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To measure, predict, and prevent social segregation, it is necessary to understand the factors that cause it.
While in most available descriptions space plays an essential role, one outstanding question is whether and how
this phenomenon is possible in a well-mixed social network. We define and solve a simple model of segregation
on networks based on discrete convictions. In our model, space does not play a role, and individuals never
change their conviction, but they may choose to connect socially to other individuals based on two criteria:
sharing the same conviction and individual popularity (regardless of conviction). The tradeoff between these two
moves defines a parameter, analogous to the “tolerance” parameter in classical models of spatial segregation. We
show numerically and analytically that this parameter determines a true phase transition (somewhat reminiscent
of phase separation in a binary mixture) between a well-mixed and a segregated state. Additionally, minority
convictions segregate faster and inter-specific aversion alone may lead to a segregation threshold with similar
properties. Together, our results highlight the general principle that a segregation transition is possible in
absence of spatial degrees of freedom, provided that conviction-based rewiring occurs on the same time scale of
popularity rewirings.
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I. INTRODUCTION

Social segregation is a primary problem for our well-
being, and for the policy-making of our governments. The
most basic questions regarding social segregation concern its
quantification and the prediction and prevention of its onset
and its outcomes. Attempts to approach the problem from
a quantitative viewpoint date back to the late 1960s, with a
model proposed by the economist Thomas C. Schelling [1,2].
In this model, individuals are embedded in a two-dimensional
lattice, and are characterized by a threshold “tolerance” to
other individual opinions. This model naturally attracted the
attention of statistical physics because of its analogy with
Blume-Emery-Griffiths and Potts models, and more in gen-
eral with binary mixtures and interfacial dynamics. It shows
a complex phase diagram, including threshold phenomena
(phase transitions) where opinions separate spatially and may
form patterns [3–6]. Schelling’s model demonstrates that even
mild preferences for a set of agents for defining themselves
as a local minority can produce strong spatial segregation
patterns, challenging the common view that discrimination is
a necessary condition for segregation.

While spatial “steric” interactions and dimensionality are
very important in Schelling’s model, human interactions can
in most cases be described as networklike [7–11]. In a
situation with (nearly) immutable convictions and limited
tolerance to other opinions, individuals sharing the same
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conviction might find themselves severed from society even
if their potential for social interaction is not limited by spatial
constraints. Such a situation is very dangerous for society, for
the danger of triggering self-propelled distortions of reality
shared between many individuals. For example, this is par-
ticularly relevant in the online world of social networks. The
diffusion of on-line non-intermediated unverified and polar-
ized contents and the spread of misinformation is becoming
a pressing problem for our society. One of the most relevant
driving forces has been recognised as the echo-chamber effect
[12–14]. It consists in the formation of segregated clusters of
users who share some strong common opinions, increasingly
reinforcing these ideas and thus becoming impenetrable to
news diverging from their point of view.

Thus, another possible approach (relatively less explored)
may attempt to describe segregation using opinion-based net-
work models, such as the voter model [15–17]. The complex
networks literature provides many examples of segregation
in the structure of relationships (from school friendship to
value- and belief-oriented partitioning) empirical data [18,19].
However, the literature on complex networks models focuses
mostly on how opinion dynamics is shaped by network-like
human interactions, i.e., on how individuals change their mind
based the opinions of others [16,17,20]. Such a framework is
not well-suited to describe segregation, where precisely the
opposite occurs, i.e., human interactions change following
stable “opinions,” or other more general individual-specific
factors (as it happens in Schelling’s model). Indeed, some
of these factors may be very strongly rooted in individu-
als, such as convictions, religious and cultural factors, and
even immutable physical or racial features. A comparativelly
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smaller thread of studies [15,21–23] has considered the coevo-
lution of network connections and opinions. In such models,
individuals can both change their mind and change their
connections, and segregated states can emerge, depending on
the intrinsic timescales of these processes [21,22]. However,
the conditions for reaching segregated states are not the main
focus of these investigations, which are typically focused
on the conditions for reaching consensus. To understand the
factors leading to segregated states, it is important to address
the case where node attributes (convictions) are persistent.

There is very little work in the literature addressing such
situation on networks. A fairly recent study [24], considered
the emergence of segregation in a social network by a model
with continuous opinions and an individual “aversion bias”
favoring the severing of connections with increasing differ-
ence of opinions, in favor of random rewiring. They proved
the existence of attractor steady states with given segregation
levels that are independent of initial conditions, and character-
ized the timescales of convergence to these states. However,
this study did not address the possibility and existence of
the threshold phenomena that are ubiquitious in Schelling’s
model. Such phenomena are important to address, as argued
in the previous paragraphs.

Here, we define an alternative model of segregation on
networks based on discrete convictions, and we study it
through analytical calculations and direct simulation. In our
model, individuals may choose to follow other individuals
based on sharing the same conviction, or based on their popu-
larity (regardless of conviction). The trade-off between these
two moves defines a transition between a well-mixed and a
segregated state. A threshold parameter, analogous (but not
equivalent) to the “tolerance” parameter in Schelling’s model,
weighs the two different possible choices. We analyze this
model in the case of binary states of the agents (two possible
convictions, such as Democrats and Republicans), and we are
able to fully characterize the conditions for the emergence
of phase transitions the relaxation timescales of the system
in the segregated and non-segregated phases. Importantly, in
order for transitions to exist, the conviction move has to occur
on the same time scale of the popularity move, regardless
of the size of the community being segregated. Finally, we
show that minority convictions segregate more easily, and we
characterize this phenomenon quantitatively.

