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For more than half a century, the action potential (AP) has been considered a purely electrical phenomenon.
However, experimental observations of membrane deformations occurring during APs have revealed that this
process also involves mechanical features. This discovery has recently fuelled a controversy on the real nature
of APs: whether they are mechanical or electrical. In order to examine some of the modern hypotheses
regarding APs, we propose here a coupled mechanoelectrophysiological membrane finite-element model for
neuronal axons. The axon is modeled as an axisymmetric thin-wall cylindrical tube. The electrophysiology
of the membrane is modeled using the classic Hodgkin-Huxley (H-H) equations for the Nodes of Ranvier
or unmyelinated axons and the cable theory for the internodal regions, whereas the axonal mechanics is
modeled by means of viscoelasticity theory. Membrane potential changes induce a strain gradient field via
reverse flexoelectricity, whereas mechanical pulses result in an electrical self-polarization field following the
direct flexoelectric effect, in turn influencing the membrane potential. Moreover, membrane deformation also
alters the values of membrane capacitance and resistance in the H-H equation. These three effects serve as
the fundamental coupling mechanisms between the APs and mechanical pulses in the model. A series of
numerical studies was systematically conducted to investigate the consequences of interaction between the APs
and mechanical waves on both myelinated and unmyelinated axons. Simulation results illustrate that the AP
is always accompanied by an in-phase propagating membrane displacement of ≈1 nm, whereas mechanical
pulses with enough magnitude can also trigger APs. The model demonstrates that mechanical vibrations, such
as the ones arising from ultrasound stimulations, can either annihilate or enhance axonal electrophysiology
depending on their respective directionality and frequency. It also shows that frequency of pulse repetition can
also enhance signal propagation independently of the amplitude of the signal. This result not only reconciles the
mechanical and electrical natures of the APs but also provides an explanation for the experimentally observed
mechanoelectrophysiological phenomena in axons, especially in the context of ultrasound neuromodulation.

DOI: 10.1103/PhysRevE.99.032406

I. INTRODUCTION

In the mid-20th century, Alan Hodgkin and Andrew
Huxley published their distinguished Hodgkin-Huxley (H-H)
model [1], eventually leading to the Nobel Prize in Physi-
ology or Medicine a decade later. Fit against experimental
data obtained from squid giant axons, the H-H model uses
a set of nonlinear differential equations to capture the ionic
mechanisms underlying the initiation and propagation of a
nerve electrical pulse or action potential (AP). The H-H model
has since become the research gold standard worldwide for the
modeling of the electrical characteristics of neurons.

Since the late 1970s, however, experimental measurements
of other various nonelectrical aspects occurring during APs
have revealed that a nerve pulse involves more than just its
electrical component [2–7]. In particular, the AP has been
observed to be accompanied by a small and rapid surface
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motion [8–20] whose peak is in phase with that of the AP,
with a magnitude in the nanometre range [21]. Marked longi-
tudinal shrinkage of the nerve fiber has also been observed
simultaneously with radial swelling [7]. Building on these
experimental observations, a new perspective began to arise,
essentially aimed at studying the phenomenon of AP propaga-
tion in nerve fibers from a thermodynamics standpoint [7,22].
In this approach, the phase transition of the lipid bilayers
in nerve fibers plays a significant role during nerve pulse
propagation [23]. Recently, the soliton hypothesis proposed
by Thomas Heimburg and Andrew Jackson further reinforced
the thermodynamics perspective [24]. The soliton hypothesis
considers the AP as a localized adiabatic “mechanical density
pulse” that maintains its shape during propagation with no
attenuation. The key concept of the soliton hypothesis is
the balancing of the pulse’s dispersive property (frequency-
dependent wave speed) by its nonlinearity (due to the in-
crease in compressibility as a result of membrane lateral
compression) near the phase transition regime of the lipid
bilayers [21,25]. Experimental support of the soliton model
includes the measured temperature pulse and the absence of
heat release during an AP. While the soliton model appears
to disagree with the H-H model on the fundamental nature of
the AP, the fact that the H-H model was essentially conceived
as a phenomenological model for the electrical signal alone,
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FIG. 1. Representation of the axon with adopted local cylindrical coordinate system; two scenarios are considered: 1© unmyelinated axons
and 2© myelinated axons.

along with the increasing body of evidence pointing toward
the existence of mechanical pulses (MPs) in cell membrane,
highlights the need to reconsider the AP as a full multiphysics
problem [26–28].

Biological flexoelectricity, which includes both direct and
reverse flexoelectricity, has been suggested as a key player
in the coupling between mechanics and electrophysiology
in biological cells [29]. Direct flexoelectricity is a unique
property usually observed in liquid crystals and refers to the
existence of a spontaneous electric polarization in dielectric
materials submitted to an applied mechanical strain gradient
[30]. Conversely, the reverse flexoelectric effect refers to a
strain gradient (usually in the form of bending or distortion)
induced by a substantial external electric field applied across
the material [31,32]. In lipid bilayers and cell membranes,
the phospholipid molecules which arrange themselves into
two layers are charged with dipole moments. These fluidlike
membranes can undergo a variety of mechanical deforma-
tions such as bending and thickness change due to external
mechanical stimulation, resulting in a redistribution of the
dipole moments and the development of a surface polariza-
tion [33]: the direct flexoelectric effect [34,35]. Reversibly, a
substantially large external electric field across the membrane
may also redistribute and reorientate these molecules due
to electrical attraction and repulsion, resulting in a change
in the membrane surface curvature: the reverse flexoelectric
effect. Flexoelectricity is found to play a significant role
in a number of biological functions, such as ion channels,
thermal fluctuation, vesicle equilibrium, and hearing functions
[10,29,36–40]. In neurons in particular, it has been suggested
that both the above-mentioned membrane movement during
AP propagation, as well as the membrane polarization during
an AP, could be related to the flexoelectricity [36,41].

Most recently, different numerical models have been pro-
posed to study the coupling between the electrophysiological
and mechanical properties of the membrane during AP initi-
ation and propagation in both healthy and damaged neurons
[27,28,42–48]. However, to the best of the knowledge of the
authors, none provided a numerical model able to investigate
thoroughly the interactions between mechanical and electrical
waves in the context of neuromodulation. To this end, we
propose here a coupled mechanoelectrophysiological mem-
brane finite-element model for neuronal axons. The model

consists of four components: (1) an electrophysiological pulse
model simulating the electrical AP propagation in axons, (2) a
MP model simulating the propagation of deformation of axon
membrane, (3) a reverse flexoelectric model linking mem-
brane bending to the alteration of membrane potential, and
(4) a direct flexoelectric model linking membrane polarization
to the membrane mechanical strain gradient. Details of the
modeling methodology, simulation results of pulse conduc-
tion and interaction on both unmyelinated and myelinated
axons, as well as related discussions, are introduced in the
following.

II. MODELING METHODOLOGY

A. Overview

The geometry of the axon is modeled as a one-dimensional
(1D) axisymmetric cylinder of initial length L, radius R, with
a thin wall representing the axon membrane with a constant
thickness H . A local cylindrical coordinate system (z, r, θ )
corresponding to the axonal axis, radial and circumferential
directions, respectively, is adopted. The AP and MP coexist
in this coupled mechanoelectrophysiological system. The AP
is modeled as an electrophysiological pulse using the classic
H-H theory [1] (for unmyelinated axons and the Nodes of
Ranvier of myelinated axons) combined with the cable theory
(for the internodal regions of myelinated axons), whereas the
MP is modeled using the viscoelasticity theory in a dynamics
framework. Changes of voltage field during an AP induce
strain gradient fields on the axon, following the reverse flex-
oelectric effect [35,49,50], which cause the axon to deform.
Reversibly, mechanical deformations in the axon due to a MP
not only alter the electrical properties of the membrane (e.g.,
membrane capacitance and resistance) but also result in a
self-polarized electrical field following the direct flexoelectric
effect, which in turn influences the membrane potential field.
In the following, two types of axons are considered: unmyeli-
nated and myelinated. An idealized representation of these
two types of axons with the adopted cylindrical coordinate
system is shown in Fig. 1.

