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Interspike interval correlations in networks of inhibitory integrate-and-fire neurons
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We study temporal correlations of interspike intervals, quantified by the network-averaged serial correlation
coefficient (SCC), in networks of both current- and conductance-based purely inhibitory integrate-and-fire
neurons. Numerical simulations reveal transitions to negative SCCs at intermediate values of bias current drive
and network size. As bias drive and network size are increased past these values, the SCC returns to zero.
The SCC is maximally negative at an intermediate value of the network oscillation strength. The dependence of
the SCC on two canonical schemes for synaptic connectivity is studied, and it is shown that the results occur
robustly in both schemes. For conductance-based synapses, the SCC becomes negative at the onset of both a
fast and slow coherent network oscillation. We then show by means of offline simulations using prerecorded
network activity that a neuron’s SCC is highly sensitive to its number of presynaptic inputs. Finally, we devise
a noise-reduced diffusion approximation for current-based networks that accounts for the observed temporal
correlation transitions.
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I. INTRODUCTION

Quantifying the statistics of spiking in single neuron mod-
els is an important goal in computational neuroscience. A
large body of work has dealt with first-order statistics of
interspike intervals (ISI) in canonical single neuron models,
often computed in the context of memory-free renewal first-
passage problems [1]. In recent years, progress has been made
in tackling the much harder problem of second-order spiking
statistics in nonrenewal neuron models, among them the serial
correlation coefficient (SCC) at lag k, which is defined as the
Pearson correlation between ordered ISI sequences shifted by
an amount k, e.g., for k = 1, the SCC at lag 1 is the correlation
coefficient between adjacent ISIs. Its computation has uncov-
ered enhanced information transmission in single neurons via
the effect of noise shaping [2] and increased detectability of
weak signals [3]. In particular, it is now possible to compute,
in some cases even analytically, the SCC for single-neuron
models in the presence of spike-frequency adaptation [4], col-
ored noise [5], and time-dependent deterministic or stochastic
firing thresholds [6]. Recently, it was also shown that, at short
observation times, negative ISI correlations can enhance the
resolution of a nonlinear dynamical sensor whose design was
inspired by a simple nonrenewal neuron model [7]. There also
have been recent efforts to characterize the patterning of ISI
sequences using ordinal analysis, revealing parameter sets that
maximize the probability of certain patterns [8].

In contrast, very few studies deal with the computation of
temporal correlations in networks of neurons. In Ref. [9], a
theory to compute the SCC in networks of adapting neurons
based on hazard functions is put forward; the main focus of
that study is the computation of first-order statistics, such as
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the mean ISI or the average activity of neurons in the network.
When it comes to the computation of SCCs in networks, a
notable exception are the recent studies [10], where the main
focus is on the self-consistent computation of the spectra
of neuronal spike trains in asynchronous networks of exci-
tatory and inhibitory neurons. Iterative numerical methods
are described to compute the spike train power spectrum
self-consistently simulating one single representative neuron
only. This adds to previous analyses of network synchrony
in terms of a single “effective” neuron [11]. Because the
approach directly simulates spike trains, the SCC is also
computed and shows weak positive and negative values. How-
ever, the validity of the proposed scheme is limited to the
asynchronous state without a global oscillation of the network
activity. Moreover, there are a number of studies dealing
with properties of networks in which each constituent neuron
is endowed with an adaptation mechanism as an intrinsic
correlation-generating, highlighting the benefits of adaptation
for information transmission, reliable neural coding and noise
shaping [12,13].

Here we focus solely on the ISI correlations of single
neurons in networks that transition from asynchronous to
synchronous behavior. The motivation to study this setup
is twofold. First of all, it is desirable to understand how
the statistics of a neuron embedded in a network changes
compared to the well-studied isolated case, because neuronal
coding often relies on populations of neurons. In particu-
lar, in networks of neurons without correlation-generating
intrinsic mechanisms, under what conditions do correlations
arise and how are they maximized? Second, precise spiking
patterns generated by neurons embedded in a network can
potentially be selected by post-synaptic plasticity mechanisms
in target cells downstream from the network, e.g., spike-
timing dependent plasticity [14–16] or short-term facilitation
and depression [17,18], leading to enhanced weak signal
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detectability [19]. It is thus desirable to understand how
networks of spiking neurons generate temporal correlations
in the constituting neurons’ output spike trains. Our study
explores the array of questions above by focusing solely on
very short range ISI correlations (in fact, only correlations
between neighboring ISIs), for the sake of conciseness. We
stress from the outset that in strongly oscillatory network
states, correlations extend beyond more than one lag, as,
e.g., observed in Refs. [20,21]. Also, we do not consider
correlations between neurons in this study, which is set in
the context of sparse networks. A large body of work exists
that describes the pairwise correlation coefficient between the
spike trains or membrane voltages of two different neurons in
networks with different topologies [22–25].

The paper is organized as follows. In Sec. II, we present the
network model, synaptic connectivity rules, and the central
quantities of interest for this study, among them the mean
network SCC. We describe the parameter dependence of the
mean network SCC at the onset of a coherent global network
oscillation in Sec. III. Whereas the focus in this section is on
networks with current-based synapses, we briefly extend our
findings to networks with conductance-based synapses that
are capable of generating both slow and fast γ oscillations. Fi-
nally, in Sec. IV, we explore how the mean network SCC can
be computed by an effective single offline neuron receiving
time-dependent input recorded online during a full network
simulation. We conclude with a brief discussion of our results
in Sec. V.

II. NETWORK OF INHIBITORY NEURONS

A. Neuron and synaptic dynamics

1. Networks with current-based synapses

We consider N leaky integrate-and-fire (LIF) neurons with
membrane voltages Xi, i ∈ [1, 2, ..., N], with Xi ∈ (−∞, xth].
They evolve according to [11]

dXi

dt
= γt

[
I0 − Xi + Isyn

i (t )
] + √

γtσ0ξi(t ). (1)

For conciseness, a factor carrying units of resistance in front
of I0 and Isyn

i has been set to one and omitted. When Xi(t )
reaches the threshold xth from below, a spike is recorded and
Xi is reset to xr immediately; when we consider a refractory
period of length τr , the neuron is kept at this membrane volt-
age for a time τr . The membrane time constant is τt = 1

γt
. ξi is

a standard zero-mean Gaussian white noise. If not mentioned
otherwise, we choose xr = 10 mV, xth = 20 mV, τt = 20 ms.