II. DEFINITION OF THE MODEL

Our model describes a social network as a directed graph
where individuals (nodes) follow other individual’s opinions
by sending directed edges to their corresponding nodes. The
initial condition is a random directed graph G0(N, m, h) made
of N ∈ N nodes. Each node has fixed outdegree m ∈ N (re-
laxing this assumption to fluctuating outdegrees does affect
the results, see below). A fraction h ∈ [0; 1] of individuals
hold a certain conviction, which we identify with the color red
(as opposed to the probability 1 − h of holding the opposite
conviction, i.e., being colored in blue). The total number of
edges M = Nm defines the size of our system. The graph is
constructed through the associated adjacency matrix by filling
randomly with m ones the matrix rows of a zero matrix (we
exclude the matrix diagonal elements which would indicate

FIG. 1. Illustration of the action of the model basic moves. Nodes
represent agents and colors represent convictions. Edges represent
directed social connections (A follows B if an edge is sent from A
to B). The selected edge to be removed is in both cases e1→2. In
a conviction move, the new target can be chosen only among the
blue nodes (in the sketch this move creates the edge e1→0), while
in a popularity move the new target can be chosen regardless of its
opinion, so that every node with an in-degree greater than 0 is a
potential candidate (in the sketch this moves creates the edge e1→4).

self-edges). As a consequence of this construction procedure,
the in-degrees follow a Poisson distribution with average
value m (as in an Erdõs-Rényi random graph [25]).

The network evolves at fixed conviction, by choosing at
each step one of two possible rewiring moves (Fig. 1) accord-
ingly to the choice parameter ϕ ∈ [0; 1]:

(a) with probability ϕ a conviction move chooses randomly
one among all the edges ei→ j between two nodes holding
different convictions (which we will call “heterogeneous”
edges), deletes, chooses uniformly a new target node k holding
the same conviction as i, and creates a new “homogeneous”
edge ei→k;

(b) alternatively, with probability 1 − ϕ, a popularity
move which chooses randomly one edge ei→ j among all the
edges of the network, deletes it, and creates a new edge ei→k

with a target k chosen among all the nodes with a preferential
attachment criterion, i.e., with a probability equal to the in-
degree of the target node normalized by the total number of
edges M.

It is important to underline the fact that the opinion move
selects the edge to be removed in the basket of the hetero-
geneous edges. As it will be more clear in the following,
this choice is essential to obtain a threshold phenomenon for
segregation.

We quantify the segregation using as order parameter the
total number of homogeneous edges connecting nodes with
the same conviction. The order parameter corresponds to
observables commonly used in the literature and roughly
quantifies the links that need to be severed to separate the
two communities. In real-world situation the structure within
the communities that form can vary. Our calculations indicate
that this structure is not relevant for our model (see below). In
the initial condition (t = 0), and for M sufficiently large, the
densities of the four different kinds of edges (red to red, blue
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to blue, red to blue, and blue to red) are

e0(rr) = h2,

e0(bb) = (1 − h)2,

e0(rb) = e0(br) = h(1 − h). (1)

More in general, for every step t > 0, the link densities
are functions of this order parameter. Indeed, since �t :=
M[et (rr) + et (bb)], one has

et (rr) = h2

h2 + (1 − h)2

�t

M
,

et (bb) = (1 − h)2

h2 + (1 − h)2

�t

M
,

et (rb) = e0(br) = M − �t

2M
. (2)

We define a segregated phase as a state where, for large
networks, typically all the heterogeneous edges disappear,
leaving the network with only edges between like-minded
nodes, characterized by a saturation of the order parameter
to the maximum value �t = M.

III. RESULTS

A. A transition to a segregated state emerges at a critical point

By construction of the model dynamics, conviction moves
favor the transition to a segregated phase, while popularity
moves try to reestablish the disorder and will also affect the
in-degree distribution. Moreover, we expect networks char-
acterized by asymmetric densities of opinions (h �= 1/2) to
reach a segregated phase more easily.

Starting by the same initial random graph G0, we evolved
the network for different values of ϕ and at each step we
recorded the order parameter �t (ϕ), starting from initial con-
ditions with �0 = 1/2 for h = 1/2 [Fig. 2(a)], representing
the fraction of homogeneous edges (connecting individuals
with equal convictions). For low values of ϕ, the system does
not segregate, but they reach a balance between popularity-
and conviction-based moves. As the value of ϕ increases,
conviction-based moves become increasingly dominant, and
the steady-state value of the order parameter increases until
it reaches the maximum possible value M, indicating that
typically the number of heterogeneous edges is negligible
compared to the total number of edges, and the system reaches
a segregated phase. This behavior suggests the existence of
a critical value ϕc of the choice parameter, above which the
steady state of the network is always in a segregated phase.

To find the critical value of the choice parameter analyt-
ically, we used a mean-field approach, based on an estimate
of the average variation ��t at every step. Conviction moves
increase �t by 1, while popularity moves might act differently
depending on the probability of picking an edge of a certain
kind, and also on the kind of the new edge created. The
resulting mean-field equation is

�〈�t (ϕ, h)〉 = ϑϕ︸︷︷︸
conv. move

+ (1 − ϕ)[ϑ p+
t (h) − p−

t (h)]︸ ︷︷ ︸
pop. move

, (3)

where the Heaviside step function ϑ := θ (M − �t ) excludes
forbidden moves once the segregation state is reached, while
p±

t (h) are the probabilities of respectively increasing and
decreasing the order parameter with a popularity move.