B. Electrophysiological pulse model

The electrophysiological pulse model adopted here is
an axisymmetric membrane model. This implies a constant
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TABLE I. Terms in the governing equation of the electrophys-
iological model (1) for unmyelinated membrane (including Nodes
of Ranvier) and myelinated membrane. The parameters used in this
table are the usual ones for H-H and cable theory in myelinated and
unmyelinated membrane models, e.g., see Ref. [42].

Parameter Myelinated Unmyelinated

A CmCmy

HmCmy+nmyCmHmy

Cm
Hm

B 1
4ρa

1
4ρa

C 1
ρmHm+nmyρmyHmy

1
Hm

(ḡL + ḡNam3h + ḡK n4)

D − Vr
ρmHm+nmyρmyHmy

− 1
Hm

(ḡLEL + ḡNam3hENa

+ ḡK n4EK )

voltage throughout the membrane thickness as well as around
the axon circumference. Therefore, only the variation of volt-
age field along the longitudinal direction is considered. The
classic H-H model combined with cable theory is used to
solve the following partial differential equation describing the
propagation of AP along the axon:

Ad
∂V

∂t
− B

∂

∂z

[
d2 ∂V

∂z

]
+ CdV + Dd + IPd = 0, (1)

where t is the time, V is the membrane potential, and IP is the
self-polarized current density induced by the membrane defor-
mation due to direct flexoelectricity (see Sec. II D 2). d is the
axon diameter which varies with the longitudinal coordinate
z. Calculation of d is introduced in Sec. II E. The four terms
A, B, C, and D are provided in Table I. The physical definition
and values of these parameters are provided in Table III.

In Table I, the dimensionless gating variables m, h,
and n follow the evolution equations summarized in
Table II, controlled by the six voltage-dependent rate con-
stants αm, βm, αh, βh, αn, βn. See Hodgkin and Huxley [1]
for further information.

C. The mechanical pulse model

In the mechanical model, the axon is taken as an isotropic
and homogeneous cylinder with a thin wall of constant thick-
ness H . By virtue of the axisymmetry, the displacement field
is only a function of the longitudinal coordinate z. The me-
chanical model starts with the balance of linear momentum:

ρv̇ − ∇ · σ − ρb = 0, (2)

TABLE II. Hodgkin-Huxley evolution equations for Na+ and K+

channels.

Na+ channel K+ channel

dm
dt = αm(V )(1 − m) + βm(V )m

dh
dt = αh(V )(1 − h) + βh(V )h

dn
dt = αn(V )(1 − n) + βn(V )n

αm = 0.1 V +40

1−e− V +40
10

αh = 0.07e− V +65
20

αn = 0.01 V +55

1−e− V +55
10

βm = 4e− V +65
18

βh = 1

1+e− V +35
10

βn = 0.125e− V +65
80

FIG. 2. The two-branch generalized Maxwell model used to
model the axon as a viscoelastic material in the mechanical pulse
model.

where ρ is the mass density, v is the velocity, σ is the Cauchy
stress tensor, and b is the body force per unit mass. It is
observed that the lipid bilayer exhibits both elastic and viscous
properties, and its mechanical property may influence the
propagation (elastic) or attenuation (viscous) of mechanical
signals across the cell membrane [51]. Therefore, we consider
two material laws: (1) linear elastic and (2) linear viscoelastic.
For (1), σ relates to the infinitesimal strain tensor ε by:

σ = C : ε, (3)

where C is the fourth-order stiffness tensor. For (2), a two-
branch generalized Maxwell model is adopted, see Fig. 2. In
this case, starting from the general integral representation of
linear viscoelasticity, σ relates to ε through

σ(t ) = σ0(t ) + h1(t ) = C : ε(t ) + h1(t ), (4)

where the internal stress variable h1(t ) is defined as:

h1(t ) =
∫ t

0
γ1e(− t−s

τ1
)C :

∂ε(s)

∂s
ds, (5)

=
∫ t

0
γ1e(− t−s

τ1
) ∂σ0(s)

∂s
ds, (6)

where γ1 = E1
E0

is the normalized elastic modulus for which
E0 and E1 are the elastic moduli associated to the springs of
the purely elastic and viscoelastic branches, respectively, and
τ1 = η1

E1
is the relaxation time, where η1 is the viscosity of

the dashpot. These mechanical parameters are calibrated by
fitting the equivalent storage and loss moduli of the model
to the frequency-dependent rheological properties of neurons
experimentally measured in Ref. [52]. Equation (4) is solved
in a discretized manner where h1,n+1 at the tn+1 time step is
computed recursively following:

h1,n+1 = e− 
t
τ1 h1,n + γ1

1 − e(− 
t
τ1

)


t
τ1

(σ0,n+1 − σ0,n), (7)

where 
t is the time increment. See Refs. [53,54] for more
details on the implementation.

The final parameters are provided in Table III.

D. Reverse and direct flexoelectricity

1. The reverse flexoelectric effect

To model the reverse flexoelectric effect, it is assumed that
a local alteration in the potential of the dielectric membrane
from its equilibrium causes a local strain gradient field under
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TABLE III. Geometrical, mechanical, electrophysiological, and
boundary conditions parameters used in the model.

Geometrical
Reference axon length L 7.36 mm
Reference axon radius R 2.5 μm
Membrane thickness Hm 4 nm
Myelin layer thickness Hmy 1.08 nm
Reference length of Nodes of Ranvier lNR 2 μm
Reference length of internodal region lIN 800 μm
Number of myelin layers nmy 45

Mechanical
Membrane density ρ 1050 kg/m3

Possion’s ratio ν 0.49
Spring branch elastic modulus E0 187 Pa
Dashpot branch elastic modulus E1 419 Pa
Viscoelastic relaxation time τ1 6 ms
Direct flexoelectric coefficient fd 2×10−9 A s

Electrophysiological
Membrane electrical constant Cm 4×10−11 F/m
Axial cytoplasm resistivity ρa 1.87 � m
Membrane resistivity ρm 2.5×109 � m
Myelin layer electrical constant Cmy 1.08×10−10 F/m
Myelin layer resistivity ρmy 4.44×106 � m
Membrane resting potential Vres −65 mV
Na+ reversal potential ENa 50 mV
K+ reversal potential EK −77 mV
Leak reversal potential EL −54.4 mV
Na+ maximum conductance ḡNa 4.8×10−6 S/m
K+ maximum conductance ḡK 1.44×10−6 S/m
Leak maximum conductance ḡL 1.2×10−8 S/m
Reverse flexoelectric coefficient fr 4×10−21 A s

Boundary conditions
Clamped voltage Vclamp 0 mV

the form of either downward bending (membrane depolar-
ization) or upward bending (membrane hyperpolarization) by
means of radial force. In addition, it is assumed that the
magnitude of membrane bending force is proportional to the
offset of the membrane potential from the equilibrium level,
i.e., a more polarized membrane leads to a proportionally
larger membrane bending force, whereas a less polarized
membrane results in a proportionally smaller bending force,
see Fig. 3:

Fr = fr

H

V, (8)

where Fr is the reverse flexoelectric force, fr is the reverse
flexoelectric coefficient, and 
V is the local change in the
membrane potential.

2. The direct flexoelectric effect

To model the direct flexoelectric effect, it is assumed that
a strain gradient field in the form of membrane bending
can induce a polarization current through the membrane, see
Fig. 4. To compute this polarized current density, the local
polarization density P is computed by consideration of the

FIG. 3. Illustration of the reverse flexoelectric effect on the lipid
bilayer: A depolarization of the membrane induces a strain gradient
field, bending the membrane upward.

spatial gradient of the strain field following:

P = F ∵ ∇ε, (9)

where F is the fourth-order direct flexoelectric tensor and ∵
is the triple-dot product (summing up the two tensors’ com-
ponents on the three inner indices). The polarization current
density IP can then be computed as the projection of the rate
of change of P on the direction normal to the axon membrane:

IP = n̂ · ∂P
∂t

, (10)

where n̂ is the membrane normal. In our study, F reduces to a
scalar direct flexoelectric coefficient fd due to the isotropy of
the material.

