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Large cascades are a common occurrence in many natural and engineered complex systems. In this paper we
explore the propagation of cascades across networks using realistic network topologies, such as heterogeneous
degree distributions, as well as intra- and interlayer degree correlations. We find that three properties, scale-free
degree distribution, internal network assortativity, and cross-network hub-to-hub connections, are all necessary
components to significantly reduce the size of large cascades in the Bak-Tang-Wiesenfeld sandpile model. We
demonstrate that correlations present in the structure of the multilayer network influence the dynamical cascading
process and can prevent failures from spreading across connected layers. These findings highlight the importance
of internal and cross-network topology in optimizing robustness of interconnected systems.
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I. INTRODUCTION

Occasionally, natural as well as man-made complex net-
works suffer massive cascades, which are initialized by a
breakdown of a small portion of the entire system. Such
cascades characterize a plethora of complex phenomena, in-
cluding neural avalanches [1–4], blackouts in power grids
[5–7], secondary extinctions in ecological systems [8,9], and
systemic default of financial institutions [10,11]. Massive
failures are associated with disproportionately high cost to
systems in which they occur, therefore the ability to predict
and control such events is an area of active studies.

In the past 20 years, resistance to failure has been one of the
main focuses of network science. Initially the problem of net-
work resilience has been defined within the framework of per-
colation theory [12,13], where damage to certain nodes results
in fragmentation of the network. Extension of this approach
to the case of failure cascades in the interconnected networks
improved our understanding of network features responsible
for structural robustness of such systems [14]. In particular,
the work of Reis et al. [15] established the importance of mul-
tilayer correlations and multilayer assortativity for structural
robustness of interconnected scale-free networks.

Concurrently to topological network resilience studies,
complementary studies of dynamical processes on static net-
works have been developed. Resilience to failure in this

context is defined as propensity to limit particular dynami-
cal behavior. Examples of these processes include diffusion
through a network, such as social contagion processes [16],
and cascading failures, such as electrical grid blackouts [17].
Recently, research within this framework has focused on
how modular structures or interconnections between networks
affect large cascades for simple regular network topologies
[17]. More realistic topological features, such as broad-scale
degree distributions [18,19], assortativity [20–22], or non-
random inter-connectivity between communities [15,23–25],
have yet to be explored. These structural features are seen, for
example, in functional brain networks.

Here we develop a systematic study to fill this gap. Our
goal is to identify near-optimal architectures for preventing
cascading failures in realistic interconnected systems. We
demonstrate that as well as interlayer degree correlations
play crucial roles in affecting the occurrence of catastrophic
cascades in interdependent heterogeneous networks. In par-
ticular we show that vulnerability of individual nodes to fail
correlates with degree of assortativity present in the network.
This behavior illustrates the importance of considering higher-
order network properties when maximizing robustness of
interconnected systems.

We study failure cascades with the Bak-Tang-Wiesenfeld
(BTW) sandpile model, which self-organizes to an
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apparent critical state, in which cascades sizes are distributed
as a power law [2,17,26–32]. This characteristic mimics the
heavy-tailed distributions of failure cascades seen in electrical
blackouts [5,6,33], neuronal avalanches [3], earthquakes
[34,35], and forest fires [36,37]. Furthermore, the BTW
model captures a common feature of many systems in which
individual elements carry a load but have a fixed capacity [17].
This property makes the BTW model a valuable tool when
studying how network cascades result from the individual
elements failing due to exceeding their capacity and shedding
their load to neighboring elements.

The universality of the cascade size statistics observed
in numerous dynamical systems poses significant challenges
to the design of strategies to control the occurrence of
large catastrophic failures. Namely, because independent of
whether the underlying network topology is homogeneous
or heterogeneous, failure sizes are characterized by heavy-
tailed distributions, thus reducing cascade sizes is not easily
achieved through changing connectivity alone [38]. Brummitt
et al. [17], however, demonstrated that connections between
networks act as a control mechanism regulating frequency
of catastrophic failures in coupled random regular networks.
Here one network can minimize the likelihood of a large
cascade by forming an intermediate amount of connections
with the other network. Changing the connectivity away from
this point enhances the likelihood of large cascades.