In the continuum time limit, and for h = 1/2 (for a more
general derivation for every h ∈ [0; 1] see Sec. B 1), Eq. (3)
gives the following differential equation for the average value
of the order parameter:

∂t 〈�t (ϕ)〉 = ϑ
1 + ϕ

2
− (1 − ϕ)

1 + ϑ

2

〈�t (ϕ)〉
M

. (4)

This equation can be explicitly integrated (for ϕ �= 1), yield-
ing the time dependence for the average value of the order
parameter,

〈�t (ϕ)〉
M

=
[(

1 − 1

2
ϑ

)
− ϑ

1 + ϑ

1 + ϕ

1 − ϕ

]
e−(1−ϕ) 1+ϑ

2M t

+ ϑ

1 + ϑ

1 + ϕ

1 − ϕ
. (5)

In the presegregation regime (where �t < M and therefore
ϑ = 1) the relaxation is then exponential with characteristic
time,

τ� = M

1 − ϕ
. (6)

Hence, the asymptotic value

〈�∞(ϕ)〉
M

= min
ϕ∈[0;1)

{
1,

1 + ϕ

2(1 − ϕ)

}
(7)

will be reached for times t � τ�. Figure 2(b) compares this
prediction with direct simulations. The model behaves as
expected already for relatively small-sized networks (M =
100) and gradually moves towards the predicted curve as the
size of the system grows. The relaxation timescales agree with
the theoretical predictions, which can be used as criteria for
stationarity (see Appendix A, Fig. 9). By setting 〈�∞(ϕ)〉 = 1
in Eq. (7) and solving for ϕ one finds the critical value of
the choice parameter at which the transition occurs, which for
h = 1/2 is ϕc = 1/3. This transition has a clear similarity with
second-order phase transitions [26] because of a discontinuity
in the first derivative of �t with respect to ϕ. The analogy
identifies the order parameter � with the magnetization, while
the role of the temperature is played here by the choice
parameter ϕ.

The fluctuations of the order parameter also characterize
the transition. These can be estimated by the second cumulant
moment Var[�∞(ϕ)]. A peak in amplitude of the fluctuations
at the critical value ϕc should signal the transition. In the
social segregation interpretation, this means that the transition
to a segregated state is also marked by sudden growth and
shrinkage of its connections to the rest of the world. To
access the fluctuations analytically, we explicitly considered
the master equation [27]). Calling Pt (�) the probability of
having � homogeneous edges at time t the master equation
is defined as

∂t Pt (�) =
∑
�′ �=�

W (�|�′)Pt (�
′) − W (�′|�)Pt (�), (8)

where W (�|�′) are the transition rates of moving from a
network with �′ homogeneous edges to a network of � edges,
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(a)

(b) (c)

FIG. 2. A threshold phenomenon to a segregated state appears for a critical value of the choice parameter ϕc. (a) Evolution of the fraction
of homogeneous links. The plot shows the order parameter normalized by the total number of edges M plotted against sweeps. The curves
are obtained by simulating the evolution of the same initial random graph G0(N = 500, m = 5, h = 1/2) for different values of ϕ. For low ϕ,
the long-time value of �∞(ϕ) relaxes to a steady state where the edges connecting nodes with different colors fluctuate around a finite value,
while as ϕ grows, it reaches one (a segragated state) in a finite time. The right-hand panel shows some illustrative simulation snapshots, where
the network is visualized with a spring model based on shared links. (b) Plot of the mean order parameter at steady state versus the choice
parameter ϕ comparing the analytical results (solid line) of Eq. (7) with numerical simulations for different sizes of the network M (symbols).
This analysis supports a segregation transition for ϕc = 1/3 (for h = 1/2). (c) Fluctuations scale linearly with the size of the system. Plot of
the dispersion of the order parameter from the simulations in panel (b) (symbols). As the size of the network grows, the variability across
realizations peaks around the critical value ϕc = 1/3 reflecting the prediction of Eq. (12) (solid line).

which for our system (always in the case of h = 1/2) is

W (�|�′) = δ�′,�−1

[
ϕ + (1 − ϕ)

M − �′

2M

]

+ δ�′,�+1(1 − ϕ)
�′

2M
+ δ�′,�

1 − ϕ

2
. (9)

In the above equation, the first row describes the contribution
of both the opinion and popularity moves to an increase in
�, while the second row describes the contributions of the
popularity move to respectively decrease and keep unaltered
the order parameter. Then we define the factorial moment
generating function,

G(s, t ) =
M∑

�=0

s�Pt (�), (10)

where s ∈ R is the dual parameter of �. Combining Eqs. (8)
and (10) (see Appendix B 2) yields the following partial
differential equation:

∂t G(s, t ) = G(s, t )
1 + ϕ

2
(s − 1) + ∂sG(s, t )

1 − ϕ

2M
(1 − s2).

(11)

By evaluating ∂n
s [∂t G(s, t )|s=1] for every n ∈ N we obtain

a closed system of time-only differential equations giving
the exact dynamics (including the transient phase) of all the
factorial moments. The first factorial moment coincides with
the average, so we find again Eq. (4), whereas the second
factorial moment gives 〈�2

t 〉 and hence the variance. Taking
the long-time limit we obtain an analytical expression for the
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FIG. 3. Entropy is characterized by a discontinuity in correspon-
dence with the critical value of the choice parameter ϕc. (A) The
entropy of the system as a function of the order parameter ϕ for
different system size M. (B) Its derivative with respect to ϕc. The
dashed gray line represent the predicted critical threshold ϕc = 1/3.

fluctuations

Var[�∞(ϕ)]

M
=

{ 1+ϕ

4(1−ϕ) for ϕ � 1/3,

0 for ϕ > 1/3.
(12)

Figure 2(c) shows that as the size of M (number of edges)
of the network grows, the simulations tend to agree with this
large-M prediction, showing a behavior that resembles that
of the susceptibility in second-order phase transitions, with
fluctuations amplitude scaling linearly in M.