FIG. 4. Illustration of the direct flexoelectric effect: A strain
gradient field, e.g., membrane bending, induces a polarization current
through the membrane.
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E. Alteration of capacitance and resistance
due to membrane deformation

The electrophysiological parameters such as membrane
electrical constant Cm and membrane resistivity ρm used in
Eq. (1) and Table I are fundamental electrical properties of
the membrane which only depend on the constitution of the
axonal membrane and not its geometry. However, the derived
membrane capacitances cm, membrane resistances rm, as well
as axial resistances ra used in the finite-element computation
do vary with the deformation of the membrane. For an axon
with a reference radius of R, the axon diameter d at the
location z is calculated by:

d (z) = 2R + 2w(z), (11)

where w(z) is the radial displacement at the location z and is
extracted from the results of the mechanical model. For one
element length l of axonal membrane in the deformed con-
figuration, the membrane capacitance cm can be therefore ap-
proximated by (assuming constant membrane thickness Hm):

cm = π
Cm

Hm

∫ l

0
d (z) dz. (12)

Similarly, the membrane resistance rm can be approximated
by:

rm = ρmHm

π

1∫ l
0 d (z) dz

. (13)

The axial resistance ra can be approximated by:

ra = 4ρa

π

∫ l

0

1

d (z)2
dz. (14)

In the finite-element implementation, values of the axon
diameter d (z) are evaluated at the Gauss points at each time
step. Values of cm, rm, and ra are updated for each element
accordingly. The same procedure is used for the myelinated
membrane.

F. Model coupling

The full coupling of the model is illustrated in Fig. 5.
The electrophysiological pulse model is coupled to the MP
model via the reverse flexoelectric effect. Conversely, the
MP model is coupled to the electrophysiological pulse model
through two channels: (1) the direct flexoelectric effect and
(2) changes in the electrical properties of the membrane due
to membrane deformation, e.g., membrane capacitance and
resistance in the H-H model. The coupling parameters are
provided in Table III.

G. Parameter selection

The modeling parameters used in our study are sum-
marized in Table III. The values of the geometrical and
electrophysiological parameters are taken from the work of
Jérusalem et al. [42], in which guinea pig white matter was
chosen as the reference material. As the literature data were
not directly available for this specific animal and/or brain re-
gion, an educated guess based on the similarity with other ma-
terials or general scaling laws is made. Original references of
the values of these parameters can be found in Jérusalem et al.

FIG. 5. Coupling between eletrophysiological and mechanical
models.

[42]. The values of the mechanical parameters are calibrated
by fitting the equivalent storage and loss moduli to the Prony
series model of frequency-dependent rheological properties
of neurons measured experimentally by Ayala et al. [52]. In
addition, the value of the reverse flexoelectric coefficient is
determined so that the simulated membrane displacement falls
within the range of experimentally observed values, whereas
the value of the direct flexoelectric coefficient is determined
so that the computed polarization current is of the same order
of magnitude as the current source that is used experimentally
to initiate an AP. Due to the lack of quantitative information
of these parameters in the literature for neuronal membrane,
we assume that these values are the same for both Node of
Ranvier and internodal regions.

H. Numerical implementation

The axonal membrane is discretized with two-node lon-
gitudinal axisymmetric finite elements, representative of the
membrane and the underlying cytoplasm in the case of the
electrophysiology. Each node is enriched with four degrees of
freedom (DoF) corresponding to the voltage, longitudinal and
radial displacements, and rotation angle.

The discretized weak form of the electrophysiological gov-
erning Eq. (1) can be written as

Cel · V̇ + Kel · V = Fel, (15)

where Cel and Kel are the electrophysiological damping and
stiffness matrices, Fel is the electrophysiological external
force vector, and V is the unknown nodal voltage DoF vector.
The global matrices and vectors are assembled from the
element counterparts. A 1D natural coordinate system is
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adopted within each element so that the domain of each ele-
ment is transformed to [−1, 1]. The element matrices are eval-
uated at each time step using four Gauss points and are assem-
bled into the global matrices, see Appendix for the full formu-
lation. The boundary conditions are imposed such that one end
of the axon is maintained at the clamped voltage and the other
end is modeled as a sealed end where the spatial longitudinal
gradient of V is 0. Solutions at the nodal points are obtained
using the explicit forward difference scheme. Finally, values
of m, h, and n are updated as internal variables stored at the
Gauss points using the corresponding equations in Table II.

The discretized weak form of the mechanical governing
Eq. (2) can be written as

Mm · d̈ + Km · d = Fm, (16)

for a linear elastic material, where Mm and Km are the me-
chanical mass and stiffness matrices, Fm is the mechanical
external force vector, and d is the unknown nodal displace-
ment DoF vector. Note that d is defined for a 1D two-node
shell element, and each node is assigned a longitudinal dis-
placement, a radial displacement, and rotation angle. A 2D
natural coordinate system (ξ, η) is adopted. In this work a
linear viscoelastic material model is adopted and Eq. (16)
needs to be evaluated iteratively between time step tn and tn+1:

Mm · d̈n+1 + Kvis
m · dn+1 = Fm,n+1 + Khist

m · dn − Hhist
m,n+1,

(17)

where Kvis
m and Khist

m are the viscous stiffness and history
stiffness matrices, and Hhist

m,n+1 is the history matrix at the
tn+1 time step. Note that the evaluation of element matrices
in the two equations above requires volume integrations over
a differential volume. However, because of the structural
axisymmetry, the integrands of the element matrices are all
independent of the circumferential coordinate θ , and the
volume integrations can be converted to double integrations.
These element matrices are evaluated at 2×4 Gauss points at
each time step and are assembled into the global matrices.
For the viscoelastic material model, evaluation of the element
history matrix at the tn+1 time step requires the value of the
internal variable h1,n at the previous time step, and its value is
recursively updated following Eq. (7). After assembly of the
element matrices, boundary conditions are applied as a pinned
joint at one end and as a roller support at the other end. The
force vectors include the contribution of the direct flexoelec-
tric force following Eq. (8), see the Appendix for more details.
The Newmark method with values β = 0.25 and γ = 0.5 is
used as the time marching scheme to obtain the solution at
each time step. The updated displacement (strain) field at each
time step is used in (a) Eq. (1) to update the axon radius R,
(b) Eq. (9) to compute the polarization density, and (c) Eqs. (7)
and (17) to update the terms which are related to the stress and
strain history in the viscoelastic material model.

III. RESULTS

Numerical simulations are conducted for several different
scenarios: (a) comparison of the difference of AP conduction
between unmyelinated and myelinated axons, b) comparison
of MP below and above “activation threshold”, (c) pulse

collision between two electrical pulses (EPs)1 as well as
between an EP and a MP, (d) pulse chasing between an EP and
a MP, and (e) effect of changing the pulse repetition frequency
(PRF) of the mechanical wave. Each of the results is illus-
trated and discussed separately in the following subsections.
In all following simulations where a MP is triggered, its period
is 0.2 ms.

A. Unmyelinated vs. myelinated

Figure 6 illustrates the propagation of two EPs both ini-
tiated by electrical stimuli on an unmyelinated axon and on
a myelinated axon. The corresponding video is provided as
Supplemental Material [55]. In both cases, an accompanying
MP can be observed to travel conjointly with the EP, with a
magnitude of approximately 1 nm. This MP is linked to the
axon surface movement occurring during membrane polariza-
tion due to the reverse flexoelectric effect. In the unmyelinated
axon, the axon is fully covered by ion channel regions, which,
when activated by a local elevation of voltage, activate their
neighboring regions in the same way. As a result, all ion
channels are activated in a continuous sequence and the EP
travels forward maintaining a wave shape. On the contrary,
in a myelinated axon, the axon is covered intermittently by
regions of Nodes of Ranvier and internodal regions. When
one nodal region is activated by a locally elevated voltage,
the membrane potential in the neighboring internodal region
slowly propagates to the next node in a quasidiffusion fashion.
When the voltage at the end of the internodal region is
elevated enough, the next nodal region is activated. As a result,
the electrical potential thus propagates segment by segment as
shown in Fig. 6 rather than in the continuous wave form as in
an unmyelinated axon.

