ ∂I40

∂τ1

)
− (σ̂1 + σ2)I20 − σ3I30 − σ4I40 + ρ̂1C10 + ρ2C20 + ρ3C30 + ρ4O0,

ω1

(
∂S21

∂T
+ ∂S31

∂T
+ ∂S41

∂T

)
= −ω1(

∂S20

∂τ1
+ ∂S30

∂τ1
+ ∂S40

∂τ1
). (C51)

The sum of Eqs. (C44)–(C46) and Eqs. (C47)–(C49) is

ω2

(
∂I22

∂T
+ ∂I32

∂T
+ ∂I42

∂T

)
+ ω2

(
∂I21

∂τ1
+ ∂I31

∂τ1
+ ∂I41

∂τ1

)

= −ω2

(
∂I20

∂τ2
+ ∂I30

∂τ2
+ ∂I40

∂τ2

)
− μ(I20 + I30 + I40) + ν(S20 + S30 + S40),

ω2

(
∂S22

∂T
+ ∂S32

∂T
+ ∂S42

∂T

)
+ ω2

(
∂S21

∂τ1
+ ∂S31

∂τ1
+ ∂S41

∂τ1

)

= −ω2

(
∂S20

∂τ2
+ ∂S30

∂τ2
+ ∂S40

∂τ2

)
− ν(S20 + S30 + S40) + μ(I20 + I30 + I40). (C52)

The solution of Eqs. (C22)–(C30), for each k, may be expressed as

Ck0(τ1, τ2, T ) = C(1)
k0 (τ1, τ2), (C53)

O0(τ1, τ2, T ) = O(1)
0 (τ1, τ2), (C54)

Ik0(τ1, τ2, T ) = I (1)
k0 (τ1, τ2) + I (2)

k0 (τ1, τ2) exp(λ1T ) + I (3)
k0 (τ1, τ2) exp(λ2T ), (C55)

Sk0(τ, T ) = S(1)
k0 (τ1, τ2) + S(2)

k0 (τ1, τ2) exp λ1T ) + S(3)
k0 (τ1, τ2) exp(λ2T ), (C56)

V0(τ1, τ2, T ) = V (1)
0 (τ1, τ2), (C57)
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where

I (1)
20 (τ1, τ2) = kβI2βI3I (1)

0 , I (1)
30 (τ1, τ2) = kαI2βI3I (1)

0 ,

I (1)
40 (τ1, τ2) = kαI2αI3I (1)

0 , S(1)
20 (τ1, τ2) = kβI2βI3S(1)

0 ,

S(1)
30 (τ1, τ2) = kαI2βI3S(1)

0 , S(1)
40 (τ1, τ2) = kαI2αI3S(1)

0 ,

I (1)
0 (τ1, τ2) = I (1)

20 (τ1, τ2) + I (1)
30 (τ1, τ2) + I (1)

40 (τ1, τ2), (C58)

S(1)
0 (τ1, τ2) = S(1)

20 (τ1, τ2) + S(1)
30 (τ1, τ2) + S(1)

40 (τ1, τ2), (C59)

k = 1

βI2βI3 + αI2βI3 + αI2αI3
, (C60)

and λ1, λ2 are solutions of

λ2 +
(

αI2 + αI3 + βI2 + βI3

αI + βI

)
λ + αI2αI3 + αI2βI3 + βI2βI3

(αI + βI )2
= 0. (C61)

If αI2 = 2αI3 and βI3 = 2βI2, then λ1 = −(αI3 + βI2)/(αI + βI ) and λ2 = −2(αI3 + βI2)/(αI + βI ).
Therefore, as Ik (t ) ≈ I (1)

k0 (τ1, τ2) and Sk (t ) ≈ S(1)
k0 (τ1, τ2), for each k, defining I (t ) = I2(t ) + I3(t ) + I4(t ) and S(t ) = S2(t ) +

S3(t ) + S4(t ),

I2(t ) ≈ βI2βI3I (t )

αI2αI3 + αI2βI3 + βI2βI3
, (C62)

I3(t ) ≈ αI2βI3I (t )

αI2αI3 + αI2βI3 + βI2βI3
, (C63)

I4(t ) ≈ αI2αI3I (t )

αI2αI3 + αI2βI3 + βI2βI3
, (C64)

S2(t ) ≈ βI2βI3S(t )

αI2αI3 + αI2βI3 + βI2βI3
, (C65)

S3(t ) ≈ αI2βI3S(t )

αI2αI3 + αI2βI3 + βI2βI3
, (C66)

S4(t ) ≈ αI2αI3S(t )

αI2αI3 + αI2βI3 + βI2βI3
. (C67)

For each membrane potential, the rates λ1 and λ2 are sufficiently large that, following a brief transient, the expressions for I2(t )
to I4(t ) and S2(t ) to S4(t ) are in agreement with the solution of the full system.