By means of the generating function formalism, we can
go further and calculate exactly the stationary solution of the
Master Eq. (8) with transition rates given by Eq. (9). The
resulting stationary probability function Pstat is (see Appendix
B 3 for detailed calculations):

Pstat(�) =
2− M(ϕ+1)

1−ϕ

(
M(ϕ+1)

1−ϕ

)(�)

�!
, (13)

where x(�) is the factorial power of x and it is given by

(x+1)


(−�+x+1) . From Eq. (13) we can then define the entropy

of the system S(ϕ) = −∑M→∞
�=0 Pstat(�) log[Pstat(�)] and its

derivative with respect to the choice parameter ϕ. As Fig. 3
shows, by plotting S(ϕ) and ∂ϕS(ϕ) we can effectively see
that the system undergoes a genuine phase transition.

B. Overlap of timescales is necessary for a segregation
transition to exist

We now discuss more in detail an essential ingredient for
a segregation sharp transition to exist, the fact that the con-
viction move occurs on the same time scale of the popularity
move, regardless of the size of heteorogeneous edges in the

system. In other words, the conviction move is realized at each
step with probability ϕ drawing directly from the basket of
heterogeneous edges to observe the transition.

We can understand this result by considering a similar
model in which the opinion move is, for instance, defined as
follows. Select an edge randomly among all the M edges of
the network (rather then from the basket of the heterogeneous
ones) and if the edge is heterogeneous execute the conviction
move; otherwise, leave the network unaltered and move on by
executing a new step. In this model the mean-field equation,
Eq. (3) will take an additional term representing the hetero-
geneous edge density multiplying the conviction move term,

�〈�t 〉 = ϑϕ
M − 〈�t 〉

M︸ ︷︷ ︸
op. move variant

+(1 − ϕ)[ϑ p+
t (h) − p−

t (h)]. (14)

The critical value ϕc is found setting �〈�t 〉 to zero and the
average value of the order parameter saturates to its maxi-
mum value M. Substituting these quantities one immediately
finds that the contribution of the opinion move disappears,
leaving us with the equation (1 − ϕc)[ϑ p+

t (h) − p−
t (h)] = 0

which has the only trivial solution ϕc = 1 (that represents
a model in which only opinion based move are executed).
In other words, a segregated phase is found only in the
trivial case where the agents only choose their connections by
conviction.

This analysis also gives a general condition for the exis-
tence of a transition, which is that the conviction move has to
be such that the multiplicative factor introduced in the opinion
move term in Eq. (14) translates into a function f (�t ) char-
acterized by the condition f (M ) �= 0). A possible justification
for this forcing in the opinion move can be found by consid-
ering some realistic situations characterized by a segregation
phenomenon driven by strong convictions (ethnicity, political
orientation, religious beliefs, etc.). If an agent is left only with
opposite minded neighbors, it is likely going to be the first one
to decide to sever a connection and rewire with someone with
the same conviction. For this reason, we believe that direct
targeting of heterogeneous connection in an environment of
strong convictions might be a realistic assumption. We also
note that the mean-field equations apply for fluctuating out-
degrees, as long as the fluctuations are controlled, so that
this behavior is more general than the fixed outdegree model
that we consider here. Simulations with fluctuating outdegrees
fully support this statement (see Appendix A, Fig. 10). We
expect that in a realistic situation the outdegree (number of
individuals that one individual follows) is much more compact
than the in degree (number of followers).

C. The popularity move broadens the in-degree distribution in
the unsegregated phase but does not affect the transition point

We proceed by considering the role of the popularity move
in setting the in-degree distribution and in the segregation
transition. The initial random graph G0(N, m, h) has by def-
inition Poisson-distributed in-degrees kin for large N , with
a mean equal do the fixed outdegree of every node of the
network m. As the network evolves, the distribution of the
in-degrees changes at each popularity move, because the most
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FIG. 4. Preferential attachment from the popularity move broad-
ens the in-degree distribution. (a) Empirical survival distribution
function (ESDF) of the in-degree distributions of networks evolved
for different values of ϕ. The plot was obtained by evolving an ini-
tial random graph G0(N = 100, m = 5, h = 1/2) for t = 106 steps
(the in-degrees are normalized with respect to the total number of
edges M = 500). The broadening of the distribution indicates the
increasing presence of bigger attractors in the evolved networks.
(b) Two different trends for the Fano factor of the in-degrees are
observed in the regions below and above the segregation transition.
The plot reports the Fano factor of the in-degrees distributions shown
in panel a versus the choice parameter ϕ. In the region above the
critical value of the choice parameter ϕc = 1/3 the deviation from
a Poisson distribution [F (kin ) = 1] is small, while the unsegregated
region shows a super-exponential departure (the vertical axis is in
log-scale) toward larger dispersions as ϕ decreases.

popular nodes are more likely to be chosen as a target for
the newly created edges. This determines a departure from
the initial distribution toward heavier-tailed distributions, in
analogy with the “rich gets richer” principle that usually char-
acterizes social networks [15]. To properly characterize this
behavior evaluated the empirical survival distribution function
(ESDF) of the in-degree distributions of evolved graphs Gt for
different values of the choice parameter. The ESDF indicates
the probability of observing a node i with in-degree kin(i)
greater then a certain value kin, and is defined as

ESDF(kin) = 1

M

M∑
i=0

θ [kin − kin(i)], (15)

Figure 4(a) shows that when ϕ = 1 the initial distribution is
unaltered (the dashed line represents the distribution for the
initial random graph G0), but as ϕ decreases the in-degree
distributions take increasingly heavier tails.

The same phenomenon can be quantified by a single
broadness parameter such as the Fano factor of the in-degrees
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FIG. 5. Skewed node popularity does not affect segregation.
(a), (b) Same plots as Fig. 4, for a model in which the popularity
move is changed with a rewiring on a uniformly chosen random
node. This model shows the same phase transition as the original
one (and in particular the plots in Figs. 2(b) and 2(c) are identical),
but the transition is not accompanied by changes in node degree.