The current-based inhibitory synaptic current is given by

Isyn
i (t ) = τt J

C∑
k=1

∑
j

δ
(
t − t k

j − D
)
. (2)

J < 0 is the inhibitory synaptic strength. We choose J =
−0.1 mV and fix the synaptic delay D = 2 ms. Hence, the
outer sum in Eq. (2) is over C neurons in the presynaptic
neighborhood of size C, while the inner sum is over the
spikes j of the neuron k at times t k

j . For more details on
implementation, we refer to Appendix A 1.

Finally, I0 is the external bias current, and σ0 is the strength
of the external noise. If not mentioned otherwise, we choose

σ0 = 1 mV. The single neuron fires periodically in the absence
of private noise and synaptic input (i.e., is in the suprathresh-
old regime) if I0 > 20 mV.

In the diffusion approximation, we may express the synap-
tic current as follows [11]:

Isyn
i (t ) = μ(t ) + σ (t )

√
τtξi(t ), (3)

with

μ(t ) = μloc, (4)

where the local part of the average synaptic current is related
to the firing rate ν of the network at time t − D: μloc =
CJν(t − D)τt . The strength of the fluctuations is similarly
given by

σ (t ) = σloc, (5)

with σloc = |J|√Cν(t − D)τt .

2. Networks with conductance-based synapses

For networks with conductance-based synapses, the mem-
brane voltage evolves according to

CI
dXi(t )

dt
= gI

l

[
EI

rest − Xi(t )
] + gI

inh(t )
[
EI

inh − Xi(t )
] + I0.

(6)
Every neuron receives inputs from other inhibitory neurons
in the network via synapses with time-dependent conductance
gI

inh(t ), whose time course is given by a biexponential func-
tion:

gI
inh(t ) = gI

inh,peaksI
inh

[
exp

(
− t − τl

τ I
inh,d

)
− exp

(
− t − τl

τ I
inh,r

)]
,

(7)

for t � τl , gI
inh(t ) = 0 otherwise. Here, sI

inh is a constant that
ensures gI

inh reaches its maximum gI
inh,peak [which is defined by

computing the maximum of the term in brackets in Eq. (7)]:

1

s
=

(
τr

τd

) τr
τd −τr −

(
τr

τd

) τd
τd −τr

,

where we set τr ≡ τ I
inh,r , τd ≡ τ I

inh,d , and s ≡ sI
inh. With these

definitions, increasing τ I
inh,r has the effect of prolonging the

time gI
inh(t ) needs to reach its maximum, and therefore extends

the effect of one presynaptic inhibitory pulse by increasing
the area under the time course of gI

inh(t ). For all remaining
parameter values, we refer to Appendix C.

B. Synaptic connection rules

There are different strategies to choose the number of
presynaptic neurons C [see Eq. (2)] per neuron. When we
only fix the connection probability p, not all neurons have
the same number of inhibitory synapses. Excluding au-
tapses, the distribution of the number of synapses onto a
neuron (i.e., the in-degree) follows a Bernoulli distribution
B(N − 1, p) with mean C = p(N − 1) and standard deviation√

(N − 1)p(1 − p). We will call this scenario the P-fixed
case. For N = 1000 and p = 0.2, the standard deviation is
≈ 13, whereas the mean is C ≈ 200. For more details on the
implementation, we refer to Appendix A 2.
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This scenario is in contrast to the case where every neuron
has exactly C inhibitory synapses. This is the C-fixed case.
We always choose C = C for comparisons of the P-fixed
versus C-fixed connectivity scenarios. We will see below that
these two different prescriptions for synaptic connectivity
have a profound influence on the second-order statistics of the
network, as, e.g., reflected in the mean and standard deviation
of the distribution of the SCC across neurons, which we now
define.

C. The mean network SCC and ISI

For a single spike train of neuron i, the SCC ρ is defined as

ρ i(n, k) = E
(
T i

n T i
n+k

) − Qi
1(n, k)

Qi
2(n, k)

, (8)

where

Qi
1(n, k) = E

(
T i

n

)
E

(
T i

n+k

)
and

Qi
2(n, k) =

√
Var

(
T i

n

)
Var

(
T i

n+k

)
.

Here, T i
n denotes the nth ISI in the spike train of neuron i.

Furthermore, E(...) denotes the expectation across time for
one single neuron. In general, the SCC depends on both the
lag k and the position n of the ISI in the spike train [5,26].
We here consider only stationary spike trains, for which the
SCC depends only on the lag k between different ISIs. We
will denote this quantity by ρ(k) and focus on k = 1, i.e., on
successive ISI correlations. Significant short-term correlations
between ISIs will be typically reflected in deviations of this
coefficient from zero. The main quantity of interest in this
paper, which we call the mean network SCC, is the neuron-
averaged SCC in a network of N neurons:

ρ(k = 1) = 1

N

N∑
i=1

ρ i(k = 1). (9)

The standard deviation of the SCC across neurons is de-
fined as

std(ρ) =
√√√√ 1

N

N∑
i=1

[ρ i(k = 1) − ρ(k = 1)]2. (10)

It is used in the following to quantify the spread of SCC values
at lag 1 across the population. The second quantity of interest
is the mean network ISI, which is defined as the mean of the
average ISI across neurons:

〈T 〉 = 1

N

N∑
i=1

E(T i ), (11)

where T i is the set of stationary ISIs for neuron i. Again,
the standard deviation of the mean ISI, std(〈T 〉), is defined
analogously.

D. Population activity and power spectra

We denote the population activity
∑N

i=1

∑
j δ(t − t i

j ) of
a network of purely inhibitory neurons by ν(t ). The power
spectral density (PSD) of the population activity is computed

from the population activity ν(t ). Similarly, the averaged
single-neuron spectrum 〈Sxx( f )〉 is computed from all spikes
of the neuron group. It is the average PSD of spike trains
xi = ∑

j δ(t − t i
j ), scaled such that as f → ∞, 〈Sxx( f )〉

approaches the inverse mean ISI given by Eq. (11). For more
details on the implementation, we refer to Appendix A 3.
Formal definitions of the population PSD and the averaged
single neuron power spectrum can be found, e.g., in Ref. [27].

