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Experiments and simulations have established that dynamics in a class of living and abiotic systems that
are far from equilibrium exhibit superdiffusive behavior at long times, which in some cases (for example, an
evolving tumor) is preceded by slow glass-like dynamics. By using the evolution of a collection of tumor cells,
driven by mechanical forces and subject to cell birth and apoptosis, as a case study we show theoretically that
on short timescales the mean-square displacement is subdiffusive due to jamming, whereas at long times it
is superdiffusive. The results obtained by using a stochastic quantization method, which is needed because
of the absence of the fluctuation-dissipation theorem, show that the superdiffusive behavior is universal and
impervious to the nature of cell-cell interactions. Surprisingly, the theory also quantitatively accounts for the
nontrivial dynamics observed in simulations of a model soap foam characterized by creation and destruction of
spherical bubbles, which suggests that the two nonequilibrium systems belong to the same universality class. The
theoretical prediction for the superdiffusion exponent is in excellent agreement with simulations for collective
motion of tumor cells and dynamics associated with soap bubbles.
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I. INTRODUCTION

The collective movement of cells is a pervasive phe-
nomenon in many processes in biology, ranging from tissue
remodeling, which underlies embryonic morphogenesis, to
wound repair and cancer invasion [1–6]. Consequently, there
is considerable interest in understanding the dynamics as-
sociated with such processes. During migration, cells move
as sheets, strands, clusters or ducts rather than individually,
and use similar actin- and myosin-mediated protrusions and
guidance by extrinsic chemotactic and mechanical cues just
as in the motility of single cells [3,7–11]. Collective invasion
during cancer progression, accompanied by the destruction
of tissues and remodeling of the extracellular matrix, is also
important in metastasis [7,8,12,13]. The dynamics of these
processes are complicated because of an interplay of intercell
adhesive interactions and the biology governing cell birth
and apoptosis. The dynamical events involving cell birth
and apoptosis implicitly generate active forces [14–16], thus
driving the systems far from equilibrium. How the interplay
of death-birth processes and cell-cell interactions in a growing
tumor spheroid poise the cells for effective invasion into the
surrounding matrix is poorly understood.

Complex dynamics in the systems mentioned above
manifests itself as caging of a cell by surrounding cells
and dynamic heterogeneity features that are reminiscent of
supercooled liquids [17]. There are also some surprising
departures from glass-like behavior, which is revealed by
the superdiffusive behavior on long timescales. For example,
experiments on tumor cells invading a collagen matrix [18]
have shown that at long times (times exceeding the cell
division time) the mean-square displacement of tumor cells,
〈�r2(t )〉 ∼ tα , exhibits superdiffusive behavior with α ≈
1.4 ± 0.04. Interestingly, rheology in completely unrelated
synthetic materials (foams and mayonnaise) modeled as
compressible spherical bubbles, which can be created or

destroyed, also exhibit similar behavior. Simulations of such
soft glassy materials [19] show that 〈�r2(t )〉 ∼ tα at long
times with α ≈ 1.37 ± 0.03. Both tumor growth and ripening
of bubbles are intrinsically nonequilibrium systems because
cells (or bubbles) are born as a result of mitosis and also
undergo apoptosis. Is there a common mechanism for the
origin of superdiffusive behavior in these seemingly unrelated
nonequilibrium systems and if so can the long-time universal
behavior be explained theoretically?

Here, we answer the questions posed above in the affir-
mative by developing a theory to describe the nonequilibrium
dynamics of collective cell migration. A brief sketch of the
theory used to rationalize the results of simulations was given
elsewhere [20]. Further developments, including the details,
and plausible generality of the results are provided in this
study. For concreteness, we develop the formalism in the con-
text of tumor growth. Cells are modeled as deformable objects
interacting with potentials that account for repulsive elastic
forces and intercell adhesive attractions due to interactions
between cadherins expressed on the cell surface. In addition,
the cells could divide at a rate ka, giving rise to daughter
cells, and undergo apoptosis, at a rate kb. Due to the death-
birth processes (Fig. 1), cell-number conservation is violated,
thus making it difficult to use standard methods to solve the
stochastic equations describing the evolution of cell density.
A similar scenario arises in the description of dynamics of
chemotactic cells, in which cell division and death play an
important role [10]. Because Gelimson and Golestanian were
primarily interested in the long-time collective dynamics, they
resorted to dynamical renormalization-group techniques to in-
vestigate the interplay of chemical signaling and cell growth.
We follow a different route to study the relevant continuum
description of collective behavior of a colony of cells in both
the finite as well as in the long-time limit, using a stochastic
quantization method introduced by Parisi and Wu [21] in the
context of quantum field theory.
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FIG. 1. Schematic of the dynamics associated with cell birth and
death. Cell in green color divides into two cells with rate ka and cells
in red color undergo death with rate kb. The invasion distance, δr =
r − rcm, is a measure of the extent of penetration of the tumor into
the surrounding matrix.