F (kin), defined as

F (kin) = Var[kin]

〈kin〉 . (16)

This parameter is 1 for a Poisson distribution, whereas greater
values indicate larger dispersion. Figure 4 shows this parame-
ter plotted as a function of the choice parameter ϕ. The Fano
Factor increases as popularity-based moves become more
probable (as ϕ goes to zero). Moreover, two different trends
appear to characterize the region below and above the critical
value ϕc = 1/3.

Finally, although we found that popularity-based rewiring
increases the dispersion of social connections in the unsegre-
gated regime, this preferential attachment ingredient does not
affect the segregation transition in any way, as we have ver-
ified by substituting popularity-based rewiring with random
rewiring in our simulations (Fig. 5). Although one may expect
that the presence of popular individuals may help avoiding the
emergence of segregation due to their capacity of attracting
new nodes regardless of their opinion, this does not happen
in this model. The reason is easily understood from Eqs. (3)
and (14), which govern the dynamics of the order parameter,
where it is clear that the in-degree distribution never comes
into play.

D. Minority convictions segregate more easily

The results presented up to this point were obtained under
the hypothesis of equally represented convictions condition
(h = 1/2). A more generic case describes minority versus
majority convictions, characterized by different values of h.
The differences from the symmetric case concern both the

032310-6



NETWORK MODEL OF CONVICTION-DRIVEN SOCIAL … PHYSICAL REVIEW E 99, 032310 (2019)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5

(b)

av
g 

se
gr

eg
. 

/M

choice parameter 

 0
 0.1
 0.2
 0.3
 0.4
 0.5

co
nv

. f
ra

ct
io

n 
h

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35

 0  0.1  0.2  0.3  0.4  0.5

(a)

ch
oi

ce
 p

ar
am

. 
c(

h)

conviction fraction h

Theory
Simulation

FIG. 6. Minority convictions tend to segregate more easily.
(a) Average value of the order parameter 〈�t 〉 in networks evolved
from initial networks G0(100, 5, h) for different values of h � 1/2
(the results for h > 1/2 are the same due to the symmetry h →
1 − h). As the the density of nodes holding a certain conviction
decreases, the networks will reach a segregated phase for lower
values of ϕ. (b) Simulations confirm the analytical prediction for
the critical points of the model. The critical points (symbols) are
ectracted from the curves in panel a, for different values of h, and
compared with the prediction described by Eq. (18) (solid line).

characteristic time τ� needed to reach the steady state and the
critical value ϕc at which the transition to a segregated phase
occurs.

To study this asymmetric situation we write a mean-field
equation valid for every value of h ∈ [0, 1]. Starting from
Eq. (3), we just need to specify how the terms p±

t (h) depend
on h (see Sec. B 1),

p+
t (h) = M − 〈�t 〉

2M
,

p−
t (h) = h(1 − h)

h2 + (1 − h)2

〈�t 〉
M

. (17)

The resulting mean-field equation can be integrated in the
continuum limit as in the symmetric case h = 1/2, yielding
the dynamics of the average value of the order parameter. The
critical value ϕc on the asymmetry h is obtained again by
imposing the segregation regime conditions �〈�t 〉 = 0 and
〈�t 〉 = M. Solving for ϕ gives

ϕc(h) = h(1 − h)

1 − h(1 − h)
(18)

for the critical value. This relation satisfies the red-blue
symmetry ϕc(h) = ϕc(1 − h) with maximum value ϕc(1/2) =
1/3 [as in Eq. (7)] for the symmetric case. Figure 6(b) com-
pares the predicted critical point from Eq. (18) to simulations
of evolved networks for different values of h Fig. 6(a). This

analysis shows that a situation characterized by a minority
conviction favors segregation for lower values of the choice
parameter, indicating that the symmetric situation is the one
in which segregation can be more easily avoided (the situation
is analogous to the miscibility gap for phase segregation in a
binary mixture).

The characteristic duration of the transient before a steady
state is reached is also affected by the presence of a minority
conviction. The solution of the mean-field equation gives

τ�(h) = 2M[h2 + (1 − h)2]

1 − ϕ
, (19)

i.e., the characteristic relaxation time will increase for asym-
metric convictions. This timescale is important in cases where
the segregation dynamics competes with the spreading of
consensus [21,22].

E. Scale-invariance close to the transition

The limit of large system size, M → ∞, is better analyzed
in terms of a finite-size scaling ansatz, typical of critical phe-
nomena [28,29]. We define the normalized choice parameter

t = ϕ − ϕc

ϕc
, (20)

and the intensive order parameter

m = M − �∞
M

, (21)

so that

〈m〉 = 1 − 〈�∞〉
M

=
〈

M − �∞
M

〉
, (22)

and we assume that 〈m〉, which in principle depends on both
M and t separately, is an homogeneous function of t and a
suitable power of M, that is

〈m〉 = |t |β f̃1(Myt ) (23)

in the large (small) M (t) limit with Myt fixed. y and β

are exponents that are expected to be independent of the
microscopic details of the dynamical model, characterizing
the transition point, while f is a scaling function, which might
depend on the model specificities. Since we expect that m is
nonzero (zero) for t < 0 (t > 0), the scaling function f should
behave asymptotically as

lim
x→+∞ f̃1(x) = 0, lim

x→−∞ f̃1(x) = constant > 0. (24)

To estimate the two scaling exponents β and y, we plot m|t |−β

versus Myt and determine the exponents so that the best
collapse of the different curves is obtained. Indeed, one should
obtain a different curve for each value of M as t varies and
this is what we observe for generic pair β and y. However,
for β = 1 and y = 1/2 the various curves collapse in a range
of x ≡ Myt that increases as M becomes larger and larger as
Fig. 7(a) shows.