III. BEHAVIOR OF THE MEAN NETWORK SCC WITH
VARYING NETWORK SIZE AND BIAS CURRENT

In the presence of a noisy network oscillation, one expects
the SCC of a single neuron in the network to be negative. A
simple toy problem illustrates this point. Assume that firing
times ti are generated according to the following prescription:
ti = i〈t〉 + σξ (i), where 〈t〉 is the period of the oscillation
and σ > 0 is a parameter that determines how strong the
independent standard normal Gaussian random variables ξ (i)
influence the dynamics. We show in Appendix B that the
SCC between adjacent ISIs in this case is negative: ρ(k =
1) = − 1

2 . To explain this result, note that when an ISI larger
than the mean 〈t〉 is generated, we must have a large value
of ξ . Because the random variables ξ (i) are independent, it is
unlikely that the next firing time ti+1 will be larger than the
mean again; instead, it will more likely lie around the mean,
therefore introducing negative correlations between adjacent
ISIs in the spike train. In real networks of spiking neurons, the
periodic oscillation will furthermore modulate the membrane
potential, and thus spiking will occur preferentially near the
phases corresponding to the maximal values of the network
oscillation.

A different mechanism occurs in sparse networks of LIF
neurons. In these networks, a global oscillation of the network
activity A(t ) develops as the bias current I0 is increased [11].
The frequency of this oscillation is approximately indepen-
dent of I0 and depends mainly on the synaptic delay D [11].

In Fig. 1, we show that the mean network SCC turns
negative at the onset of a coherent network oscillation with
frequency f ≈ 200 Hz [vertical red dashed line in plots for
the PSD in Figs. 1(a)–1(c)]; parameters can be adjusted to
produce much slower rhythms as well. The average single-
neuron spectrum 〈Sxx( f )〉 has a larger peak (green dashed
line) at the inverse of the mean network ISI (approximately
61 Hz) and another smaller peak at the network frequency f .
This entails that an individual neuron in the network does not
participate in every up-state of the network—instead, it skips
cycles of the global oscillation. As the network oscillates more
synchronously with increasing I0, the first peak in the average
single-neuron power spectrum decreases.

A state of high synchrony, in which each neuron has a
higher probability of firing per cycle, i.e., skipping is nearly
absent, is seen for larger I0 [Fig. 1(c)] and the mean network
SCC moves back towards zero. Hence, we see a nonmono-
tonic change in the mean network SCC as a function of I0. At
the onset of negative mean network SCCs [Fig. 1(c)], we have
verified that the neuron-averaged SCC at lag 2 [Eq. (8) for
k = 2] is slightly positive (≈0.07) and at lag 3, it is slightly
negative (≈ − 0.017), which is consistent with the underlying
network oscillation causing the negative mean network SCC.
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(a)

(b)

(c)

FIG. 1. Activity in networks with current-based synapses and
SCC distributions at the onset of negative mean network SCCs.
Network activity (spike rastergram, network activity A(t ), power
spectral density of network activity and average single-neuron spec-
trum 〈Sxx ( f )〉), SCC distribution and mean ISI distribution for
N = 500 for three different values of I0: panels (a), (b), (c): I0 =
40, 50, 60 mV, respectively, which corresponds to the location of
the three white stars in Fig. 2. The mean network SCC is maximally
negative at I0 = 50 mV, i.e., when power at the network frequency
(horizontal red dashed lines in plots for PSD are at a fixed value of
102 for comparison) increases. Remaining parameter values are as
described in the caption of Fig. 2. The green dashed lines show the
mean network ISI (or its inverse in the average single-neuron power
spectrum). No refractory period.

A. SCC in networks with current-based synapses

We restrict our numerical simulations to the suprathresh-
old regime and intermediate values of I0 and N . Increasing
network size or bias current past these values can result,

FIG. 2. Temporal correlation-decorrelation transitions as a func-
tion of network size N and external bias I0 for the C-fixed scenario in
networks with current-based synapses. Mean network SCC [Eq. (9)]
[(a), left] and ISI [Eq. (11)] [(b), left] together with standard devi-
ations of SCC [(a), right] and of the mean ISI distribution across
neurons [(b), right] in the C-fixed connectivity scenario. The number
of synapses onto each neuron is fixed at C = p(N − 1) with p = 0.2.
d = 200 s simulation time. No refractory period.

respectively, in unrealistically synchronous network states
(for which the SCC is either zero or positive) or strong
inhibition that drives neurons far below their reset potential
xr, which is biologically not plausible.

1. Onset of negative mean network SCCs

In Fig. 2, we show the dependence of the mean network
SCC and ISI on network size N and bias current drive I0.
As N increases for an intermediate value of I0, the mean
network SCC goes from around zero to negative values and
then back to zero [Fig. 2(a)]. In contrast, the mean network
ISI [Fig. 2(b)] increases (decreases) monotonically with N
(I0). Standard deviations of the two quantities across neurons
[Eq. (10)] remain small [Figs. 2(a) and 2(b) right]. Lineouts
of Fig. 2 along the white and black dashed lines, together with
control simulations with a different detailed connectivity, are
shown in Fig. 3, where it is also shown that the mean network
SCC behaves nonmonotonically as a function of I0, too (cf.
Fig. 1). In summary, we observed a transition to negative mean
network SCCs as the bias drive I0 is increased.

In Fig. 4(a), we plot the value of the PSD at its maxi-
mum (which is attained at the frequency f of the network
oscillation) as a function of I0, together with the frequency
f of the network oscillation and the mean network SCC. This
plot corresponds to the white vertical line in Fig. 2(a). The
maximal value of the PSD serves as a measure of coherence
for the network oscillation. We see that as the mean network
SCC decreases towards negative values, the coherence of the
network oscillation increases. The frequency f of the global

032402-4



INTERSPIKE INTERVAL CORRELATIONS IN NETWORKS … PHYSICAL REVIEW E 99, 032402 (2019)

(a) (a)

FIG. 3. Two types of temporal correlation-decorrelation transi-
tions are present for the C-fixed case in networks with current-based
synapses. Lineout of Fig. 2(a) along the white dashed vertical line
[(a), orange squares] and along the black dashed horizontal line
[(b), orange squares]. Small green circles in A are for a control
simulation with a different random seed and hence for a different
network connectivity. Also, the duration of the control simulation
was increased to d = 300 s in contrast to Fig. 2, where d = 200 s.
The green dashed lines are the minimum and the maximum of the
SCC distribution for the control simulation. The blue squares are
for smaller values of N = 10 [panel (a)] or I0 = 25 mV [panel (b)]
before the transition to negative mean network SCCs.

network oscillation increases only slightly with I0. In Fig. 4(b)
[which corresponds to the black horizontal line in Fig. 2(a)],
we show analogous results for the PSD maximum as a func-
tion of N for fixed I0. For larger network sizes, the network
frequency f decreases monotonically with N , whereas the
peak value of the PSD increases. Again, a minimum of the
mean network SCC (observed at N = 500) is accompanied
by an intermediate value of the maximum of the PSD of the
network activity.