The major results of this study are as follows: (i) The
interplay between nonlinear terms that determine the intercel-
lular interactions (adhesion and excluded volume repulsion,
collectively referred to as mechanical interactions from now
on) and death-birth processes are manifested in the dynamics
that changes dramatically as the system evolves. At finite
times, mechanical interactions with strong attraction between
cells dominate over the effects cell birth and death, leading
to glassy dynamics. The jammed cells exhibit subdiffusive
motion at the intermediate timescales, where the mean-square
displacement, 〈�r2(t )〉 increases sublinearly, as tα with α =
0.8. (ii) In the long-time limit (times exceeding the cell
division time), the consequences of the birth-death processes
dominate over the mechanical interactions, resulting in the
fluidization of cells. Asymptotically, the cells exhibit su-
perdiffusive motion, with 〈�r2(t )〉 ∼ tα with the value of the
universal exponent α = 1.33, in three dimensions. The theo-
retical prediction is in excellent agreement with the simulation
results [20] and a recent in vitro experiment of the three-
dimensional growth of multicellular tumor spheroids [18].
(iii) Although the theory is set in the context of tumor growth,
the present work also quantitatively describes the complex
motion of bubbles in a foam in which bubble formation (birth)
and collapse (death) occur.

The rest of the paper is organized as follows: In Sec. II
we present the model and the theory used to understand
the dynamics. This is followed in Sec. III, which describes
the stochastic quantization method as the required theoret-
ical technique to obtain the time-dependence of a number
of observables that characterize the collective dynamics at
intermediate and long times. The main results detailing the
origin of subdiffusive motion at intermediate times and the
universal superdiffusive dynamics at long times are contained
in Sec. IV. This section also provides arguments for the
generality of our results for similar universal behavior in
abiotic nonequilibrium systems. Section V summarizes our
findings. The technical details of the calculations are relegated
to the three Appendixes.

II. THEORY

We consider the dynamics of a colony of cells in a dis-
sipative environment where inertial effects are negligible.

Each cell experiences systematic forces arising from me-
chanical interactions, and a Gaussian random force with
white-noise spectrum. The equation of motion for a single
cell i is ∂ri

∂t = −∑N
j=1 ∇U (ri(t ) − r j (t )) + ηi(t ), where U

contains both repulsive interactions with range λ, and favor-
able attractive interactions between cells with range σ , with
strengths v and κ , respectively. We use Gaussian potentials
(see Appendix A for details) in order to obtain analytical
solutions. Needless to say that the conclusions would be
valid for any short-ranged U . The Gaussian white noise
satisfies 〈ηi(t )η j (t ′)〉 = 2Dδi jδ(t − t ′). Let us consider the
evolution of the density function for a single cell φi(r, t ) =
δ[r − ri(t)]. A closed form of the Langevin equation for
the density, φ(r, t ) = ∑

i δ[r − ri(t)] may be obtained us-
ing the approach developed by Dean [22]. The time evolu-
tion of φ(r, t ) is given by ∂φ(r,t )

∂t = ∇ · [η(r, t )φ1/2(r, t )] +
∇ · [φ(r, t )

∫
dr′φ(r′, t )∇U (r − r′)] + D∇2φ(r, t ). We ex-

tend the model phenomenologically by adding the source
term that describes both cell birth and death as well as
a noise term that breaks the cell-number conservation.
The line of argument follows from the Doi–Peliti formal-
ism [23–25], introduced in the study of reaction-diffusion
processes.

The Langevin equation, for the time-dependent changes in
the density, φ(r, t ), is

∂φ(r, t )

∂t
= ∇ ·

[
φ(r, t )

∫
dr′φ(r′, t )∇U (r − r′)

]

+ D∇2φ(r, t ) + k̄bφ(r, t )

(
ka

k̄b
− φ(r, t )

)

+∇ · [η(r, t )φ1/2(r, t )] +
√

kaφ + kbφ2 fφ, (1)

with fφ satisfying 〈 fφ (r, t ) fφ (r′, t ′)〉 = δ(r − r′)δ(t − t ′).
The source term gφ(φ0 − φ) [third term on the right-hand
side of Eq. (1)], arises due to the cell death-birth processes
(Fig. 1), with an effective growth rate g = k̄b, and carrying
capacity φ0 = ka

k̄b
(see Appendix B) [10,26]. The coefficient

(kaφ + k̄bφ
2)1/2 is the strength of the noise due to number

fluctuations, and is a function of density φ.
The absence of a fluctuation-dissipation theorem (FDT),

due to the generation of active forces, makes this a far-from-
equilibrium problem. Although dynamic renormalization-
group methods could be used to solve Eq. (1) in the
hydrodynamic limit [10], it would not capture the dynam-
ics in the intermediate time regime. Our focus is to study
the collective dynamics in a colony of tumor cells in both
the intermediate- and long-time limits. Therefore, we solve
Eq. (1) by treating the nonlinear terms as a perturbation,
by adopting the stochastic quantization scheme [21,27,28],
which allows us to calculate the form of the mean-square
displacement (MSD) in the intermediate- as well as the long-
time limit.