The same analysis leads to the following scaling ansatz for
the variance of m (corresponding to Var[�∞]/M2) in terms of
the original extensive order parameter):

Var[m] = t2 f̃2(M1/2t ), (25)

032310-7



GIANLUCA TEZA et al. PHYSICAL REVIEW E 99, 032310 (2019)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

10-1 100 101

 (a)

 t>0

 t<0

(1
-

Ω
∞

/M
) 

|t|
-1

|t|M1/2

M=10
M=50

M=100
M=500

M=1000
10-8

10-6

10-4

10-2

100

102

-40-30-20-10  0  10 20 30 40 50 60 70

 (b)

V
ar

[ Ω
∞

]/(
M

 t)
2

t M1/2

M=10
M=50

M=100
M=500

M=1000

FIG. 7. The fraction of homogeneous edges and its variance obey
scaling. (a) Scaling collapse for the fraction of homogenous edges.
(b) Scaling collapse for the variance. The x and y axes of both plots
compare the functions predicted by Eqs. (23) and (25). The symbols
correspond to data points from simulations at different network size
above and below the segregation transition point.

and the corresponding collapse is shown in Fig. 7(b). Both
scaling Eqs. (23) and (25) are captured by the more general
scaling ansatz of the distribution function of m,

P(m, t, M ) = |t |−1P̃(mt−1, M1/2t ). (26)

F. A model with pure intraspecific aversion leads
to an equivalent segregation threshold behavior

Motivated by the literature on segregation models based on
aversion between unlike individuals [1,24], we asked whether
the same threshold phenomenon observed in our model could
be present in case of conviction moves that were based purely
on aversion bias.

To this end, we defined a variant of our model where
the conviction move (with probability ϕ) chooses randomly
one heterogeneous edge, between two nodes holding different
convictions and rewires it to a random node. In this variant, the
popularity move (with probability 1 − ϕ at each step) remains
the same. Under this variant, Eq. (3) becomes

�〈�t (ϕ, h)〉 = ϑ
ϕ

2︸︷︷︸
conv. move

+ (1 − ϕ)[ϑ p+
t (h) − p−

t (h)]︸ ︷︷ ︸
pop. move

, (27)

immediately leading to the expression

〈�∞(ϕ)〉
M

= min
ϕ∈[0;1)

{
1,

1

2(1 − ϕ)

}
(28)

for the mean fraction of heterogeneous edges.
By setting 〈�∞(ϕ)〉 = 1 in Eq. (28) and solving for ϕ one

finds again the critical value, which for h = 1/2 is ϕc = 1/2.
An analogous reasoning can be followed for solving for the
higher moments of the distribution of �. Figure 8 shows that
direct simulations of the aversion bias model are fully in line
with these theoretical predictions. Thus, we conclude that
aversion alone is sufficient to produce a sudden segregation
threshold.

IV. DISCUSSION AND CONCLUSIONS

Social segregation is ubiquitous in our society, and mani-
fests itself as fragmentation of social networks at all scales, in

(a) (b)

FIG. 8. The sudden transition to a segregated state remains in
a model with aversion bias only. (a) Mean order parameter at
steady state versus the choice parameter ϕ comparing theory (solid
line) with numerical simulations for different sizes of the network
M (symbols). This analysis supports a segregation transition for
ϕc = 1/2 (for h = 1/2). (b) The dispersion of the order parameter
(symbols) shows the same behavior as the standard model (compare
with Fig. 2).

countries, cities, schools, firms, governmental agencies, etc.
Its consequences may lead to a wide range of nefastous phe-
nomena ranging from inefficient planning to war. It is driven
by diverse and enormously complex sociological, cultural,
environmental, and economic dilemmas, which are unlikely
to be solved in the near future. However, since the pioneering
work of Schelling there is increasing agreement that there may
be common quantitative traits in the “macroscopic” dynamics
of segregation that emerge from this complexity [2–4,24,30].
A quantitative understanding of the consequences of such
simple features on the dynamics of a social network may be
important to develop efficient estimators to be used in real-life
examples to detect and prevent segregation phenomena.

The framework developed here shows that complete seg-
regation in a network setting without any spatial aspects can
emerge as a threshold phenomenon that corresponds to a gen-
uine phase transition. Close to such transition point, small per-
turbations of the system can cause very large rearrangements
in the state. Importantly, we have shown that such transition
point is scale invariant, hence “universal” in the statistical
physics sense. This supports the hypothesis that close to this
critical point more detailed descriptions of social interactions
are not necessary, since a wide class of models may behave
similarly. Our model is different from standard Schelling
models, as we put ourselves in the conditions where spatial
structure is not relevant (which is applicable for example to
well-mixed social structures and on-line social connections),
and more similar to the model of Ref. [22], which was built to
explore the relative roles of conviction rewirings with opinion
dynamics, and did not characterize the conditions leading to a
segregated state in the limit where convictions dominate.

By studying the model in general setting, we have shown
that the competition of timescales between different rewring
moves is essential in determining the possibility of having a
phase transition (a phenomenon that one would want to avoid
in a real situation) versus a crossover to the segregated state.
In empirical cases of social dynamics, not much is known
about the timescales of the different rewiring moves and there
is no a priori reason why a model should take one assumption
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or the other. It would be interesting to quantify this trends
in empirical data. Potentially the real-world values of these
timescales could vary form case to case, and bridge between
these extreme-case scenarios. Additionally, their ratio of the
two timescales is a parameter that may be acted upon.