To determine the microscopic properties of the spike trains
at the transition to negative SCCs, we plot consecutive ISIs
in Fig. 5 for three different values of I0, corresponding to
the white stars in Fig. 2(a). The slope of a linear regression
function in these plots then is the SCC at lag 1 [2], which is
close to zero for Figs. 5(a) and 5(c), and negative in Fig. 5(b).
We see in Fig. 5(a) that all ISIs scatter around the mean value
and the SCC stays close to zero. In Fig. 5(b), short ISIs tend
to be followed by long ones, and vice versa, so that the SCC
becomes negative. We checked that the slope is not negative
due to the three large outlier ISIs. In Fig. 5(c), most ISIs
cluster again around the mean value, but there are also smaller
clusters reflecting the strongly driven state of the system in
which more complex firing patterns, reflecting higher-order
mode locking, can occur.

As such, the mechanism for the onset of negative mean
network SCCs is similar to the onset of negative ISI cor-
relations in single perfect IF neuron models with another
form of negative activity-dependent feedback, namely a spike-
triggered adaptation current with a single exponential time
scale [28,29]. In these models, the single-neuron SCC be-
comes maximally negative at an intermediate value of the
ratio between the timescale of the adaptation current pro-
viding negative feedback and the deterministic mean ISI of
the neuron. In our network setup, the bias drive I0 sets the
time scale for single-neuron firing, whereas the global rhythm

(a)

(b)

FIG. 4. Maximum of PSD of network activity, mean network
SCC and network frequency f as a function of I0 for N = 500
[panel (a)] and as a function of N for I0 = 50 mV [panel (b)]. This
corresponds to the vertical white line and to the horizontal black line
in Fig. 2. Thus in both cases (a) and (b), the transition correlates with
the onset of increase in power of the network oscillation. d = 200 s
simulation time.

is mainly determined by network properties, in particular
the synaptic transmission delay D. The analogy, however,
is not perfect as firing of the single neuron determines
the network rhythm, which in turn determines the negative
feedback.

We now show that the transition to negative mean network
SCCs also occurs in networks with a more biologically realis-
tic fluctuating number of synapses [P-fixed case, Fig. 6(a)].
Here, in contrast with the C-fixed scenario, the standard
deviation of the SCC computed across neurons increases at
the onset of negative mean network SCCs [Fig. 6(b)], which
is also shown in the lineouts in Figs. 7(c) and 7(d). Overall,
the temporal correlations are slightly less negative than in
the C-fixed scenario shown in Fig. 2. The mean network ISI
is generally larger than in the C-fixed case, i.e., the average
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(a)

(b)

(c)

FIG. 5. Plot of successive ISIs (n + 1st ISI plotted as func-
tion of nth ISI) for three different values of I0, corresponding to
the three white stars in Fig. 2. (a): I0 = 40 mV, (b): I0 = 50 mV,
(c): I0 = 60 mV. The red solid vertical and horizontal lines denote
the mean ISI. The dashed red line is a linear regression, whose slope
is the SCC at lag 1, which is given by −0.06, −0.23, −0.03 for
panels (a), (b), (c), respectively. These values are close to the mean
network SCC. Other parameter values, except duration of simulation
(d = 50 s), are as in Fig. 2.

neuron is subject to more inhibition than in the C-fixed case,
which at the same time slightly reduces the mean network
SCC for fixed values of N and I0.

FIG. 6. A fluctuating number of synapses across neurons in net-
works with current-based synapses decreases the mean network SCC
below zero for a larger range of parameters. The transition [panel (a)
left] to negative mean network SCCs in this case is accompanied
by an increase in the standard deviation of the SCC [panels (a)
right] across neurons. Mean network SCC [Eq. (9)] [(a), left] and ISI
[Eq. (11)] [(b), left] together with standard deviations of SCC [(a),
right] and of the mean ISI distribution across neurons [(b), right] for
the P-fixed connectivity scenario. The average number of synapses
onto a neuron is given by C = p(N − 1) with p = 0.2. No refractory
period.

2. Effect of refractory period

In Fig. 8, we show that for the C-fixed scenario in the
presence of an absolute refractory period, the mean network
SCC transitions to small negative values for smaller N as I0

is increased, and to intermediate positive values for larger N .
The critical value for I0 for the generation of negative mean
network SCCs remains similar to the case without a refractory
period, however, the transition is observed at smaller values
of N .

B. SCC in networks with conductance-based synapses

The mechanism for the generation of negative temporal
correlations relies on the onset of a coherent network oscil-
lation in a simplified model of neural dynamics. In particular,
the current-based synapses are instantaneous and do not fol-
low biologically realistic dynamics. We therefore investigated
whether transitions to negative mean network SCCs could also
be observed in more biologically plausible neuronal networks
capable of fast oscillations. To that end, we considered net-
works of inhibitory LIF neurons with single-neuron param-
eters similar to those for fast-spiking basket cells in region
CA1 of hippocampus [30]. The model is described in detail
in Appendix C. The refractory period is always set to 1 ms in
the following plots. Instead of a constant bias current I0, we
drive every neuron with excitatory Poisson processes, whose
strength (measured by their constant rate νext) determines the
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(a) (b)

(c) (d)

FIG. 7. Correlation-decorrelation transitions for current-based
networks in the P-fixed scenario. The mean network SCC [panels
a, b] deviates from zero as the standard deviation of the SCC across
neurons [panels (c), (d)] increases. Lineout of Fig. 6(a) along the
white dashed vertical line [(a), orange line] and along the black
dashed horizontal line [(b), orange line]. The green symbols are a
control simulation started with a different random seed compared to
the simulation shown in orange, and with different network realiza-
tions for each value of I0. The green dashed lines are the minimum
and the maximum of the SCC distributions for this simulation. The
magenta diamonds are another control simulation with exactly the
same network connectivity for each value of I0. Hence, the rugged
dependence of the mean network SCC for N = 500 is not an artifact
of finite simulation time or the setup of the network connectivity.
(c), (d): Ensemble standard deviations of the SCC distribution [line-
outs of Fig. 6(a) right panel along the white and black dashed lines].
The blue squares are for a smaller value of N [panels (a) and (c)] or
I0 [panels (c) and (d)] before the transition to negative mean network
SCCs.

coherence of a nascent network oscillation. The frequency f
of the network oscillation is largely independent of the Pois-
son drive and depends mainly on the synaptic parameters [31].