We assume that the density fluctuates around a constant
value, which simplifies the multiplicative noise term [last term
in Eq. (1)]. We write the density as φ(r, t ) = φ0 + φ1(r, t )
and perform a linear stability analysis in the Fourier space for
the equation describing density fluctuations. The equation for
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the density fluctuation becomes

∂φ1(r, t )

∂t
= D∇2φ1(r, t ) + (ka − 2k̄bφ0)φ1(r′, t )

+∇ ·
[
φ0

∫
dr′φ1(r′, t )∇U (r − r′)

]

+∇ ·
[
φ1(r′, t )

∫
dr′φ0∇U (r − r′)

]

+∇ ·
[
φ1(r, t )

∫
dr′φ1(r′, t )∇U (r − r′)

]

+∇ · [
η(r, t )φ1/2

0

]−k̄bφ
2
1+

√
kaφ0 + k̄bφ

2
0 fφ1 .

(2)

In Fourier space, the above equation reads

∂φ1(k, t )

∂t
= −[Dk2 + φ0k2U (k) − (ka − 2k̄bφ0)]φ1(k)

+
∫

dq(−q · k)U (q)φ1(q)φ1(k − q)

− k̄b

∫
dqφ1(q)φ1(k − q) + η′(k, t ), (3)

with 〈η′(k, t )η′(−k, t ′)〉 = (kaφ0 + k̄bφ
2
0 + 2Dφ0k2)δ(t − t ′).

From the linear stability analysis, we find that the uni-
form density phase is stable if φ0k2U (k) − (ka − 2k̄bφ0) > 0
[Eq. (3)]. In this regime, mechanical interactions dominate
over the cell birth-death and is the primary determinant of
the dynamics of cells. In the opposite limit, when the active
forces due to cell birth-death dominate, the cell colony grows
rapidly. There is an instability at φ0k2U (k)−(ka−2k̄bφ0)=0,
signaling a transition from subdiffusive to superdiffusive mo-
tion in the cell dynamics (see below). The Green’s function G
is given by

[G]−1 = − iω + Dk2 + φ0k2U (k)

− (ka−2k̄bφ0) + �φ (k, ω), (4)

where �φ (k, ω) ∼ ∫
dd k′
(2π )d

dω′
2π

VV GC ∼ ∫
dk′

(2π )d k′d−5, showing
infrared divergence at the critical dimension dc = 4. For
d > dc, scaling exponents are determined by linear theory
and, for d < dc, nontrivial exponents are governed by the
nonlinear terms in Eq. (3).

To anticipate the consequences of nonlinearity, we in-
troduce a change of scale r → sr, φ → sχφ, and t → szt
where χ is the exponent corresponding to the cell den-
sity fluctuations, and z is the dynamical exponent. The
nonlinear term (−q · k)U (q)φ1(q)φ1(k − q) representing the
cell-cell mechanical interactions scales as s2χ−2. The term

bφ1(q)φ1(k − q), due to stochastic cell birth-death processes,
scales as s2χ . In the long-time limit (times exceeding the cell
division time), nonlinearity due to cell birth-death dominates
over mechanical interaction. Therefore, in the long-time limit,
scaling behavior is determined by the death-birth process,
which implies that one expects universality in the scaling
of the MSD in the long-time limit. These conclusions are
supported by recent simulation results [20]. However, in the
intermediate-time regime all the terms contribute to the time
dependence of the MSD, 〈�r2(t )〉. By choosing the strength
of the interactions, in such a way that the mechanical interac-
tions dominate over death-birth term [first term in Eq. (1)], we
can calculate 〈�r2(t )〉 as a function of t .

III. STOCHASTIC QUANTIZATION APPROACH

We now provide a theory in support of the arguments given
above. As stated earlier, a major difficulty in studying the
problem of collective behavior of cells far from equilibrium is
the breakdown of the FDT. Therefore, independent diagram-
matic expansions for the response function 〈φ̃1φ1〉 and the cor-
relation function 〈φ1φ1〉 are necessary. The equilibrium distri-
bution is unknown, and may not exist. Therefore, the averages
can be computed only for the statistical noise. The usual
analytic route employed in calculating the scaling exponents
is to introduce a response field φ̃1 and compute the response
function as 〈φ̃1φ1〉 and the correlation function as 〈φ1φ1〉.
One can obtain the scaling solutions of the relevant problem
by using dynamic renormalization-group (RG) scheme, as
illustrated recently [10]. The novelty of our theory is that it
successfully captures the growing phase of the tumor, which
is not easily accessible in the perturbative calculation using
the RG scheme [10]. Here, we develop a general theoretical
formalism, in which scaling solutions can be obtained by a
power counting analysis.

We now exploit the Parisi–Wu stochastic quantization
scheme [21] and introduce a fictitious time “τ f ” and consider
all variables to be functions of τ f in addition to k and w. The
Langevin equation in the τ f variable is

∂φ1(k,w, τ f )

∂τ f
= − δS

δφ1(−k,−w, τ f )
+ fφ1 (k,w, τ f ), (5)

where fφ1 satisfies 〈 fφ1 fφ1〉=2δ(k + k′)δ(w+w′)δ(τ f −τ ′
f ).