We can also parallel this model with available physical
models for the separation of phases and mixtures. For exam-
ple, binary mixtures can be described in a coarse-grained way
as a set of particles of two kinds filling a cubic lattice, with an
energy cost for particles of one kind sitting next to particles
of the other kind. This system (equivalent to an Ising model)
shows a spatial phase separation when temperature is lowered.
Contrary to this case, in our model set on a network a concept
of distance is missing, since all individuals can potentially
interact with any other agent in each move. However, we can
parallel our results to a variant of the above model where
instead of the usual “local” fraction of lattice sites occupied by
each kind of particle, we write the free energy in terms of the
parameter used here, i.e., the fraction of homogeneous edges
eh = −�/M. The energetic term is simply −χeh. To write the
entropy, we consider the network as a gas of edges formed by
connecting nodes. We compute the number of ways to assign
� edges out of M, considering that each edge is spurious
if two colors of the same kind are selected. The resulting
free energy is βF = eh log(eh) + (1 − eh) log(1 − eh) − ehχ .
Minimizing this free energy and comparing with the equations
governing our model shows that they are different, and our
model cannot be reconducted to this simple case. The question
remains open on whether there is a simple equilibrium model
recapitulating the phase-separation behavior shown by our
segregation model.

Segregation in social networks may be driven by both
homophyly (the choice of social interactions with like indi-
viduals) and aversion. These ingredients are mixed in different
proportion in the existing literature. Our basic model contains
both, since in the conviction-based rewirings interactions be-
tween dissimilar partners are rewired in favor of homogeneous
ones. Schelling’s model [1] shows that aversion from dissimi-
lar network partners alone, coupled with a random selection
of new partners, may be sufficient to induce segregation.
Our analysis of a model variant where the conviction-based
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FIG. 9. Relaxation dynamics and criterion for equilibrium. The
plot shows, for a starting graph G0 (N = 500, m = 5, h = 1/2), a
time series of �t/M in the transient regime for two different values
of ϕ, above and below the critical value. The mean-field predictions
(solid lines) perfectly agree with simulations. Thus, the relaxation
times of the solution of the time-dependent mean-field equations
provide a good criterion for stationarity.

rewiring is based on pure aversion supports this conclusion.
Indeed, this variant shows the same type of threshold phe-
nomenon, in full quantitative agreement with the main model.
The (expected) quantitative change is that in the case of pure
aversion the transition point is shifted to higher values of the
choice parameter ϕ, compared to the case where both aversion
and homophyly are in place.

Overall, our analysis supports the conclusion that whether
conviction-based rewiring is based on aversion or homophyly
is not a key ingredient for the existence of a segregation
threshold. Instead, the important feature to determine a thresh-
old phenomenon for segregation is that the the conviction-
based rewiring of the network (based on aversion or ho-
mophyly, or both) occurs on the same time scale of the
popularity-based rewirings (i.e., the establishment of social
interactions that are non-discriminant). In the alternative sce-
nario in which, e.g., each kind of rewiring occurs proportion-
ally to the number of extant interactions, segregation occurs
smoothly. In such situation, at all levels of the bias in es-
tablishing interactions (quantified by the choice parameter ϕ)
the network maintains a finite fraction of interactions between
dissimilar individuals.
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APPENDIX A: ADDITIONAL FIGURES

This appendix provides plots (Figs. 9 and 10) illustrating
additional results concerning the transient phase of the dy-
namics and the statistics of the fluctuating outdegrees model
variant.

APPENDIX B: ANALYTICAL CALCULATIONS

This section presents in further detail the two different
methods used to derive the analytic expressions for the cu-
mulants of the order parameter [namely, Eqs. (7) and (12)].

1. Mean-field approach

As previously explained, the mean-field approach consists
in quantifying the average variation of the order parameter at
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every step of the dynamics, which resulted in Eq. (3). The
meaning of the terms of such equation have already been
discussed, here we will present the more general derivation of
the contributions p±

t (h) for every h ∈ [0, 1], which will yield
the more general solution of Eq. (5) for different densities of
colored nodes.

The terms p±
t (h) represent the probabilities of, respec-

tively, increasing and decreasing the order parameter � when
a popularity move is performed:

p+
t (h) = Prob[et (rb) → et (rr)] + Prob[et (br) → et (bb)],

p−
t (h) = Prob[et (rr) → et (rb)] + Prob[et (bb) → et (br)],

(B1)

which are found to be

p+
t (h) = M − 〈�t (ϕ, h)〉

2M
,

p−
t (h) = 〈�t (ϕ, h)〉

M

h(1 − h)

h2 + (1 − h)2
. (B2)

By substituting these coefficients in Eq. (5) and taking the
continuous-time limit we obtain the following differential
equation:

∂t 〈�t (ϕ, h)〉 = ϑ
1 + ϕ

2
− (1 − ϕ)

×2h(1 − h)(1 − ϑ ) + ϑ

2(h2 + (1 − h)2)

〈�t (ϕ, h)〉
M

, (B3)

which can be explicitly integrated in time (for ϕ �= 1), yielding

〈�t (ϕ, h)〉
M

=
[

1 + ϑ

( 〈�0(ϕ, h)〉
M

− 1

)
− ϑ

1 + ϕ

2
α(ϕ, h)

]

× e− t
α(ϕ,h) + ϑ

1 + ϕ

2
α(ϕ, h), (B4)

where the initial condition is

〈�0(ϕ, h)〉
M

= e0(rr) + e0(bb) = h2 + (1 − h)2, (B5)

and the coefficient α is

α(ϕ, h) = 2(h2 + (1 − h)2)

(1 − ϕ)(2h(1 − h)(1 − ϑ ) + ϑ )
. (B6)

If we evaluate this coefficient in the unsegregated phase
(where ϑ ≡ 1), we obtain the characteristic time of the tran-
sient phase, which is

τ (ϕ, h) = 2(h2 + (1 − h)2)

1 − ϕ
. (B7)

Taking the limit t → ∞ of Eq. (B4) yields the steady-state
solution of the order parameter, which for every ϕ ∈ [0, 1) and
h ∈ [0, 1] is

〈�t (ϕ, h)〉
M

= min

{
1,

1 + ϕ

1 − ϕ

(
h2 + (1 − h)2

)}
. (B8)

Figure 6 shows the phase diagram for 〈�t 〉, which is in agree-
ment with the fact that the critical value of the choice param-
eter ϕc becomes lower as we move away from the symmetric
nodes density given by h = 1/2 (discussed in Sec. III D).