FIG. 8. Mean network SCC (a) and its standard deviation across
neurons (b) in the presence of a refractory period in the C-fixed
scenario. The parameter values are like in Fig. 2, but with a refractory
period τr = 2 ms.

FIG. 9. Transition to negative mean network SCCs in a network
of conductance-based IF neurons with increasing external drive.
Top: Network activity at νext = 70 Hz. The network oscillation has
a high frequency f ≈ 140 Hz. Bottom: Mean network SCC and ISI.
Thin lines with crosses show minimum and maximum of the SCC
distribution. C-fixed scenario with pN = 25, corresponding e.g., to
p = 0.05 for N = 500. Parameter values: nP

I = 800, for remaining
parameters, see Appendix C.

For a network oscillation in the fast γ range, the mean network
SCC transitions to negative values at a value of νext ≈ 60 Hz
(Fig. 9), well in the suprathreshold regimes, which requires
νext ≈ 13 Hz, as determined by numerical simulation.

Can transitions to negative mean network SCCs still be
observed in the presence of a slower oscillation in the γ range?
We increased the synaptic rise time from τ I

inh,r = 0.45 ms in
Fig. 9 to three higher values in Fig. 10, which reduces the
network frequency [31]. We observe transitions to negative
mean network SCCs in Fig. 10, which are strongest for for
τ I

inh,r on the order of the refractory period. For τ I
inh,r � 3.5 ms,

the network activity does not oscillate coherently anymore and
therefore, the mean network SCC does not decrease as much
as for smaller τ I

inh,r .
Finally, we show that as in current-based networks, the

mean network SCC also transitions to negative values as
the network size is increased (Fig. 11), although there is
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FIG. 10. Transition to negative mean network SCCs in network
of conductance-based IF neurons with increasing external drive. Top:
Network activity at νext = 70 Hz for τ I

inh,r = 2.0 ms. The network
oscillation has a lower frequency f ≈ 80 Hz. Bottom: Mean net-
work SCC and ISI. Thin lines with crosses show minimum and
maximum of the SCC distribution. N = 500. C-fixed scenario with
p = 0.05. Parameter values: nP

I = 800, for remaining parameters, see
Appendix C.

seemingly no flat part near a mean network SCC close to
zero before the transition to negative values unless it happens
at low N , as in, e.g., Fig. 6(b), the transition to negative
mean network SCCs as a function of N occurs faster than in
current-based networks.

Taken together, we have shown that at the onset of a co-
herent global network oscillation, neural networks with both
current- and conductance-based synapses generate negative
ISI correlations in the output spike trains of their constituent
neurons, with a parameter dependence that is generally not
monotonic.

IV. NOISE-REDUCED DIFFUSION APPROXIMATION

Which features of the statistics of the input spike train [cf.
Eq. (2)] to a given neuron causes its output spike to show
nonrenewal statistics?

FIG. 11. Transition to negative mean network SCCs in network
of conductance-based IF neurons with increasing network size N . C-
fixed scenario with p = 0.05. Thin lines with crosses show minimum
and maximum of the SCC distribution. For N = 500, the network
oscillation has the same frequency as in Fig. 9 at the corresponding
values of νext. Parameter values: nP

I = 800, for remaining parameters,
see Appendix C.

One way to address this question is to consider the seminal
diffusion approximation (DA). In the DA for purely inhibitory
networks, the synaptic current fed into one average “typical”
neuron in the network is given by Eq. (3). Assuming that
the coupling between neurons is sparse, pairwise correla-
tions between neurons can be neglected. This entails that
the statistics of one neuron are representative of the whole
neuronal network. With some additional technical assump-
tions, a mean-field type description of the dynamics is pos-
sible [11], because it is possible to write a one-dimensional
time-dependent Fokker–Planck equation (FPE) for the evo-
lution of the membrane potential of one single cell. The
formulation of the FPE together with its boundary conditions
is self-consistent, because the solution of the FPE gives the
time-dependent firing rate ν(t ) of the neuron; this quantity
also appears in the FPE via the time-dependent drift and
diffusion coefficients Eqs. (4) and (5), respectively. If the
network is sparse, this approach means that the output spike
train of any given neuron in the network and its input spike
train share the same statistics. This was used in Ref. [10]
to self-consistently determine spike train power spectra in
networks of EI neurons using an iterative numerical algorithm
in the C-fixed scenario. This self-consistent approach does not
apply, however, if the connectivity is not sparse or the network
activity is synchronous.

A. Sensitivity of SCC to the number of input spikes

First, we determined how sensitive the SCC of a neuron
embedded in a network is to changes in the size of its
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FIG. 12. The SCC (top panel) of one neuron embedded in the
network is very sensitive to the number of presynaptic spikes (bottom
panel), in contrast to the monotonically increasing mean ISI (middle
panel). The maximal value of C is 140, and the abscissa is swept from
left to right by letting the pres-synaptic neighborhood size increase
from 0 to 140. The dashed horizontal lines are at an SCC value of
zero (upper line) and the online SCC value for the chosen neuron
(lower line). The dashed horizontal line in the plot for the mean ISI is
the online value of the mean ISI for the chosen neuron. The different
lines (hardly distinguishable, because they largely overlap) are for
10 random permutations of the order of the presynaptic spike trains
to ensure that the nonmonotonic behavior of the SCC is not a result
of a particular arrangement of the order of presynaptic spike trains.
Parameter values: N = 700, p = 0.2 (C-fixed scenario). I0 = 50 mV,
d = 100 s simulation time. Other parameters as described in the
caption of Fig. 2.

presynaptic neighborhood (Fig. 12). We recorded all spike
trains present in the corresponding presynaptic neighborhood
and then ran an offline simulation in which the recorded
inhibitory spikes were manually fed into the simulation. As
the size of the presynaptic neighborhood increases, the mean
ISI (middle panel of Fig. 12) increases monotonically, in
contrast to the SCC, which surprisingly shows nonmonotonic
behavior with increasing size of the presynaptic neighbor-
hood until it reaches its online value when the size of the
presynaptic neighborhood reaches its online value given by
C = p(N − 1).