This ensures that, as τ f → ∞, the distribution function will be
given by S (k,w), because FDT holds in the τ f variable. The
correlation functions calculated by using Eq. (5) lead to the
physical correlation functions of the original theory [Eq. (1)]
in the τ f → ∞ limit [28]. The action S (k,w) can be obtained
by writing down the probability distribution corresponding to
the noise term, which is given by

P
(

fφ1

) ∝ exp

[
−

∫
k,w

1

2
fφ1 (k,w) fφ1 (−k,−w)

]
= exp

[
− 1

2
(
kaφ0 + k̄bφ

2
0

) ∫
k,w

S (k,w)

]
. (6)

The action functional S (k,w) may be written in terms of φ1(k,w) instead of fφ1 (k,w), with the help of Eq. (2). The expression
for the action S obtained by using Eq. (2) is

S =
∫

dd k
(2π )d

dw

2π

1

2

{
[−iw + Dk2 + φ0k2U (k)]φ1(k) − (ka − 2k̄bφ0)φ1(k)
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−
∫

dq(−q · k)U (q)φ1(q)φ1(k − q) + k̄b

∫
dqφ1(q)φ1(k − q)

}

×
{

[iw + Dk2 + φ0k2U (−k)]φ1(−k) − (ka − 2k̄bφ0)φ1(−k)

−
∫

dq(q · k)U (q)φ1(q)φ1(−k − q) + k̄b

∫
dqφ1(q)φ1(−k − q)

}
.

With the action given above, we obtain the Langevin equation using Eq. (5) for φ1(k, ω, τ f ):

∂φ1(k, ω, τ f )

∂τ f
= − 1(

kaφ0 + k̄bφ
2
0 + Dk2

) [ω2 + {Dk2 + φ0k2U (k) − (ka − 2k̄bφ0)}2]φ1(k, ω, τ f ) − 1(
kaφ0 + k̄bφ

2
0 + Dk2

)
×

∫
k′,ω′

[{iω + Dk2 + φ0k2U (k) − (ka − 2k̄bφ0)}{(−k′ · k)U (k′) − k̄b}

+ {iω′ + Dk′2 + φ0k′2U (k′) − (ka − 2k̄bφ0)}{(−k′ · k)U (−k) − k̄b}
+ {iω′ + Dk′2 + φ0k′2U (k′) − (ka − 2k̄bφ0)}{(−k′ · (k − k′))U (k − k′) − k̄b}]
×φ1(k′, ω′)φ1(k − k′, ω − ω′) + fφ (k, ω, τ f ) + higher order terms. (7)

To obtain the scaling laws for the MSD, it suffices to work at arbitrary τ f . It follows from Eq. (7) that, in the absence
of the nonlinear terms, the Green’s function G(0) is given by [G(0)]−1 = −iωτ f + 1

2(kaφ0+k̄bφ
2
0 )

[ω2 + {Dk2 + φ0k2U (k) − (ka −
2k̄bφ0)}2], where ωτ f is the frequency corresponding to the fictitious time τ f . The effect of nonlinear terms can be included
perturbatively, leading to the Dyson’s equation

[G]−1 = [G(0)]−1 + �
(
k, ω, ωτ f

)
, (8)

where the self-energy �(k, ω, ωτ f ) contains the nonlinear contributions to the bare Green’s function (see Fig. 2). The expression
for �(k, ω, ωτ f ) is given by

�
(
k, ω, ωτ f

) = 2(
kaφ0 + k̄bφ

2
0 + Dk2

)2

∫
k′,ω′,ω′

τ f

[{iω + Dk2 + φ0k2U (k) − (ka − 2k̄bφ0)}

× {(−k′ · k)U (k′) − k̄b} + {iω′ + Dk′2 + φ0k′2U (k′) − (ka − 2k̄bφ0)}{(−k′ · k)U (−k) − k̄b}
+ {iω′ + Dk′2 + φ0k′2U (k′) − (ka − 2k̄bφ0)}{[−k′ · (k − k′)]U (k − k′) − k̄b}]
× [{iω + Dk2 + φ0k2U (k) − (ka − 2k̄bφ0)}{[−(k − k′) · k]U (k − k′) − k̄b}
+ {i(ω − ω′) + D(k − k′)2 + φ0(k − k′)2U (k − k′) − (ka − 2k̄bφ0)}{[−(k − k′) · k]U (−k) − k̄b}
+ {i(ω − ω′) + D(k − k′)2 + φ0(k − k′)2U (k − k′) − (ka − 2k̄bφ0)}{[−(k − k′) · (k′)]U (k′) − k̄b}]
× G(k′, ω′, ω′

τ )C(k − k′, ω − ω′, ωτ f − ω′
τ ). (9)

We are mainly interested in the behavior of �(k, ω, ωτ f ) when
expanded to second order in nonlinearity. The contributions
arise from two sources (1) a one-loop contribution from the
second-order term (containing three φ1 fields) in Eq. (7) (sec-
ond term in Fig. 2) and (2) a two-loop contribution from the

FIG. 2. Dashed line indicates the correlation function G0G∗
0 and

solid line indicates the response function G0. The self-energy term �

is obtained by contracting the two φ1 fields. The first term is the two-
loop contribution from the first-order term (contains two φ1 fields) in
the fictitious time equation in Eq. (7). The second term gives the one-
loop contribution from second-order term (contains three φ1 fields).