B. Above vs. below threshold

Figure 7 shows the propagation of two MPs in a myelinated
axon, both of which are initiated by stimulating the right
end of the axon with a waveform displacement profile. The
corresponding video is provided as Supplemental Material
[55]. The two cases differ through the magnitude of the stim-
ulating displacement profile: One involves a sudden overall
compressive strain of 0.5% and the other of 0.25%. In the
first case, the polarization current induced by the local strain
gradient due to propagating mechanical wave is large enough
to activate the ion channels’ activities: An EP is initiated and
propagates conjointly with the MP, i.e., at the velocity of the
MP as opposed to the velocity of a sole EP. In the second
case, however, the induced polarization current is too small
to activate the ion channels’ activities. As a result, only the
propagation of a local small membrane polarization could be
observed. This result indicates the existence of an “activation
threshold” which corresponds to the smallest magnitude of
the mechanical stimulus that is needed to activate the ion
channels’ activities through the flexoelectric effect.

1Here and subsequently, to avoid a confusion between the tradi-
tional definition of the AP as an electrical phenomenon, and the dual
mechanical and electrical nature argued in this work, the term “EP”
is used when referring to the electrical component only.
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FIG. 6. Comparison between the conduction of an AP on an unmyelinated axon vs. on a myelinated axon. In both cases, an accompanying
MP can be observed to propagate conjointly with the EP with a magnitude of approximately 1 nm. The corresponding video is provided as
Video 1 in Supplemental Material [55].

FIG. 7. Comparison between the conduction of a MP with magnitude above or below the “activation threshold” on a myelinated axon. In
the case of MP above the threshold, the MP is able to induce an EP due to the direct flexoelectric effect which conjointly propagates with
the MP. On the contrary, in the case of MP below threshold, the flexoelectric current induced by the MP is too small to trigger an EP. The
corresponding video is provided as Video 2 in Supplemental Material [55].
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FIG. 8. Collision between an EP and a MP on a myelinated axon. The left end is excited by an electrical stimulus, whereas the right end is
excited by a mechanical stimulus with 9-ms time delay. The magnitude of the MP is large enough to induce a second EP. It is observed that the
two APs annihilate each other up on collision, whereas the MP maintains itself and induces a new EP after leaving the refractory period zone
of the right-moving EP. The corresponding video is provided as Video 3 in Supplemental Material [55].

C. Pulse collision

Figure 8 shows the collision between an EP and a MP
in a myelinated axon. The corresponding video is provided
as Supplemental Material [55]. The EP is initiated by an
electrical stimulus on the left end of the axon, whereas the MP
is initiated by a mechanical stimulus on the right end whose
magnitude is above the “activation threshold.” The leftward
propagating MP itself does not interfere with the rightward
propagating EP. Nevertheless, the mechanically induced left-
ward propagating EP interferes with the original rightward
propagating electrical pulse. After collision, these two EPs
annihilate each other, and all electrical activities temporarily
die out, whereas the MP continues to propagate. After leaving
the refractory period zone of the rightward propagating EP, the
MP is free to trigger another EP, which can copropagate with

the MP. If both the simulation time and length of the axon
are long enough, then the MP is gradually dissipated by the
viscosity of the axon membrane and eventually vanishes. An-
other simulation (results not shown) was done on the collision
of two MPs, both of which able to generate a flexoelectric cur-
rent strong enough to induce an EP. In this situation, it is sim-
ilarly observed that the two mechanically induced EPs annihi-
late after collision, whereas the two MPs themselves pass each
other without any mutual influence. These two MPs eventually
vanish due to the viscous dissipation of their kinetic energy.

D. Pulse chasing

Figure 9 shows an EP chased by a MP in a myelinated
axon. The corresponding video is provided as Supplemental
Material [55]. To this end, an EP is initiated from the right

FIG. 9. Chasing of an EP by a MP. The EP is initiated by an electrical stimulus from the right end. After a 2-ms time delay, the MP
is triggered from the right end with a magnitude above the “activation threshold” to induce a second EP. The MP carries the second EP to
propagate at the speed of the MP. However, when the second MP enters the refractory period of the first EP, it is split from the MP and gradually
dies out, whereas the MP continues to propagate, catches up with the first EP, pushes it to propagate at the speed of the MP, and enhances the
magnitude of the EP. The corresponding video is provided as Video 4 in Supplemental Material [55].

032406-8



COMPUTATIONAL MODEL OF THE … PHYSICAL REVIEW E 99, 032406 (2019)

FIG. 10. Illustration of effect of the pulse repetition frequency of MPs in the context of electrophysiological enhancement of damaged
myelinated axons. For case 1, the conduction of the EP on an intact “healthy” axon triggered by an electrical stimulus on the right end is used
for comparison. For cases 2–6, a Node of Ranvier is intentionally myelinated in an idealized case of damaged node. In case 2, the axon is
excited by an electrical stimulus from the right end; the EP cannot pass the damaged node and eventually vanishes. In case 3, a single MP
(smaller than the “activation threshold”) is sent 2 ms after the EP. While the MP itself can propagate through the damaged node, it is unable
to carry the EP across it. In case 4, MPs are triggered at 1 kHz, and this series of MPs helps the EP to conduct further away, but the EP still
gradually diminishes and is not able to activate the next Node of Ranvier. In case 5, the PRF of the MPs is increased to 5 kHz, and now the
MP is able to carry the EP over the damaged node. However, the conduction velocity of the EP in this case appears as reduced by the damaged
node in comparison with case 1 of the “healthy” axon. Finally, in case 6, the PRF of the MPs is increased to 10 kHz. It is observed that the
MPs not only carry the EP over the damaged node but also enhance both the polarization level as well as the conduction velocity of the EP.
The corresponding video is provided as Video 5 in Supplemental Material [55]. All snapshots are at time 7 ms.

end by an electrical stimulus. After 2 ms, a MP is also initiated
from the right end whose magnitude is above the “activation
threshold” and therefore capable of inducing a second EP.
This second EP is carried by the MP propagating at a speed
faster than the first EP. However, when arriving at the next
Node of Ranvier, the second EP is split from the MP as the
node is still within the refractory period of the first electrical
pulse. From here, the MP propagates at its own speed, whereas
the second EP gradually dies out. When the MP catches up
to the first EP, it accelerates the first EP to propagate at the
speed of the MP but also enhances the level of membrane
polarization.

E. Frequency-dependent neuromodulation
below activation threshold

In this study, the effect of changing the PRF of the MP is
also briefly investigated in the context of electrophysiological
enhancement of damaged myelinated axons in Fig. 10. For
comparison, simulation of conduction of an EP on an intact

“healthy” axon is also included (case 1). To simulate a dam-
aged myelinated axon, the dynamics of one Node of Ranvier
is stopped by integrating the corresponding elements into their
two neighboring internodal regions. The cable theory used
to model the internodal regions is naturally associated with
a length constant (i.e., the length of the internodal region),
which is representative of the distance that a graded electric
potential can travel along the axon through passive electrical
conduction while still being able to activate the next Node of
Ranvier. As a result, when the internodal region is too long
(as in this case, where two consecutive internodal regions
are concatenated), the membrane potential is unable to travel
through, and the next Node of Ranvier is not activated (case 2).
For this scenario, the simulation of Sec. III D is first repeated,
but with a MP whose magnitude is lower than the “activation
threshold” (case 3). In this case, the MP is unable to carry
the electrical potential to “jump” over the damaged Node of
Ranvier region and the electrical potential gradually dies out.
Another similar simulation is also conducted with a series
of MPs at 1 kHz PRF and an “infra-activation threshold”
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magnitude (case 4). It is shown that this series of MPs helps
the EP to conduct further away, but the EP still gradually
diminishes and is not able to activate the next Node of Ranvier.
However, if the PRF of the MPs is increased to a level above
5 kHz (cases 5 and 6), then it is observed that the MP train
under this frequency not only can help the EP to jump over
the damaged region but also may enhance its propagation in
the context of both polarization level and conduction velocity,
even if the magnitudes of each MP taken individually are all
below their individual “activation threshold,” see Fig. 10 and
Supplemental Material [55].