Thus, we have verified that feeding back all presynaptic
spike trains to a chosen neuron in an “offline” simulation of
that neuron reproduced the output statistics obtained during
the full network simulation. The behavior of the SCC with
increasing presynaptic neighborhood size is nonmonotonic,
and nearly all input spikes (bottom panel of Fig. 12) are
needed to reproduce the online value. We have checked that
the behavior of the SCC does not depend strongly on which
neuron in the network is chosen, which is a result of the low
standard deviation of the SCC distribution across neurons for
the C-fixed case (cf. Fig. 2(a), right panel).

B. Statistics of the input spike trains impinging
on a given neuron

So far, we have not yet quantified the statistics of the
input spike trains. However, for the DA to be applicable,

(a)

(b)

FIG. 13. Statistics of presynaptic input of one fixed neuron in a
network of current-based neurons without refractory period. From
top to bottom: input mean ISI, SCC, and CV. ε varies between 1

C
and 1 from left to right. (a) small ε. (b) large ε. Parameters: N =
500, other parameter values as described in the caption of Fig. 2, in
particular, C = p(N − 1) = 100.

the network has to be in an asynchronous regime, in which
neurons discharge according to a Poisson process with time-
dependent rate ν(t ). We show the statistics of the presynaptic
input to one neuron in a network in Fig. 13 as a function
of the size of its presynaptic neighborhood εC, which is
obtained by the superposition of a fraction ε ∈ [ 1

C , 1] of actual
presynaptic spike trains impinging on the chosen neuron.
These presynaptic spike trains were recorded in a full network
simulation. We also checked that the input statistics did not
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depend on the chosen neuron in the network, as expected for
the C-fixed case. In addition to the mean ISI and the SCC,
we also computed the coefficient of variation (CV) of the
input spike sequence, defined as the ratio between standard
deviation and mean of the pooled ISI sequence.

Note that for ε = 1
C , i.e., when only one input spike train

is considered, we recover the results for the output statistics
of the neuron. The mean input ISI (top panel in Fig. 13)
decreased with increasing number of presynaptic spike trains
approximately like 1

εC , as expected in the Poisson limit. For
small suprathreshold I0 = 21 mV (purple circles in Fig. 13),
the input CV (bottom panel) is close to 1 and the input SCC
(middle panel) is close to zero, and thus, the network is in a
regime where the input spike trains follow Poisson statistics.
Increasing I0 to larger suprathreshold values (small red circles,
green crosses and blue diamonds in Fig. 13, the same values
as the three white stars in Fig. 2) results in positive input SCCs
and input CVs exceeding 1, so that the input statistics are then
manifestly non-Poissonian.

C. Noise-reduced diffusion approximation
in an offline simulation

In light of these findings, we now explore whether a DA
can still be used to compute both the mean network SCC
and ISI. We first describe an open-loop or offline simulation
scheme to address this question; it uses an adjustable form
of the DA for the simulation of one effective neuron in the
network. We then compare the results for mean network SCC
and ISI obtained during an online full network simulation and
the offline effective single-neuron simulation. The algorithm
to compare online and offline simulations results is as follows:

(1) Simulate full network online, and obtain the network
activity A(t ) (smoothed with rectangular kernel of width σw =
0.01 ms).

(2) Simulate one single offline neuron [cf. Eq. (1)] accord-
ing to the Langevin equation

Ẋ = γt (−X + I0 − CJν(t − D)τt )

+ γt

√
αJJ2Cν(t − D)τt + σ 2

0

√
τtξ (t ), (12)

with a time step h = 10−2 ms using the DA with ν(t ) = A(t )
in Eq. (3) as drive. We introduced a factor αJ that scales the
contribution of the network activity ν to the noise strength
in the DA. As for the full network simulations, the Euler-
Maruyama method is used for the integration of the stochastic
differential Eq. (12).

(3) Compute mean SCC at lag 1 and its standard deviation
for the network.

(4) Compute SCC at lag 1 for the chosen offline single
neuron.

(5) Compare the SCC result from online network simula-
tion and offline single-neuron simulation.

Another way for estimating the mean network SCC is to
simulate an inhomogeneous Poisson process (iPP) [32,33]
with the same time-varying smoothed rate A(t ) as the full
network and then compute the mean ISI and the SCC for
the generated spike train. We simulated the iPP using the
numerical scheme proposed in Ref. [34]. The idea is that this
simple surrogate for the network activity, which has temporal

correlations solely due to its time-varying rate (i.e., there are
no intrinsic correlations), can give insight into the behavior of
the SCC we observe below.

We will now only consider the C-fixed scenario, since
the DA should then reproduce the behavior of one typical
neuron accurately. It would also be possible to compute the
mean network SCC in the P-fixed scenario by averaging
SCC results over the (binomial) distribution of the C-value,
a computationally expensive task. We verified that the choice
of integration timestep h of the single neuron dynamics as well
as the smoothing width σw do not impact the following results
(see Fig. 16 below).

In Fig. 14, we show the performance of the DA and iPP
approximation schemes for both the mean network SCC (top
panels) and ISI (bottom panels) as I0 is increased (cf. the
vertical white dashed line in Fig. 2). For small I0 before the
transition to negative mean network SCCs, both approxima-
tion schemes agree well with the full network simulations. At
the onset of negative mean network SCCs, both the DA and
the iPP approximation schemes fail to reproduce the negative
mean network SCC of the full online simulation, although the
DA shows a slight decrease of the SCC. The mean network
ISI, in contrast, is always approximated well by both schemes.

To understand the origin of the mismatch between the full
network simulations and the DA at the onset of nonvanishing
mean network ISI correlations, we computed the CVs of
the spike train generated by the DA and compared it to the
mean network CV (the CV averaged over all neurons in the
network). We found that as I0 exceeded approximately 40 mV,
the CV obtained by the DA was slightly larger than the mean
network CV. Therefore, we decreased the contribution of the
network activity to the noise in the DA by setting αJ = 0 [see
Eq. (3)]. In Fig. 15, we show that this simple adjustment leads
to good agreement between DA and full network simulations
for both the mean network ISI and SCC.

D. Effect of smoothing width

These results do not depend on the width of the smoothing
kernel σw as long as it is chosen small enough (Fig. 16). Also,
αJ must be chosen as small as possible for the noise-reduced
DA to perform well.