first-order term(containing two φ1 fields) in Eq. (7) (first term
in Fig. 2). The contribution arising from the term containing
three φ1 fields, in Eq. (7), can be readily obtained by con-
tracting two of the φ1 fields. The second-order contribution
due to the one-loop contribution in Eq. (8) does not have any
new momentum dependence. Hence, it is the second-order
contribution (first term in Fig. 2) arising from the two-loop
contribution in Eq. (8) which is relevant. The correlation
function is given by the FDT as C = 1

ωτ f
ImG. With these

observations, Eq. (8) can be written as

[G]−1
(
k, ω, ωτ f

) = −iωτ f + 1

2(D0)
[ω2] + 1

2(D̄)

[
ν2

effk
4
]
,

(10)
where D0 = kaφ0 + kbφ

2
0 and D̄ is defined as

1

2(D̄)

[
ν2

eff k
4] = 1

2(D0)
(νk2)2 + �

(
k, ω, ωτ f

)
, (11)
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with ν = D + φ0U (k). In the intermediate time, the strength
of the interactions is such that φ0k2U (k) dominates over
(ka − 2kbφ0). We obtain Eq. (11) by neglecting the term
(ka − 2k̄bφ0) in the Green’s function equation [Eq. (10)] in
the finite-time regime. Expanding νeff and D̄ about ν and
D0, respectively, and noting that the renormalization of ν

dominates, we write

νeff k
2 � νk2 + 1

2νk2
�

(
k, ω, ωτ f

)
,

or �νk2 = 1

2νk2
�

(
k, ω, ωτ f

)
. (12)

The two-loop contribution from the first-order term (contain-
ing two φ1 fields) in Eq. (7) will contribute to the scaling
laws in the intermediate as well as in the long-time limit (see
below).

IV. RESULTS

A. Subdiffusive motion

In the spirit of self-consistent mode coupling theory, we
replace ν by �ν in the self-energy term �(k, ω, ωτ f ). We use
G from Eq. (8), and an expression for C follows from the FDT.
According to scale transformation, we know ω ∼ kz, ωτ ∼
k2z, G ∼ k−2z, C ∼ k−4z, and the vertex factor V ∼ kz+2. The
self-energy term (Fig. 2), can be written as �(k, ω, ωτ f ) ∼∫

dd k′
(2π )d

dω′
2π

dω′
τ

2π
VV GC. By carrying out the momentum count

of �(k, ω, ωτ f ), and keeping in mind that �νk2 ∼ kz, we
find that �(k, ω, ωτ f ) ∼ kd−z+4. Using Eq. (12), we have
kz ∼ kd−z+2, which leads to z = 1 + d

2 .
The single-cell mean-square displacement behaves as

〈[r(t ) − r(0)]2〉 ∼ t2/z = tα. (13)

In three dimensions, α = 4
5 = 0.8, implying that a labeled cell

undergoes subdiffusive motion, which is one characteristic
feature of glassy systems. If cell-cell interaction is modeled
as U1 = U0/ cosh2(r/a) instead of a Gaussian, we obtain
α = 4

6 = 0.57, implying subdiffusive behavior. Although sub-
diffusive behavior is preserved at intermediate times, the
scaling exponents depend on the form of interaction potential,
which shows that the intermediate behavior of 〈�r2(t )〉 is
nonuniversal. The subdiffusive behavior is a consequence of
jamming of cells.

We also investigated how the jamming regime depends on
the cell-cell adhesion strength, κ . The form of the interaction
potential is shown in Eq. (A1) of Appendix A. We define
the time-dependent order parameter in terms of the function
〈Q(t )〉 ≡ ∫

dr1dr2〈φ(r1, 0)φ(r2, t )〉δ(r1 − r2), measuring the
number of “overlapping” cells in two configurations separated
by a time interval t . In Fourier space,

〈Q(t )〉 =
∫

k,w

〈φ1(k,w)φ1(−k,−w)〉eiwt

=
∫

k

1
�(k)
κk2

exp

[
−t

�(k)

κk2

]
=

∫
k

S̃(k, t ), (14)

where the second line is obtained by using the mode-coupling
approximation. The dynamic structure factor S̃(k, t ) decays

exponentially [Eq. (14)] from which it follows that the relax-
ation time depends linearly on the adhesion strength κ . For
small value of κ , S̃(k, t ) decays rapidly and, for large κ , the
relaxation time increases substantially, leading to a stronger
caging effect, which results in the extremely slow relaxation
of the dynamic structure factor [17,29].

B. Long-time superdiffusion

In the long-time limit, the effects of nonlinearity due
to death-birth dominate over mechanical interactions. Fol-
lowing the same procedure outlined above, we obtain the
self-consistent mode coupling equation of the form �μ =

1
2μ

�(k, ω, ωτ f ) in the hydrodynamic limit, with μ = (ka −
2k̄bφ0). We now replace μ by �μ in the self-energy term
�(k, ω, ωτ f ) (Fig. 2), use G in Eq. (8), and C is calculated
by using the FDT. The scale transformation for all the vari-
ables is the same as before except that the vertex factor
V ∼ kz. By noting that �μ ∼ kz, we find �(k, ω, ωτ f ) ∼∫

dd k′
(2π )d

dω′
2π

dω′
τ

2π
VV GC ∼ kd−z. The self-consistent equation

�μ = 1
2μ

�(k, ω, ωτ f ) produces the dynamic exponent z =
d/2. Therefore, asymptotically α = 1.33, implying that the
MSD exponent is greater than unity, which implies that col-
lective motion leads to superdiffusive behavior. The calculated
value of α is in excellent agreement with both the value
obtained from simulations [20] and experimental results [18].