IV. DISCUSSION

Mechanical deformation of the membrane during mem-
brane electrical activity has been experimentally observed in
a wide variety of excitable cells and tissues including both
invertebrate and vertebrate nerve fibers [2–4,6–19,21,22]. The
magnitude of the displacement varies depending on the type of
cell and nerve fiber, e.g., about 0.5–1 nm in squid giant axons,
5–10 nm in crab nerves, and 10–20 nm in crustacean nerves.
In addition, the magnitude also appears to be proportional to
the change of voltage, in the ratio of about 1 nm per 100 mV.
In recent years, numerical models have been proposed to
study this phenomenon. Among others, Hady and Machta [43]
proposed a numerical model in which these copropagating
mechanical displacements (termed “action waves”) emerge
from the surface waves due to the varying compressive elec-
trostatic forces across the membrane, whereas these varying
electrostatic forces are induced by the traveling wave of
the electrical depolarization. Their simulation results show
a good agreement with a range of experimental results on
the magnitude of the membrane displacement and the wave
speed. Interestingly, they concluded that many properties of
the comoving mechanical wave are determined by comparison
of its own propagation velocity and the velocity of the EP at
relevant wavelengths. Drapaca [44] also proposed a coupled
electromechanical model of a neuron based on a unified
variational principle. In this model, the neuron is modeled as a
linear viscoelastic Kelvin-Voigt solid whose electrochemical
activity is described by the classical H-H equations. The
neuron electrodynamics is described by a coupled system
of differential equations, which is obtained by minimizing a
special integral functional whose integrand is made of the
kinetic and potential energies as well as the work done by
the forces acting on the neuron. The membrane capacitance
is also linked to the mechanical deformation of the neuron.
However, the elastic modulus of the neuron is not constant.
Instead, it is assumed to depend on the gating variables in
the H-H model. Finally, the AP is simulated by applying a
constant external electric current and an initial displacement
as well as an initial velocity of the membrane. In a series of
publications [26–28], Engelbrecht et al. extensively studied
the electromechanical coupling of waves in nerve fibers. In
their model, the AP is modeled as an EP which is assumed
to trigger all other processes. It is modeled using a mod-
ified FitzHugh-Nagumo model [56,57] which also incorpo-
rates “mechanical activation” parameters that describe the
mechanosensitivity of the ion channels. The EP is coupled
to the mechanical waves which include both longitudinal and

transverse waves in the membrane, as well as the pressure
wave in the axoplasm. The longitudinal wave is modeled using
the improved nonlinear soliton model, whereas the transverse
wave is linked to the longitudinal wave via the theory of
rods. The pressure wave in the axoplasm is modeled using
a model of pressure propagation in an elastic cylindrical tube
with added viscous damping term described by a 1D Navier-
Stokes equation. The coupling effect is achieved via several
coupling forces added into the governing equations. These
coupling forces depend on the spatial and temporal changes
of voltage. Apart from these models, there are also models
which attempt to explain the membrane polarization-induced
deformation based on the equilibrium of cell membrane ten-
sion, e.g., cells alter their radii to attempt to maintain constant
pressure across the membrane due to the change in surface
tension [10,16,58]. In these references, the surface tension
is defined by the Gibbs free energy required to maintain a
certain surface area, containing both chemical and electrical
contributions. The chemical contribution is the natural sur-
face tension of membrane interface with no electric field,
whereas the electrical contribution comes from the electri-
cal energy stored in the membrane through the membrane
capacitance during polarization induced by the applied volt-
age field. When the membrane is polarized, the change of
membrane potential modulates the surface tension of both
intracellular and extracellular fluids with the deformable cell
membrane. In order to maintain a constant pressure across
the membrane, differences in surface tensions between the
intracellular and extracellular interfaces induce changes in
membrane curvature, exhibited as membrane displacement.
Consequently, changes in membrane potential result in an
alteration of cell radii in the form of membrane movement
to maintain the mechanical equilibrium across the membrane
[59]. In the study presented here, the EP is modeled using
the class H-H theory for the ion channel mechanism with the
cable equation for its conduction, whereas the MP is modeled
using the dynamic beam assumption for a viscoelastic solid.
The effect of the pressure wave in the axoplasm is ignored.
The membrane polarization-induced deformation is captured
by the reverse flexoelectric effect, where a local potential
change always induces a membrane displacement in the form
of a local strain gradient field. This membrane deformation
can propagate independently as a mechanical wave, whose
speed depends on the mechanical properties of the membrane.
If the membrane is stiff enough, then it may actually propagate
ahead of the EP. However, because of its low magnitude and
the viscoelasticity of the membrane, it is eventually damped
and vanishes. Simulation results of our study also show good
agreement with the experimental measurements, i.e., about
1-nm membrane displacement.

The conduction velocity (CV) of an AP in the axons can
be as slow as 0.07 m/s for specific frog muscle fibers [60]
and as fast as 120 m/s for Type Ia sensory fibers [61], with
typical values ranging from 1 m/s to over 100 m/s [62].
The CVs are known to be affected by many factors, such
as species, gender, age, type of nerve, axonal diameter, and,
most importantly, axonal myelination. Myelin sheaths on the
neuronal axons can help the nerve system to acquire a faster
propagation of the AP while increasing energy efficiency by
means of saltatory conduction [63]. Normally, the conduction
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velocity of an AP in the myelinated axons can be several
folds faster than that in the unmyelinated axons [64]. In the
simulations presented here, the CVs of EPs without MPs (as
MPs drive EPs’ velocities) are approximately 0.63 m/s in both
myelinated and unmyelinated axons. This value falls in the
typical value range of CV of an AP. However, the model does
not predict a larger CV in myelinated axons when compared
to the unmyelinated case. This could be attributed to the
following reasons. First, in the proposed modeling framework,
the classic cable theory (initially developed by Thomson [65]
to model signal decay in submarine telegraphic cables) is
used to model the propagation of electrical signal along the
passive myelinated axon. It considers the axon as a cylinder
composed of individual segments of membrane capacitances
and resistances aligned in parallel, intermittently connected
by the axoplasm resistances, and the myelin layers as a series
of myelin capacitances in serial with the membrane capacitor,
as well as a series of resistances in serial with the membrane
resistances. This type of model has been used widely in the
literature to model the propagation of an EP in a myelinated
axon. However, given the complex dual nature of AP dis-
cussed in the paper, the actual physiological mechanisms by
which myelin layers accelerate the EP propagation cannot
be reduced to a combination of simple electronic compo-
nents. Second, as stated in Sec. II G, the guinea pig white
matter was chosen as the reference material for evaluating
the electrophysiological parameters. As the literature data of
the membrane and myelin electrophysiological parameters for
this specific type of axons are not directly available, educated
guesses based on the similarity with other materials from
different references along with general scaling laws are made.
Therefore, using values of electrophysiological parameters
from a combination of several sources may not necessarily
produce a result that can perfectly simulate the conduction of
an EP on a myelinated axon in every aspects. Finally, since
the CV of an AP in myelinated axons also vary between
different cells and nerves, potentially depending on the type
and population of ion channels, axon diameter, thickness, and
maturation of the myelination, ideally each cell or axon should
be submitted to a thorough histological study identifying the
population of ion channels and myelination properties. Based
on this, the electrophysiological parameters tailored to this
specific cell or axon type could be calibrated. However, this
type of work itself is a full enterprise on its own (e.g., one
of the main aims of the Blue Brain Project is to gather ion
channel models, see http://channelpedia.epfl.ch/), but, while
acknowledging the limitations of these models, the qualita-
tive conclusions drawn from these simulations should not be
a priori affected by the CV of the EPs.

Figure 8 shows the collision between an EP and a MP in
a myelinated axon. During the simulation, the left-moving
MP induces a left-moving accompanying EP which leaves a
refractory period behind. When the right-moving EP collides
with this mechanically induced left-moving EP, it enters the
refractory period of the left-moving EP. Since the ion channels
in the refractory period zone cannot be immediately activated
again, the right-moving EP cannot propagate through and
therefore dies out. However, the MP itself is free to propagate.
After leaving the refractory period zone of the right-moving
EP, the MP again induces polarization in the membrane due to

the direct flexoelectric effect. If the viscosity of the membrane
is not set to be large enough to have attenuated the MP
below its “activation threshold” (as shown in this case), the
membrane polarization can develop into a new EP which
copropagates with the MP. This phenomenon appears even
more clearly in the case of unmyelinated axons, in which
the postannihilation re-induced membrane polarization may
develop and split into two EPs separating and propagating in
opposite directions.