2. Master equation and moment-generating function approach

This section treats in further detail the derivation of a
generic factorial moment of the order parameter �. Substi-
tuting the rates (9) in the master equation, Eq. (8), one gets

∂t Pt (�) = Pt (� − 1)

[
ϕ + (1 − ϕ)

M − � + 1

2M

]

+ Pt (� + 1)(1 − ϕ)
� + 1

2M
− Pt (�)

1 + ϕ

2
.

(B9)

To find a differential equation for the FMGF (10), we first
multiply by s� both sides of Eq. (B9), and then we sum over
the order parameter � itself. The probabilities Pt (�) are ob-
viously defined only for � ∈ [0, M], so we need to explicitly
set Pt (�) ≡ 0 when � is outside that range. This notation has
a practical advantage that allows us to extend the summation
over � from the range [0, M] to the range [−1, M + 1]. This
frees from border-term issues when reindexing the summation
for the terms on the right side. To evaluate the contribution
with the Pt (� − 1) coefficient, we set �′ = � − 1 and obtain

M∑
�′=−2

s�′+1Pt (�
′)
[

1 + ϕ

2
− �′

2M

]

=
[

s
1 + ϕ

2
− 1 − ϕ

2M
s2∂s

]
G(s, t ), (B10)

where we introduced a derivative in s to eliminate the multi-
plicative �′ in the summation. The same trick can be used for
the Pt (� + 1) term (this time we set �′ = � + 1):

M+2∑
�′=0

s�′−1(1 − ϕ)P(�′)
�′

M
= 1 − ϕ

2M
∂sG(s, t ). (B11)

Finally, the Pt (�) term does not require any reindexing and
immediately yields G(s, t )(1 + ϕ)/2. Putting all the pieces
together we finally find the desired Eq. (11) for the dynamics
of the FMGF.

Equation (11) is a partial differential equation that contains
derivatives both in s and t . Since we are only interested in
finding the moments of the equation, we can avoid solving it
explicitly: If we evaluate ∂n

s [∂t G(s, t )|s=1] for every n ∈ N, we
obtain a closed system of time-only differential equations for
the dynamics of the moments. In fact, we can easily see that

∂n
s G(s, t )|s=1 =

〈
�!

(� − n)!

〉
. (B12)

For n = 1, we are evaluating the first factorial moment, which
coincides with the average. A straightforward calculation
shows that we obtain precisely Eq. (4) (in the unsegregated
phase with ϑ ≡ 1). For n = 2, we find the equation of the
second factorial moment 〈�(� − 1)〉 = 〈�2〉 − 〈�〉, which
reads

∂t 〈�2〉 − ∂t 〈�〉 = −2
1 − ϕ

M
〈�2〉 +

(
1 + ϕ + 1 − ϕ

M

)
〈�〉.

(B13)
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By evaluating the steady-state solution (∂t 〈�2〉 = ∂t 〈�〉 = 0)
of this equation and substituting the steady-state form of 〈�〉,
we find the steady-state equation of 〈�2〉, which in turn gives
us the variance

Var[�] = 〈�2〉 − 〈�〉2 = 1 + ϕ

4(1 − ϕ)
. (B14)

This equation coincides with the one presented in Eq. (12) (in
the unsegregated phase).

3. Full stationary solution

Starting from the master equation, Eq. (B9), we can write
the full equation for the generating function G(s, t ),

∂t G(s, t ) = aG(s, t )(s − 1) + b∂sG(s, t )(1 − s2), (B15)

where a = 1+ϕ

2 and b = 1−ϕ

2M , and M is the total number of
links. We assume the initial condition (P(�, t = 0) = δ�−M/2

and thus we have G(s, 0) = sM/2. Additionally, the normaliza-
tion condition fixes G(1) = 1.

The stationary solution for Eq. (B15) is simple to find by
solving directly the PDE, and it leads to

G(s) =
(

1 + s

2

)a/b

. (B16)

To solve the full transient of the PDE (B15) we use the so-
called method of characteristics. Setting f (s) = −b(1 − s2),

then Eq. (B15) corresponds to the following system of
differential equations:

ṡ(t ) = f (s), (B17)

d

dt
G[s(t ), t] = a[s(t ) − 1]G[s(t ), t]. (B18)

Equation (B17) leads to the integral equation − ∫ s
s(0)

dz
1−z2 dz =∫ t

0 bdt , where s is evaluated at a final time t , i.e., s(t ) = s.
Solving this equation leads to

s = Cosh(bt )s(0) − Sinh(bt )

Cosh(bt ) − s(0)Sinh(bt )
(B19)

and

s(0) = sCosh(bt ) + Sinh(bt )

Cosh(bt ) + sSinh(bt )
. (B20)

Finally, performing the integral
∫ s

s(0) a[s(τ ) − 1]dτ , we find

G(s, t ) = e−at [Cosh(bt ) + sSinh(bt )]a/b

×
[

sCosh(bt ) + Sinh(bt )

Cosh(bt ) + sSinh(bt )

]M/2

. (B21)

In the limit t → ∞, this expression gives the stationary
solution Eq. (B16). Expanding this in series around s = 0,
and matching term by term, one can find the transient solution
P(�, t ). In fact, we have that G(s, t ) = P(0, t ) + sP(1, t ) +
... + sMP(M, t ) and G(0, t ) = P(0, t ). Expanding the steady-
state solution of G(s) in series around s = 0, we obtain G(s) =∑M

�=0
∂�

s G(s)|s=0

�! s� leading to Eq. (13) in the main text. We
highlight that Eq. (13) only holds for ϕ ∈ [0, ϕc).
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