It is not necessary to scale down the noise in the particular
way we have pursued so far with Eq. (12) to improve the
accuracy of the DA. We show in Fig. 17 that a rescaling of
the noise term in the DA with a factor αg = 0.66 according to

Ẋ = γt (−X + I0 − CJν(t − D)τt )

+ αgγt

√
J2Cν(t − D)τt + σ 2

0

√
τtξ (t ), (13)

has a similar effect on the accuracy of the DA as reducing the
time-varying factor in the noise strength in Eq. (12). However,
this version of the DA performs slightly worse for the mean
network ISI at small I0, where it also underestimates the mean
network CV (not shown). We found this particular value of
αg by systematic numerical simulations, gradually decreasing
αg from 1 [equivalent to Eq. (12) with αJ = 1]. This confirms
that the spiking dynamics of the full network generates input
spike trains that are less stochastic than one would expect from
a Poisson process with time-varying intensity.
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(a)

(b)

FIG. 14. Diffusion approximation for the mean network SCC
(top of each panel) and ISI (bottom of each panel) as a function of
I0. (a) N = 500. (b) N = 1000. Red circles: full network simulation
(FN). Green squares: single neuron offline simulation using the DA
Eq. (12) with αJ = 1.0. Error bars for the full network simulation
indicate ± one standard deviation of the SCC distribution. Param-
eter values: C-fixed scenario with C = p(N − 1). Simulation time
d = 200 s.

Finally, we show in Fig. 18 that the noise-reduced DA
remains valid for a larger range of connection probabilities p,
where we also observe a transition to negative mean network
SCCs. Importantly, our standard value of p = 0.2 is in the
regime where the DA accurately reproduces the mean network
ISI. Increasing p for fixed N is, in the C-fixed scenario,
equivalent to an increase of N for fixed p, for which we
have already shown that the mean network SCC decreases to
negative values for large enough I0 (black horizontal dashed
line in Fig. 2).

In summary, our explorations of three forms of the DA
(two of which are effectively noise-reduced) using offline

(a)

(b)

FIG. 15. Noise-reduced diffusion approximation for the mean
network SCC (top) and ISI (bottom). (a) N = 500. (b) N = 1000.
Red circles: full network simulation (FN). Blue diamonds: iPP
approximation (iPP). Green squares: single neuron offline simulation
using the DA Eq. (12) with αJ = 0. Error bars for the full network
simulation indicate ± one standard deviation of the SCC. The thin
red lines indicate the minimum and maximum of the online SCC
distribution for each value of I0. Parameter values as described in the
caption of Fig. 14.

simulations show that it is possible to obtain conditions where
a DA with the proper smoothed spike input A(t ) produces
correct first and second order ISI statistics. This will help
constrain the search for a self-consistent effective neuron
model that can produce such statistics.

V. DISCUSSION

We have studied ISI correlations in spike trains of neurons
embedded in purely inhibitory networks with both current-
and conductance-based synapses. Our results reveal that
these simple networks in general do not generate renewal
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FIG. 16. Effect of smoothing width σw and αJ on the perfor-
mance of the DA [Eq. (12)]. Solid lines: single neuron offline
simulation using the DA Eq. (12) with three values of αJ as indicated
in the legend. The black dashed lines are results from the online full
network simulation, which do not depend on αJ or σw . Parameter
values (analogous to Fig. 15 A for I0 = 50 mV): N = 500, C =
p(N − 1) fixed, p = 0.2, I0 = 50 mV. Simulation length d = 300 s.

dynamics in their spike trains. This is not surprising given
their propensity to oscillate (Fig. 1). However, the manner in
which serial ISI correlations appear and their nonmonotonic
behavior (which implies maximal ISI correlation at intermedi-
ate parameter values) and link to SCC variance in the P-fixed
case (Fig. 6) are new features revealed by our analysis.

In particular, strong negative serial correlations are ob-
served at an intermediate value for the bias drive and net-
work size in networks without and with a refractory period
(Figs. 2–8). We have also shown that the mean network SCC
is maximally negative at an intermediate value of the network
oscillation strength (as quantified by the peak value of the PSD
of the network activity A(t ), Fig. 4), as it decreases below zero
with increasing bias current or system size.

In conductance-based networks, negative ISI correlations
also arise generically with increasing bias drive for both slow
and fast γ -network oscillations (Figs. 9–11).

Our results highlight the importance of nearly all input
spikes for shaping the mean network SCC (Fig. 12). Even
if the input statistics to a given neuron are non-Poissonian
(Fig. 13), the onset of negative temporal correlations can
be approximately quantified by an effectively noise-reduced
diffusion approximation [Eq. (12)], showing that the network
dynamically suppresses noise at increasing values of the bias
current drive. Whereas this decrease of the noise intensity
does not have a strong effect on the validity of the DA for the
mean network ISI, we have shown that it has a pronounced
effect for the mean network SCC (Figs. 14–18).

Overall, our results constitute a first step to understand
how presynaptic spiking shapes the statistics of post-synaptic
spiking in neural networks (Figs. 12 and 13), a question that
has recently received increased interest in the biological liter-
ature, with positive ISI correlations observed in the zebrafish

(a)

(b)

FIG. 17. Noise-reduced DA [Eq. (13) with αg = 0.66]. Diffusion
approximation for the mean network SCC (top) and ISI (bottom).
(a) N = 500. (b) N = 1000. Red circles: full network simulation
(FN). Blue diamonds: iPP approximation (iPP). Green squares: sin-
gle neuron offline simulation using the DA Eq. (13) with αg = 0.66.
Errorbars for the full network simulation indicate ± one standard
deviation of the SCC. The thin red lines indicate the minimum
and maximum of the online SCC distribution for each value of I0.
Parameter values as in Fig. 14.

lateral line system [35] and negative correlations observed in
the auditory system afferent neurons [36]. In these systems, it
is thought that positive ISI correlations arise from slowly drift-
ing firing rates caused by heterogeneous innervation of more
than one haircell synapse, whereas negative ISI correlations
arise from synaptic depletion alone. It would be interesting to
extend our results to these two scenarios, which would require
the inclusion of nonstationary rate dynamics and synaptic
plasticity into our model.