In the literature, several experimental studies were con-
ducted in various nerve fibers or cells to examine whether
annihilation can occur or not on AP collision [66–70]. It has
been frequently witnessed that colliding APs are reciprocally
annihilated instead of penetrating each other. One exception
is a series of studies by Gonzalez-Perez et al. [18,19], where
it is observed that the two simultaneously generated pulses
propagating in orthodromic and antidromic direction in the
giant axons of both earthworms and lobsters pass through
rather than annihilate each other. The numerical simulation
results illustrated in these studies where the AP is modeled as
a mechanical wave based on the soliton theory also support
their experimental observations. Nevertheless, in one com-
ment to the original paper [71], the experiment was repeated
but the results about AP penetration could not be reproduced
as AP annihilation on collision was consistently observed. In
the following reply to this comment [72], it was argued that
the signals had been strongly perturbed due to the significantly
different experiment configuration in the study of Berg et al.
[71]. In our study, it is observed that when two EPs from
opposite directions meet and collide, they annihilate each
other regardless of whether the EPs are initiated by electrical
stimuli or triggered by MPs whose amplitudes are above the
“activation threshold.” These results are consistent with most
of the experimental observations on nerve pulse collision. The
fundamental reason is specifically attributed to the mathemati-
cal model of the EP that is adopted in our model, i.e., the H-H
model. Due to the concept of refractory period in the H-H
model, the ion channels are relaxed and, therefore, cannot be
activated again within a short time. Therefore, when two EPs
collide, they both enter each other’s refractory period, hence
their mutual annihilation. The soliton hypothesis, on the con-
trary, considers APs as soundlike MPs and predicts no annihi-
lation of colliding pulses (as shown in the studies of Gonzalez-
Perez et al. [18,19]). However, most recently, Shrivastava et al.
[73] observed the annihilation of two superthreshold interfa-
cial MPs on head-on collision in a lipid monolayer. The bla-
tant discrepancy between the prediction of theoretical analysis
of the soliton hypothesis and the experimental observations of
MP collision was attributed to the result of nonlinear material
properties (such as nonlinear viscosity resulting from relax-
ation of phase change), as well as the internal heat transfer in
the colliding pulses. Consequently, it is clear that the most
critical factor is still the predefined conception toward the
nature of an AP. In our study, we assume that APs are merely
electrophysiological waves due to the ion channel mechanism,
whereas the associated mechanical wave corresponding to the
membrane displacement is a consequence of this electrical
phenomenon due to flexoelectricity. This conception certainly
leads to simulation results in which wave annihilation is
expected on collision. To unveil the real nature of APs,

032406-11

http://channelpedia.epfl.ch/


CHEN, GARCIA-GONZALEZ, AND JÉRUSALEM PHYSICAL REVIEW E 99, 032406 (2019)

experimental measurements of MPs and their interactions in
the lipid bilayers of cell or nerve membranes (if technology
permits) is urgently needed. However, the approach we are
taking essentially demonstrates that the membrane displace-
ment, observed by the proponents of the soliton theory, is
not necessarily incompatible with the H-H model when one
accounts for the flexoelectricity of the membrane.

Many sophisticated models of biological flexoelectricity
have been proposed in the literature for the purpose of elec-
tromechanical coupling. For example, Rey [74] developed
a formulation of an isotropic interfacial liquid crystal flex-
oelectric membrane under different mechanical deformation
conditions and derived a membrane electromechanical shape
equation that connects fluid forces with membrane curvature
and electric displacement. This model is incorporated and
further sophisticated by Rey et al. [75] to model a mechan-
ical energy harvesting system consisting of a deformable
soft flexoelectric thin membrane, as well as by Herrera-
Valencia and Rey [76] to model the actuation of flexoelectric
membranes of hair cells in viscoelastic fluids. Gao et al.
[38] developed an electromechanical liquid crystal model
for characterizing the mechanical equilibrium morphology
of an axisymmetric lipid vesicle in a uniform electric field.
In this model a general equation was established to govern
the vesicle shape based on the Helmholtz free energy, which
incorporates the effects of elastic bending, osmotic pressure,
surface tension, Maxwell pressure, as well as flexoelectric
and dielectric properties of the lipid membrane. Breneman
et al. [77] proposed a flexoelectric model for stereocilia of
the hair cells, in which the governing equations include the
electrical cable and mechanical wave equations in which
the corresponding terms are replaced by their flexoelectric
counterparts (i.e., flexoelectric current and flexoelectric axial
stress). Mohammadi et al. [78] proposed a theory for flexo-
electric membranes based on minimization of the total free
energy as the sum of the internal and electric energies, both of
which are functions of out-of-plane displacement and out-of-
plane polarization, for a 2D thin membrane. This model was
extended by Deng et al. [40] to model flexoelectricity in soft
materials. More recently, Kancharala et al. [79] developed a
flexoelectric model coupled with a nonlinear finite-element
model to study the dynamic mechanoelectrical response of
droplets under excitation. This electrostatic model captured
the internal distribution of charge within a droplet, leading
to a dipole and surface potential. In our study, two simple
phenomenological models are used to model the reverse and
direct flexoelectric effects, see Eqs (8) and (9). Values of
the reverse and direct flexoelectric coefficients are calibrated
so that the simulated membrane displacement falls in the
range of experimentally observed values and the computed
polarization current is of the same order of magnitude as the
current source that is used experimentally to initiate an AP.
The electrophysiological and mechanical models are mutually
coupled via these two simple phenomenological flexoelectric
models. While the approach would benefit from more com-
plex considerations accounting for the fundamental mecha-
nisms that underly flexoelectricity [29,33,35,40,49,50,80,81],
it provides a flexible tool for the investigation of the coupling
between mechanics and electrophysiology in the context of
neuromodulation.

In recent years, the potential of low-intensity, low-
frequency transcranial pulsed ultrasound (TPU) to stimu-
late the brain as a noninvasive neuromodulation method has
drawn the interest of many research groups. Compared with
more traditional neuromodulation methods such as deep brain
stimulation or vagal nerve stimulation, TPU does not re-
quire the implantation of electrodes that could damage the
nervous tissue or lead to infection. In many studies, TPU
has been shown to induce changes in the animals’ activities
and neural response [82–91]. Moreover, TPU has also been
experimentally observed to affect the neural activity of hu-
man beings [92–94] by suppression or inhibition dependent
on the parameters of the acoustic energy applied to neu-
ral tissue. Systematic reviews of TPU for neuromodulation
can be found in Refs. [95–103]. Despite these experimen-
tal evidences, remarkably, the action mechanism underly-
ing ultrasound neuromodulation is still poorly understood.
In an attempt to answer this question, several hypotheses
have been proposed. For instance, Tyler [104] suggested that
ultrasound alters the membrane conductance by interacting
directly with the neuron membrane and its surrounding fluid
environment via various types of mechanical actions. Plaksin
et al. [105] proposed a model in which ultrasound-induced
intramembrane cavitation within the bilayer membrane leads
to cell excitation through the effect of currents induced by
membrane capacitance changes. In this study, an idealized
loading case is considered: A temporally varying strain is
applied at one axonal end as a boundary condition, resulting in
a traveling local strain gradient. For any given frequency, the
applied strain level is incrementally increased to identify an
“activation threshold” above which a single or multiple MPs
initiate an EP by direct flexoelectric effect. The simulation
results demonstrate that such MP-induced EP can potentially
either suppress or enhance an EP, depending on the direction-
ality of the two pulses. In classical TPU neuromodulation,
the acoustic wave is usually frequency, intensity, and power
modulated, and the propagating wave in the skull is attenuated
due to the scattering and absorption of the brain tissue [106].
Therefore, there is no direct experimental observation of the
level of physiological deformation experienced by a neuron
during TPU neuromodulation. As such, while both idealized
and decoupled from what would potentially be required at
the tissue level, the proposed loading scenario has the merit
to focus on the neuromodulation at the cell scale. It must
also be emphasized that, according to the direct flexoelectric
effect, it is the local strain gradient field over a very short
moment that leads to the initiation of an EP, not the strain or
displacement fields [see Eqs. (9) and (10)]. Therefore, in this
theory, normal body movement or local musculature changes
are not expected to trigger an AP, as either the neurons do
not experience a gradient of deformation (such as for homo-
geneous deformation or displacement due to head movement)
or the duration under which the neurons experience the strain
gradient field is too long to trigger an EP.