Substituting from Eqs. (C53)–(C57), the sum of the terms in Eqs. (C31)–(C41) that are independent of T vanish, and the sum
of the terms in Eqs. (C42)–(C50) that are independent of T and τ1 also vanish to eliminate the secular terms. Therefore, as

d

dt
= ω1

∂

∂τ1
+ ω2

∂

∂τ2
, (C68)

the reduced equations are

dC1

dt
= −(αC1 + ρ1)C1(t ) + βC1C2(t ) + σ̂1rI (t ), (C69)

dC2

dt
= −(αC2 + βC1 + ρ2)C2(t ) + αC1C1(t ) + βC2C3(t ) + σ2rI (t ), (C70)

dC3

dt
= −(αO + βC2 + ρ3)C3(t ) + αC2C2(t ) + βOO(t ) + σ3rI (t ), (C71)

dO

dt
= −(βO + ρ4)O(t ) + αOC3(t ) + σ4rI (t ), (C72)

dI

dt
= −(σ̂1r + σ2r + σ3r + σ4r + μ)I (t ) + ρ̂1C1(t ) + ρ2C2(t ) + ρ3C3(t ) + ρ4O(t ) + νS(t ), (C73)

dS

dt
= μI (t ) − νS(t ), (C74)
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where

σ̂1r = σ̂1βI2βI3

αI2αI3 + αI2βI3 + βI2βI3
, (C75)

σ2r = σ2βI2βI3

αI2αI3 + αI2βI3 + βI2βI3
, (C76)

σ3r = σ3αI2βI3

αI2αI3 + αI2βI3 + βI2βI3
, (C77)

σ4r = σ4αI2αI3

αI2αI3 + αI2βI3 + βI2βI3
. (C78)

APPENDIX D

The stationary solution (ns, ms, Ts, Ss,Vs) of Eqs. (16), (56), (101), (102), and (110) is determined by the intersection of the
nullclines, and hence

1 − ḡL(Vs − VL ) + ḡKn∞(Vs) j (Vs − VK) − ie
ḡNam∞(Vs)3(VNa − Vs)

= βh(μ + ν)

βh(μ + ν) + αhν
, (D1)

where m∞(V ) = αm/(αm + βm) and n∞(V ) = αn/(αn + βn). The stability of the stationary point may be computed by assuming
that n = ns + ñ, m = ms + m̃, T = Ts + T̃ , S = Ss + S̃, V = Vs + Ṽ and the eigenvalues may be obtained from the Jacobian
matrix of coefficients of the linearized equations in ñ, m̃, T̃ , S̃, and Ṽ . For a solution with a single burst of spikes, each eigenvalue
has a negative real part, but for a repetitive bursting oscillation, if two of the eigenvalues are complex conjugate, then the real
part is small and positive.

If the rate functions μ � βh and ν � αh, then the variable S may be treated as a parameter, and the stationary point of the
(n, m, T,V ) subsystem, Eqs. (16), (56), (101), and (110), is determined by the intersection of

fT (V ) = βh + αhS

βh + αh
(D2)

and

fV (V ) = 1 − ḡL(V − VL ) + ḡKn∞(V ) j (V − VK) − ie
ḡNam∞(V )3(VNa − V )

. (D3)

For each value of S, the stability of the stationary point of the subsystem may be determined by assuming that n = ns + ñ,
m = ms + m̃, T = Ts + T̃ , V = Vs + Ṽ , where (ns, ms, Ts,Vs) is the stationary solution and we may write, to first order,

dñ

dt
= (αns + βns)[−ñ + n′

∞(Vs)Ṽ ], (D4)

dm̃

dt
= (αms + βms)[−m̃ + m′

∞(Vs)Ṽ ], (D5)

dT̃

dt
= (αhs + βhs)[−T̃ + f ′

T (Vs)Ṽ ], (D6)

C
dṼ

dt
= 3ḡNam2

s (1 − Ts)(VNa − Vs)m̃ − ḡNa(VNa − Vs)m3
s T̃ − ḡNam3

s (1 − Ts)Ṽ − jḡKn j−1
s (Vs − VK)ñ − ḡKn j

sṼ − ḡLṼ , (D7)

where αgs + βgs = αg(Vs) + βg(Vs) for g = m, n, and h. The eigenvalues λ of the Jacobian matrix M of coefficients of Eqs. (D4)–
(D7) may be determined from the characteristic equation det(M − Iλ) = 0, and a Hopf bifurcation occurs at S = S1 when there
exists an eigenvalue λ = λr + iλo, λr = 0 such that dλr/dS �= 0 [28].

By assuming that Na+ channel activation is instantaneous, the characteristic equation may be expressed as

−det(M − Iλ) = λ3 + D1λ
2 + D2λ + D3 = 0, (D8)

where

D1 = rn + rT + rV ,

D2 = rn[rT + rV + n′
∞(Vs)FK] + rT [rV + F (Vs) f ′

T (Vs)],

D3 = rnrT [rV + F (Vs) f ′
T (Vs) + n′

∞(Vs)FK],

rV = ḡK

C
n j

s + ḡL

C
− F ′(Vs)(1 − Ts),
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F (V ) = ḡNa

C
m∞(V )3(VNa − V ),

FK = j
ḡK

C
n j−1

s (Vs − VK),

rm = αms + βms,

rn = αns + βns,

rT = αhs + βhs.

If D1D2 = D3 and D2 > 0, then det(M − Iλ) = −(λ + D1)(λ2 + D2), and therefore, two of the solutions of the characteristic
equation are pure imaginary and a Hopf bifurcation occurs at S = S2 ≈ S1, when activation is an order of magnitude faster than
inactivation, and S1 is determined from Eqs. (D4)—(D7).

If ḡK = 0 and the K+ activation variable n does not contribute to the membrane potential variation, then the characteristic
equation reduces to

λ2 + λ

[
αhs + βhs + ḡL

C
− F ′(Vs)(1 − Ts)

]
+ (αhs + βhs)

[
ḡL

C
− F ′(Vs)(1 − Ts) + F (Vs) f ′

T (Vs)

]
= 0, (D9)

and λr = 0 when Vs satisfies the equation

αh(Vs) + βh(Vs) + ḡL

C
− F ′(Vs)(ḡL(Vs − VL ) − ie)

F (Vs)
= 0 (D10)

and

Ts = 1 − ḡL(Vs − VL ) − ie
F (Vs)

. (D11)
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