C. Invasion distance

Recently, the movement of the fibrosarcoma cells at the
boundary of a growing spheroid pushing against a collagen
matrix was measured by using imaging techniques [18].
The dynamics was quantified by using the invasion distance
(Fig. 1), which is defined as the average distance from the
center of mass of the tumor to the cells at the periphery,
δr(t ) = 〈rb − rCM〉, where rb is the position of the cell at
the boundary, and rCM = (1/N )

∑
i ri, with N being the num-

ber of cells. It was found that 〈δr(t )〉 ∼ t1/z = t ξ with ξ =
0.8 [18]. By using our theory we find that 〈δr(t )〉 ∼ t2/3. The
calculated and measured values of ξ are in fair agreement.
If the dynamics were purely diffusive, as would be the case
for a homogeneously distributed sample of individual cells,
then ξ would be 0.5. The departure from this value is another
indication of superdiffusion in this nonequilibrium system.
The time-dependent structure factor S̃(k, t ) in this case decays
exponentially as exp[−t �(k)

μ
], implying that the relaxation

time depends linearly on the birth rate [20].

D. Dynamics of soft material and growing tumor are similar

Interestingly, the dynamics of certain soft glassy materials
and the collective migration of cells have a common feature in
that the underlying dynamics of these systems are governed by
the birth and death processes. For the soft foam, Hwang and
coworkers [19] used a model for Ostwald ripening for the bub-
bles, which can be recast as the reaction X + X → X , which
is identical to the apoptosis process used in tumor evolution.
This process produces the nonlinearity (kbφ

2) in both the
problems. The present theory shows that this nonlinear term
determines the scaling behavior in the long-time limit. From
the theory presented above we conclude that both 〈�r2(t )〉

032401-5



HIMADRI S. SAMANTA AND D. THIRUMALAI PHYSICAL REVIEW E 99, 032401 (2019)

must have the same scaling behavior. Our theory predicts
the general feature that birth-death-driven dynamics should
lead to superdiffusive behavior with a universal dynamical
exponent in the long-time limit. Thus, asymptotically, MSD
scaling is impervious to the interaction details between the
constituent objects in the nonequilibrium systems. Based on
the calculation of 〈�r2(t )〉 for cells in tumors we surmise that
the mean-square displacement for bubbles should increase
as tα at long times with the same exponent, α ≈ 1.33. Re-
markably, this value is in accord with the simulation results
reported elsewhere [19].

V. CONCLUSION

In summary, using a new theoretical framework, we have
provided insights into the dynamics of a colony of tumor
cells driven by an interplay of mechanical interactions and
stochastic death-birth processes. The breakdown of number
conservation, resulting from the stochastic death-birth pro-
cess, makes the dynamics far from equilibrium, characterized
by the absence of FDT. The introduction of a fictitious time in
which FDT is valid allows us to calculate the response func-
tions from which the correlation functions can be obtained
by using the FDT. This new approach greatly simplifies the
calculation of the scaling exponents. Nonlinear terms in the
density evolution equation, arising from mechanical interac-
tions determine the scaling behavior in the intermediate time.
Strong cell-cell adhesion interactions lead to the glass-like
caging behavior characterized by subdiffusive motion in the
intermediate time. Stochastic death-birth processes determine
the scaling in the long-time limit, which is independent of
the mechanical interactions, as long as they are short ranged.
In the long-time limit, the dynamics shows superdiffusive
motion, leading to fluidization of the colony of cells. Our
theory shows that the universal long-time behavior would
arise in any systems in which the cells (or particles) are born
and undergo apoptosis. These dynamical processes, surely
relevant in many biological processes, produce active forces
of sufficient magnitude to fluidize the dynamics of jammed
cells at long times. It is this mechanism that apparently is also
operative in soft glassy materials [19], that produces the unex-
pected superdiffusion in this abiotic system. As a consequence
of the fundamental similarity between these completely dis-
tinct problems, we assert that, asymptotically, the cells in an
evolving tumor and bubbles in a soap foam have precisely
the same underlying dynamics at long times. In other words,
these nonequilibrium systems belong to the same universality
class. It would be most interesting to explore if the mechanism
proposed to explain the origin of superdiffusion is present
in other nonequilibrium systems as well. Finally, the theory
presented here could help us to understand how cancer spreads
by invading adjacent tissue involved in metastasis [30].
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APPENDIX A: SHORT-RANGE INTERACTION

To obtain the dynamics of an evolving collection of cells,
we use the following simplified form for cell-cell interaction:

U (r(i) − r( j)) = v

(2πλ2)3/2
e− [r(i)−r( j)]2

2λ2

− κ

(2πσ 2)3/2
e− [r(i)−r( j)]2

2σ2 , (A1)

where v and κ are the strengths of excluded volume and
attractive interactions, respectively.