The simulation results also show that, when emitted at
a given PRF, MPs with small magnitudes (even below the
single MP “activation threshold”) can also enhance the AP
and help it propagate through a damaged region of axon. The
natural frequency of these MPs is set to be 5 kHz which
is much lower than the natural frequency of a TPU. One
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additional simulation (see Video 6 in Supplemental Material
[55]) of mechanical-induced EP was conducted on a “healthy”
myelinated axon stimulated by a train of MPs with a natural
frequency in the range typically used in experimental TPU
[107]: 500 kHz for 1 ms for a full simulation of 3 ms, i.e.,
a duty factor of 33.3%. The amplitude of the MPs used in
this case is much lower than that used in the low frequency
cases (approximately 1/10th). However, the train of MPs at
this natural frequency is capable of inducing an EP which
includes both depolarization and repolarization phases. This
result indicates that while a single wave requires a relatively
large displacement (approximately 1 μm), much lower mem-
brane displacements are required for neuromodulation at high
frequency. It can also be seen that this train of MPs can
induce an EP larger in amplitude when compared with the
ones in Fig. 10. Therefore, a similar result can be expected:
A MP with a typical TPU frequency can also enhance the EP
and help it to propagate through the damaged region on the
axon. To fully examine the correlation among PRF, natural
frequency, and amplitude, additional simulations are needed,
which simulate EPs triggered by MPs for different frequencies
and amplitudes. While it is out of the scope of this study, it will
be investigated in the near future.

V. CONCLUSION

In order to investigate some of the modern multiphysics
hypotheses on the nature of AP, we proposed a mechano-
electrophysiological coupling thin-wall model for axons in
neurons. The electrophysiological component of the AP is
modeled as an electrophysiological pulse whose conduction is
described by the cable theory in the myelinated regions, and
the H-H equations at the Nodes of Ranvier and for unmyeli-
nated axons. The mechanical response of the axon is modeled
using the beam theory for a viscoelastic material applied
to an axisymmetric geometry in a dynamic framework. The
electrophysiological and mechanical models are coupled via
the direct and reverse flexoelectric effects. The deformation of
the membrane also alters the membrane electrical properties
through the change of the modeling parameters in the H-H
model. Using this model, a series of simulations was sys-
tematically conducted on both myelinated and unmyelinated
axons. It is shown that an AP is always accompanied by
an in-phase propagating membrane deformation; and a MP
with enough magnitude can also initiate an AP due to the
flexoelectric effect. The results of pulses interference depend
on their respective directionalities. Independently increasing
the amplitude or PRF of the MP can enhance the propagation
of an AP, even on a damaged axon. Our study provides a
potential explanation to these experimentally observed axon
membrane displacements during AP propagation. It also pro-
vides a foundational framework for the modeling of the mech-
anisms behind ultrasonic neuromodulation.

The code used for the finite-element formulation is avail-
able in Ref. [108].

ACKNOWLEDGMENT

The authors acknowledge funding from the EPSRC Heal-
thcare Technologies Challenge Award No. EP/N020987/1.

APPENDIX

This Appendix covers the details of the finite-element
formulation of the model.

1. Finite-element formulation of the electrophysiological model

The strong form of the electrophysiological governing
equation reads:

Ad
∂V

∂t
− B

∂

∂z

(
d2 ∂V

∂z

)
+ CdV + Dd + IPd = 0. (A1)

Its finite-element discretized weak form at the element level
can be written as:

Ce
el · V̇ e + Ke

el · V e = Fe
el, (A2)

where two-node line elements are adopted with V e =
[Vi Vj]

T being the element degree of freedom at the two end
nodes i and j. A 1D natural coordinate ξ with −1 � ξ � 1
is adopted for each element. The local coordinate z within
each element is mapped to the natural coordinate ξ using
the coordinate transformation: z = l

2 + l
2ξ with the Jacobian

Jel = ∂z
∂ξ

= l
2 and its inverse J−1

el = ∂ξ

∂z = 2
l , where l is the

length of the element. The element shape function matrix Nel

is given by:

Nel = [
1
2 (1 − ξ ) 1

2 (1 + ξ )
]
. (A3)

The derivative of Nel with respect to the natural coordinate
ξ, Bel, is then given by:

Bep = [− 1
2

1
2

]
. (A4)

The element damping matrix Ce
el is given by:

Ce
el = AJel

∫ 1

−1
d (ξ )NT

el · Nel dξ, (A5)

while the element stiffness matrix Ke
el is given by:

Ke
el = Jel

∫ 1

−1
C(ξ )d (ξ )NT

el · Nel dξ

+ BJel
−1BT

el · Bel

∫ 1

−1
d (ξ )2 dξ (A6)

and the element force vector Fe
el is given by:

Fe
el = Jel

∫ 1

−1
[−D(ξ ) − IP(ξ )]d (ξ )NT

el dξ + Qel, (A7)

where Qel = [Qi Qj]
T with Qi = −Jel

−1B[d (ξ )2 ∂V
∂ξ

]−1
and

Qj = Jel
−1B[d (ξ )2 ∂V

∂ξ
]
1
.

Within each element, values of Ce
el, Ke

el are evaluated using
Gaussian quadrature using four Gauss points at each time step:

Ce
el ≈ AJel

4∑
i=1

d (ξi )NT
el · (ξi )Nel(ξi )Wξi

Ke
el ≈ Jel

4∑
i=1

C(ξi )d (ξi)NT
el(ξi ) · Nel(ξi )Wξi

+
[

BJel
−1

4∑
i=1

d (ξi)
2Wξi

]
BT

el · Bel, (A8)
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where ξi denotes the ith Gauss point’s natural coordinate and
Wξi is its corresponding weight. Finally, the element force
vector Fe

el are evaluated by:

Fe
el ≈ Jel

4∑
i=1

[−D(ξi ) − IP(ξi )]d (ξi )NT
ep(ξi )Wξi + Qep. (A9)

There is no need to compute the actual values of Qep, as when
the element force vectors are assembled into the global force
vector Fel, the values of Qep in the two adjacent elements
cancel each other.

The explicit forward difference scheme is used here. The
initial condition is that the membrane potential at time t = 0 is
equal to the membrane resting potential V (t = 0) = V rest. The
boundary conditions differ between the different modeling
scenarios. At each time step, the element matrices Ce

el and
Ke

el as well as the force vector Fe
el are assembled into global

matrices Cel, Kel and global force vector Fel, respectively:

Cel = A
e

Ce
el Kel = A

e
Ke

el Fel = A
e

Fe
el. (A10)

The solutions at the nodal points are obtained and interpolated
at the Gauss points using the shape functions to update values
of m, n, and h for the next time step.

2. Finite-element formulation of the mechanical model

The strong form of the mechanical governing equation
reads:

ρv̇ − ∇ · σ − ρb = 0. (A11)

Its finite-element discretized weak form for a linear viscoelas-
tic solid at the element level can be written as:

Me
m · d̈

e
n+1 + Kvis,e

m · de
n+1 = Fe

m,n+1 + Khist,e
m · de

n − Hhist,e
m,n+1,

(A12)

where two-node axisymmetric shell elements are used with
de = [ui wi θi u j w j θ j]

T being the element de-
gree of freedom at the two end nodes i and j, where u denotes
the axial displacement, w denotes the radial displacement, and
θ denotes the rotation angle. We adopt a 2D natural coordinate
system (ξ, η) within each element, as shown in Figs. 11 and
12, with ξ being parallel to z and η being parallel to r, and
−1 � (ξ, η) � 1. The local coordinates (z, θ ) within each
element are mapped onto the natural coordinates (ξ, η) using
the coordinate transformation: z = l

2 + l
2ξ and r = R + H

2 η,
where R is the initial radius of the axon and H is the assumed
constant thickness of the membrane. Therefore, the Jacobian
matrix Jm of the transformation reads:

Jm =
[

∂z
∂ξ

∂r
∂ξ

∂z
∂η

∂r
∂η

]
=

[
l
2 0

0 H
2

]
(A13)

with the Jacobian Jm = |Jm| = Hl
4 .