We would also expect transitions to negative mean network
SCCs in networks of Hodgkin-Huxley or IF neurons with
adaptation, as long as noisy oscillatory states are present. This
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(a)

(b)

FIG. 18. DA for the mean network ISI and SCC is valid even
for large p. DA for the mean network SCC (top) and ISI (bottom).
(a) N = 500. (b) N = 1000. Red circles: full network simulation
(FN). Blue diamonds: iPP approximation (iPP). Green squares:
single neuron offline simulation using the DA Eq. (12) with αJ = 0.
Error bars for the full network simulation indicate ± one standard
deviation of the SCC. Parameter values: C = p(N − 1) fixed, I0 =
50 mV. Simulation time d = 300 s.

is because the detailed voltage dynamics are only important
insofar as they interact with the global rhythm, i.e., the form
of the subthreshold voltage time course is not crucial for the
onset of negative mean network SCCs [37].

Concerning a possible full analytical understanding of
SCC transitions, the existence of ISI correlations points to
stochastic dynamics in dimension greater than one, and an
analytic explanation of our results is beyond the scope of our
study. Recent first-passage time results for a two-dimensional
Wiener process [38] nevertheless give hope that the present
numerical approach will eventually lead to an analytical de-
scription.

It is also an interesting subject for future study to determine
when nonvanishing ISI correlations exist also in networks
with both excitatory and inhibitory subpopulations. Further-
more, how our results relate to transitions in networks with
these two types of neurons observed by increasing coupling
strength [39,40] and whether they can be computed using the
framework of Ref. [5] or the framework of doubly stochastic
point processes [41] remain open questions.
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APPENDIX A: DETAILS FOR NETWORK SIMULATION

1. Simulation details

We implemented all simulations in brian2 [42]. The in-
tegration time step was set to h = 10−2 ms if not mentioned
otherwise and a standard Euler-Maruyama scheme was used.
Except in Fig. 8, the refractory period is set to 0 ms for
the current-based synapse model. To ensure that we are in a
stationary regime, we discard the first 1000 ISIs both for the
computation of the mean network SCC and ISI. The statistics
of the SCC and ISI are computed across long realizations (at
least 100 s) of the network activity. Increasing the duration did
not change the results presented here. Note that the network
activity of interest will sometimes consist in a rhythm, in
which case the ISI distribution, and the SCC, vary across the
duration of the period of the rhythm. In this case, the averages
are taken over many cycles of the rhythm to obtain a mean and
standard deviation of the ISI and the SCC during the rhythm.

2. Connectivity details

For the P-fixed case, we use the standard syntax of brian2
in the Synapses.connect() object. We wire up C-fixed
networks by first making a masterlist of all the neurons, each
labeled by its number between 1 and N . To choose which
neurons are connected to e.g., the neuron with label k, this
neuron k is deleted from the list. Then the remaining list
is randomly permuted. Finally, the first C neurons from that
list are chosen as the presynaptic neurons to neuron k. The
procedure is repeated for every neuron in the master list.

3. Spectral measures

A smoothed version A(t ) of the population activity
is computed using the function smooth_rate() of the
PopulationRateMonitor class in brian2. This is the in-
stantaneous firing rate of the network. If not mentioned
otherwise, A(t ) is obtained from the pooled spike trains of
all neurons by convolution with a Gaussian rectangular or
Gaussian kernel of width σw. For illustration purposes, we
choose σw = 1 ms; for computations involving the diffusion
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approximation, we choose a smaller σw = 0.01 ms or σw =
0.1 ms. We stress that the choice of σw does not influence
our results as long as it is small enough to fully capture the
dynamics of the population activity A(t ), i.e., it is important
not to smoothen out too much the fluctuations present in A(t ).

For the computation of spectra (both the PSD of the net-
work activity as well as the averaged single-neuron spectrum),
we used two functions provided in Ref. [43]. For the average
single-neuron spectrum, only 100 neurons were included in
the average. For both types of spectra, the mean activity
before taking the Fourier transform was subtracted and the
first 1000 ms of the simulation period were discarded to obtain
stationary time series. The code can be found in the github
repository [44].

For the PSD of the network activity, the frequency res-
olution was set to 2 Hz and the time series for ν was split
into six parts that were Fourier-transformed independently
and then averaged to obtain the PSD. Similarly, the aver-
aged single-neuron spectrum 〈Sxx( f )〉 was computed with a
sampling rate of 6000 Hz. It was checked that the functions
scipy.signal.periodogram and scipy.signal.welch
gave the same results for both types of spectra.

APPENDIX B: SCC FOR A NOISY
PERIODIC OSCILLATION

Consider firing times ti, i � 1 generated according to

ti = ni〈t〉 + ξi 〈ξi〉 = 0, 〈ξiξ j〉 = σ 2δi j, (B1)

where ni = 1, 2, 3, ... and 〈t〉 is the period of firing around
which the spike times are perturbed. The ith ISI is given by

Ti = ti − ti−1. (B2)

It follows that 〈Ti〉 = 〈t〉. Similarly, we can show that
E(Ti+1Ti ) = 〈t〉2 − σ 2. Moreover, we have

Var(Ti ) = 〈
T 2

i

〉 − 〈Ti〉2 = 〈t〉2 + 2σ 2 − 〈t〉2. (B3)

Hence, the SCC is given by

ρ(k = 1) = 〈t〉2 − σ 2 − 〈t〉2

〈t〉2 + 2σ 2 − 〈t〉2
= −1

2
. (B4)

This result can be generalized to the case when ni itself
is a random number drawn from a certain (e.g., binomial)
distribution.

APPENDIX C: INHIBITORY INTEGRATE-AND-FIRE
NEURON MODEL WITH

CONDUCTANCE-BASED SYNAPSES

We consider a model with parameters similar to Ref. [30].
The parameters are given by CI = 100 pF, gI

l = 10 nS (so
that the membrane time constant is 10 ms), EI

rest = −65 mV,
EI

inh = −75 mV. When Xi(t ) exceeds X I
thresh = −52 mV, it is

reset to X I
reset = −67 mV, followed by a refractory period

of duration τ I
ref = 1 ms. In the absence of synaptic inputs,

the rheobase is I0 = 0.13 nA. In our simulations, we choose
I0 = 0. The only excitatory input to the population is delivered
via excitatory Poisson processes. Each neuron receives input
from nP

I independent Poisson processes, each with frequency
f P
I . Each of these random inputs induces instantaneous jumps

of the membrane potential Xi by an amplitude κP
I = 0.1 mV.

The latency between a presynaptic spike and the start of
the increase of gI

inh is τl = 1 ms. The remaining parameters
are given by gI

inh,peak = 5.0 nS, τ I
inh,d = 1.2 ms, and τ I

inh,r =
0.45 ms.
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