APPENDIX B: NONLINEAR TERM ARISING FROM
BIRTH-DEATH PROCESS

We consider a minimal model to study the interplay
between stochastic cell growth and annihilation processes
leading to apoptosis and use it to derive a Langevin-type
equation for logistic growth. We use the Doi–Peliti formal-
ism [23,24,31] in order to derive an expression for the density
dependence of the noise strength that describes cell-number
fluctuations. The birth reaction X ka−→ X + X occurs at the
rate constant ka for each cell, and the backward reaction
(annihilation or apoptosis) X + X kb−→ X occurs at rate kb (see
Fig. 1 in the main text). The master equation for this process
is written as

∂P(Xi, t )

∂t
= ka[(Xi − 1)P(Xi − 1, t ) − XiP(Xi, t )]

+ kb[Xi(Xi+1)P(Xi+1, t ) − Xi(Xi−1)P(Xi, t )],
(B1)

where P(Xi, t ) is the probability of finding Xi particles at
time t , and kb is taken to be the apoptosis rate of distinct
pairs of cells. The central idea of the Doi–Peliti formal-
ism [23,24,31] is the introduction of a single vector |ψ (t )〉,
which is a collection of a series of infinite number of P(Xi, t ):

|ψ (t )〉 =
∞∑

Xi=0

P(Xi, t )|Xi〉. (B2)

Using Eq. (B2), the master equation in Eq. (B1) can be written
in a compact form,

∂

∂t
|ψ (t )〉 = −L(c†, c)|ψ (t )〉, (B3)

where

L(c†
i , ci ) = ka

(
c†

i
2 − c†

i

)
ci + kb

(
c†

i − c†
i

2)
c2

i . (B4)

The bosonic creation operator c†
i and annihilation operator ci

obey

[ci, c†
i ] ≡ cic

†
i − c†

i ci = 1, (B5)

where [.,.] is the commutator, and the actions of the creation
and annihilation operators for the ket vectors |n〉 are defined
as, c†

i |Xi〉 = |Xi + 1〉, ci|Xi〉 = Xi|Xi − 1〉.
The Schrödinger-like equation [Eq. (B3)] for the evolution

of the state of the system may be integrate to find

| ψ (t )〉 = e−Lt | ψ (0)〉, (B6)
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with the initial state |ψ〉 = eX̄0
∑

i (c
†
i −1)|0〉. The initial config-

uration for the master equation is an independent Poisson
distribution at each site,

P({Xi}; 0) = �iP0(Xi ) = �ie
−X̄0 X0

−Xi/Xi!, (B7)

with mean initial input and output concentrations X̄0.
Our goal is to compute averages and correlation func-

tions with respect to the configurational probability P({Xi}; t ),
which is accomplished by using the projection state 〈P| =
〈0|�ieci , for which 〈P|0〉 = 1 and 〈P|c†

i = 〈P|, since
[eci , c†

j ] = eciδi j . The average value of an observable A({Xi})
is

〈A(t )〉 =
∑
{Xi}

A({Xi})P({Xi}; t ), (B8)

from which the statistical average of an observable can be
calculated by using

〈A(t )〉 = 〈P|A({c†
i , ci})|ψ (t )〉

= 〈P|A({c†
i , ci})e−H ({c†

i },{ci})t |ψ (0)〉. (B9)

We follow a well-established route in quantum many-
particle theory [32] and derive a field theory representation by
constructing a path integral equivalent of the time-dependent
Schrödinger equation [Eq. (B3)] based on coherent states [31].
These are defined as right eigenstates of the annihilation
operators, ci|αi〉 = αi|αi〉, with complex eigenvalues αi. The
coherent states satisfy |αi〉 = exp( 1

2 |αi|2 + αiα
†
i )|0〉, the over-

lap integral 〈α j |αi〉 = exp(− 1
2 |αi|2 − 1

2 |α j |2 + α∗
j αi ), and the

completeness relation
∫

�id2αi|{αi}〉〈{αi}| = π . After split-
ting the temporal evolution [Eq. (B3)] into infinitesimal incre-
ments, inserting the completeness relation at each time step,
and with additional manipulations, we obtain an expression
for the configurational average,

〈A(t )〉 ∝
∫

�idαidα∗
i A({αi})e−S[α∗

i ,αi]. (B10)

The exponential statistical weight is determined by the action

S[α∗
i , αi] =

∑
i

[∫ t f

0

{
α∗

i (t )
∂αi(t )

∂t

}
+ L(α∗

i , α)

]
dt .

(B11)

Finally, by taking the continuum limit using
∑

i →
a−d

0

∫
dd x, a0 is a lattice constant, αi(t ) → φ(x, t ) and

αi(t ) → ad
0φ(x, t ), the expectation value is represented by a

functional integral,

〈A(t )〉 ∝
∫

�iD[φ∗, φ]A({φ})e−S[φ∗,φ], (B12)

with an effective action

S[φ∗, φ] =
∫ t f

0

[{
φ∗(t )

∂φ(t )

∂t

}
+ L(φ∗, φ)

]
dt . (B13)

In the Hamiltonian [Eq. (B4)], c† is replaced by the field
variable φ∗, and the c operator becomes φ.