The element displacement shape function matrix Nm is
given by:

Nm =
[

NT1 0 0 NT2 0 0

0 NB1 NB2 0 NB3 NB4

]
(A14)

FIG. 11. Axisymmetric differential volume of the axonal cylin-
drical structure.

with the shape functions expressed in the local natural coordi-
nates:

NT1 = 1
2 (1 − ξ ), (A15a)

NT2 = 1
2 (1 + ξ ), (A15b)

NB1 = 1
4 (ξ 3 − 3ξ + 2), (A15c)

NB2 = 1
8 l (ξ 3 − ξ 2 − ξ + 1), (A15d)

NB3 = 1
4 (−ξ 3 + 3ξ + 2), (A15e)

NB4 = 1
8 l (ξ 3 + ξ 2 − ξ − 1). (A15f)

Due to the axisymmetric deformation, the strain tensor
only has three nonzero entries (γθz = γrθ = 0 and εr = 0 as

FIG. 12. 2×4 Gauss points in the mechanical model for an
axisymmetric cross section.
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the membrane thickness is assumed to remain constant during
the deformation):

ε =

⎡
⎢⎣

εz

εr

εθ

γzr

⎤
⎥⎦. (A16)

In axisymmetric cylindrical coordinates, the strain-
displacement relationships read:

εz = ∂u

∂z
, εr = ∂w

∂r
, εθ = w

r
, γrz = ∂w

∂z
+ ∂u

∂r
. (A17)

The strain can then be expressed in terms of the nodal
displacement field by ε = Bm · de, where the matrix Bm is
defined as:

Bm =

⎡
⎢⎢⎢⎢⎢⎢⎣

2
l

∂NT1
∂ξ

0 0 2
l

∂NT2
∂ξ

0 0

0 2
H

∂NB1
∂η

2
H

∂NB2
∂η

0 2
H

∂NB3
∂η

2
H

∂NB4
∂η

0
2NB1

2R+Hη

2NB2
2R+Hη

0
2NB3

2R+Hη

2NB4
2R+Hη

2
H

∂NT1
∂η

2
l

∂NB1
∂ξ

2
l

∂NB2
∂ξ

2
H

∂NT2
∂η

2
l

∂NB3
∂ξ

2
l

∂NB4
∂ξ

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(A18)

The stress-strain relationship for an axisymmetric isotropic
linear two-branch generalized Maxwell material reads:

σ(t ) =

⎡
⎢⎣

σz

σr

σθ

τrz

⎤
⎥⎦ =

∫ t

0

[
1 + γ1e(− t−s

τ1
)]D · ∂ε(s)

∂s
ds, (A19)

where γ1 = E1
E0

is the normalized elastic modulus, where E0

and E1 are the elastic moduli of the corresponding spring
components. τ1 = η1

E1
is the relaxation time, where η1 is the

viscosity of the dashpot component. D is given by:

D = E0

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎣

1 − ν ν ν 0
ν 1 − ν ν 0
ν ν 1 − ν 0
0 0 0 1−2ν

2

⎤
⎥⎥⎦.

(A20)

Equation (A19) can be formulated in a time-discretized
manner as:

σn+1 = (1 + γ1A1)D · Bm · dn+1

− γ1A1D · Bm · dn + e− 
t
τ1 h1,n, (A21)

where 
t = tn+1 − tn is the time increment and A1 is defined
as:

A1 = 1 − e(− 
t
τ1

)


t
τ1

. (A22)

The internal stress variable h1 at time tn is computed recur-
sively by:

h1,n = e− 
t
τ1 h1,n−1 + γ1A1(D · Bm · dn − D · Bm · dn−1).

(A23)

As shown in Fig. 11, a differential volume dv in a
cylindrical structure can be expressed as dv = rdθdrdz =

Jm(R + H
2 η)dθdξdη in the natural coordinate. This relation-

ship is used to convert the volume integrals in the following
computation of the stiffness and mass matrices to double
integrals using the local natural coordinates (as the inte-
grands are independent of θ , the integral with respect to θ

is 2π ).
Making use of the equations above, the element mass

matrix Me
m reads:

Me
m =

∫∫∫
V

ρNT
m · Nm dv

= 2πρJm

∫ 1

−1

∫ 1

−1

(
R + H

2
η

)
NT

m · Nm dξdη. (A24)

The element viscous stiffness matrix Kvis,e
m is given by:

Kvis,e
m = (1 + γ1A1)

∫∫∫
V

BT
m · D · Bm dv

= 2πJm(1 + γ1A1)
∫ 1

−1

∫ 1

−1

(
R + H

2
η

)
BT

m

·D · Bm dξdη. (A25)

The element history stiffness matrix Khist,e
m is given by:

Khist,e
m = 1

2
γ1A1

∫∫∫
V

BT
m · D · Bm dv, (A26)

= πJmγ1A1

∫ 1

−1

∫ 1

−1

(
R + H

2
η

)
BT

m · D · Bm dξdη,

(A27)

and the element history matrix Hhist,e
m at time tn+1 is given by:

Hhist,e
m,n+1 = 1

2
e− 
t

τ1

∫∫∫
V

BT
m · h1,n dv, (A28)

= πJme− 
t
τ1

∫ 1

−1

∫ 1

−1

(
R + H

2
η

)
BT

m · h1,n dξdη.

(A29)

Within each element, values of Me
m, Kvis,e

m , Khist,e
m , and

Hhist,e
m,n+1 are evaluated using Gaussian quadrature using 2×4

Gauss points at each time step, see Fig. 12. The element
matrices are evaluated by:

Me
m ≈ 2πρJm

4∑
i=1

2∑
j=1

(
R + H

2
η j

)
NT

m(ξi )

·Nm(ξi )WξiWη j

Kvis,e
m ≈ 2πJm(1 + γ1A1)

4∑
i=1

2∑
j=1

(
R + H

2
η j

)
BT

m(ξi, η j )

·D · Bm(ξi, η j )WξiWη j

Khist,e
m ≈ πJmγ1A1

4∑
i=1

2∑
j=1

(
R + H

2
η j

)
BT

m(ξi, η j )

·D · Bm(ξi, η j )WξiWη j
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Hhist,e
m,n+1 ≈ πJme− 
t

τ1

4∑
i=1

2∑
j=1

(
R + H

2
η j

)
BT

m(ξi, η j )

·h1,n(ξi, η j )WξiWη j , (A30)

where ξi and η j denote the ith Gauss point coordinate in
the ξ direction and the jth Gauss point’s coordinate in the
η direction, respectively. Wξi and Wη j are the corresponding
Gauss weights of the ξi and η j Gauss points.

When assembled, the global force vector Fm is straightfor-
wardly obtained (without need for assembly) from:

Fm = [· · · 0 Frn 0 0 Frn+1 0 · · ·]T
, (A31)

where Frn is the reverse flexoelectric force at the nth nodal
point. The calculation of Frn is described by Eq. (8).

The Newmark method is used as the time marching
scheme, with values of β = 0.25 and γ = 0.5. The initial
conditions are set so that the axon is in a static state, i.e.,
d0 = 0 and ḋ0 = 0. Note, however, that d̈0 �= 0 as the

membrane is subjected to initial reverse flexoelectric forces
resulting from the membrane potential changes at initial
time t0 = 0. The boundary conditions vary between the
different modeling scenarios, depending on which end is
stimulated mechanically. At each time step, the element
matrices Me

m, Kvis,e
m , Khist,e

m , and Hhist,e
m are assembled into

the corresponding global matrices Mm, Kvis
m , Khist

m , and Hhist
m

respectively:

Mm = A
e

Me
m

Kvis
m = A

e
Kvis,e

m

Khist
m = A

e
Khist,e

m

Hhist
m = A

e
Hhist,e

m . (A32)

The solutions are obtained at the nodal points and interpo-
lated at the Gauss points using the shape functions to update
the internal variables and calculate the stress.
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