The action in Eq. (B13) encodes the stochastic master-
equation kinetics through four independent fields (φ∗, φ).
With this formulation, an immediate connection can be made

to the response functional formulation by using the Janssen–
De Dominicis formalism for the Langevin equations [33,34].
In this approach, the response field enters at most quadrat-
ically in the pseudo-Hamiltonian, which may be interpreted
as an average over Gaussian white noise. With this in mind,
we apply the nonlinear Cole–Hopf transformation [35,36] in
order to obtain the quadratic terms in auxiliary fields, φ∗ =
eφ̄I , φ = e−φ̄I φI , to the action in Eq. (B13). The Jacobian for
this variable transformation is unity, and the local particle
density is φ∗φ = φI . We obtain the following Hamiltonian:

L = −k̄bφ̄φ

(
ka

kb
− φ

)
+ φ̄2

[
ka

2
φ + k̄b

φ2

2

]
, (B14)

where k̄b = ad
0 kb. In the above equation, the exponential term

has been expanded to second order. The rate equation is
obtained through δS/δφ̄ |φ̄=0= 0. The terms quadratic in
the auxiliary field φ̄ encapsulate the second moment of the
Gaussian white noise with zero mean.

We arrive at an expression for the action for a colony of
tumor cells, governed by the dynamics illustrated in Fig. 1 in
the main text, in the continuum description,

S[φ̄, φ] =
∫

dt

{
φ̄

[
∂φ

∂t
− k̄bφ

(
ka

k̄b
− φ

)]

+ φ̄2

[
ka

2
φ + k̄b

φ2

2

]}
. (B15)

The term k̄bφ( ka

k̄b
− φ) gives the source term for cell birth-

death. The coefficient of φ̄2 gives the expression for noise
correlation in the Langevin description, which breaks the cell-
number conservation and plays a crucial role in the dynamical
behavior of the collection of cells.

APPENDIX C: EFFECTIVE DIFFUSION COEFFICIENT

The emergence of superdiffusion may be rationalized by
considering movement of a labeled cell as a diffusive pro-
cess with an effective time-dependent diffusion coefficient.
In the spirit of mode-coupling theory, we write Deff k2 ∼ kz,
where Deff is the effective diffusion coefficient of the cell.
In the real time, Deff scales as t

2−z
z . Using the Langevin

equation of the form ẏ = √
Deff (t )ηy, where 〈ηy(t )ηy(t ′)〉 =

2δ(t − t ′), we obtain the mean-square displacement, 〈�y2〉 ∼∫
Deff (t )dt ∼ t2/z.
In the homogeneous state, the evolution of cells is given by

∂φ1(r, t )

∂t
= D∇2φ1(r, t ) + ∇ · [

η(r, t )φ1/2
0 (r, t )

]
. (C1)

We assume that Eq. (C1) is invariant under the scale trans-
formations, r → sr, φ → sχφ, and t → szt where χ is the
exponent corresponding the cell density fluctuations, and z is
the dynamical exponent. With these transformations, Eq. (C1)
becomes

∂φ1(r, t )

∂t
= Dsz−2∇2φ1(r, t )

+ s−d/2+z/2−χ−1∇ · [
η(r, t )φ1/2

0 (r, t )
]
. (C2)

032401-7



HIMADRI S. SAMANTA AND D. THIRUMALAI PHYSICAL REVIEW E 99, 032401 (2019)

To find the critical exponents z and χ , we require that
Eq. (C1) must be invariant under the scale transformations.
Thus, to ensure scale invariance, each term on the right-hand
side of Eq. (C2) must be independent of s, which implies
that z = 2 and χ = −d/2. Under these conditions, the cells
undergo normal diffusion with MSD ∼ t .

In the growing phase, φ1(r, t ) satisfies

∂φ1(r, t )

∂t
= D∇2φ1(r, t ) + (ka − 2k̄bφ0)φ1(r′, t ) − k̄bφ

2
1

+∇ · [
η(r, t )φ1/2

0 (r, t )
] +

√
kaφ0 + k̄bφ

2
0 fφ,

(C3)

which is obtained by neglecting interaction between cells.

Using the same scale transformation as before, we obtain
∂φ1(r, t )

∂t
= Dsz−2∇2φ1(r, t ) + sz(ka − 2k̄bφ0)φ1(r′, t )

− sχ+zk̄bφ
2
1+s−d/2+z/2−χ−1∇ · [

η(r, t )φ1/2
0 (r, t )

]
+ s−d/2+z/2−χ

√
kaφ0 + k̄bφ

2
0 fφ. (C4)

To ensure scale invariance, one would expect that the right-
hand side of Eq. (C4) must be independent of s. However, this
procedure provides five scaling relations for two exponents
z and χ , thereby overdetermining them. To get the correct
values of the exponents, the coefficients must also change
under scaling. By using the stochastic quantization scheme
mentioned in the main text, we find z = 3/2 in the long-time
limit. The effective diffusion coefficient Deff scales as t1/3,
thereby, MSD scales as t4/3, implying that at long times the
motion is superdiffusive.
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