Our work extends upon Brummitt et al. by coupling to-
gether scale-free networks, rather than random regular net-
works, to better approximate many natural and manmade
systems [39]. We show that the probability of large cascades is
significantly affected by the degree distribution, the interlayer
degree correlations, and the intralayer degree correlations.
These results could not have been obtained without exploring
the dynamics of the BTW model on heterogeneous coupled
networks, and may provide insight into the evolutionary ad-
vantages of particular network structures seen in nature.

We organize the rest of the paper as follows. We begin
in Sec. II with a brief background on the sandpile process
on individual complex networks. In Sec. IV we show funda-
mental disparities between results of numerical simulations
and assumptions made by branching process approximations
to the sandpile model, which motivates discussing the BTW
model for large cascades. In Sec. V we study the spread of
large cascades through interconnected networks. Finally, we
discuss our findings in Sec. VI.

II. SANDPILE PROCESS ON ISOLATED
COMPLEX NETWORKS

The BTW sandpile model is a prototypical, idealized
model of cascading dynamics caused by load shedding on a
network [26,27]. Throughout this paper, the following for-
mulation of the dynamics is used. Consider a network of N
nodes, where each node has some capacity to hold grains
of sand, and each grain corresponds to a unit of load. The
topology of the network is fixed, while the amount of sand on
individual nodes changes in time. The capacity of a node is
the maximal amount of sand that it can hold. A natural choice
is for the node to topple when the amount of sand first equals
its degree, k [32], as the node can then shed one grain of sand

FIG. 1. Probability distribution of cascade size, P(s) (red cir-
cles), and cascade area, P(a) (blue triangles), for (a) a neutral and
(b) an assortative scale-free network. The dashed line corresponds
to the mean-field solution to the BTW model, where P(s) scales
as a power law with exponent −3/2. Overlap of two measures
demonstrates that nodes typically fail once during each cascade. Net-
work size is N = 5000, the degree distribution scale-free exponent is
γ = 3.00 and the BTW dissipation parameter f = 0.01.

to each neighbor. We therefore set the capacity of each node to
k − 1. Hence, a (k − 1)-sand node of degree k is at capacity,
meaning that it holds as much sand (load) as it can withstand.
Adding a grain to such a node brings it over capacity, and it
therefore topples.

The dynamics of the sandpile model consists of a sequence
of cascades on this network, defined as follows. At each
discrete time step, a grain of sand is dropped on a node chosen
uniformly at random. If this addition does not bring the initial
node over capacity, then that cascade is finished. However, if
the node is over capacity, then it topples and sheds one grain to
each of its neighbors. Any node that then exceeds its capacity
topples in the same way, shedding to its neighbors who may
in-turn topple, which continues until all nodes are below or
at their capacity (i.e., equilibrium is restored). To prevent
the system from becoming saturated with sand, a dissipation
mechanism is required: whenever a grain of sand is shed from
one node to another, it dissipates (is removed) with a small
probability f . In this paper f = 0.01, unless stated otherwise.
This dissipation rate is chosen so that the largest cascades
topple almost the entire network.

The size of a cascade is the total number of toppling events,
while the area of the cascade is the total number of nodes
that ever topple. In scale-free networks, we find that these two
quantities are essentially the same [2] (see Fig. 1), which is
in contrast to the situation for regular random graphs [31,32].
As our interest is in scale-free networks, we thus focus on the
cascade size in the rest of the paper.

The mean-field solution to the BTW model is characterized
by a distribution of cascade sizes, P(s), that exhibits a power
law with exponent −3/2 [40]. The same scaling behavior is
observed for a wide range of networks, from random regular
networks and other networks with narrow degree distribu-
tions [28], to even classes of broad-scale networks [2]. For
scale-free random networks, the distribution deviates from the
mean-field result only if the degree distribution is sufficiently
heavy tailed. If the exponent of the degree distribution is 2 <

γ � 3, one observes cascade size distribution of exponent
γ /(γ − 1) [2]. Otherwise, the mean-field value is observed
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[2]. Degree heterogeneity therefore creates either the −3/2
exponent or heavier-tailed cascades, and is not a priori a
mechanism to reduce the probability of large cascades.

III. INDIVIDUAL NETWORKS

Individual scale-free networks are generated using a modi-
fied version of the configuration model [41]. Our results in the
main text are for a degree distribution P(k) ∼ k−γ , where γ =
3.00, the mean degree 〈k〉 = 4 and the minimum degree is
kmin = 2. We find, however, that the main results appear to not
strongly depend on the value of γ , as seen in the Appendix (cf.
Fig. 11). Next, we adopt the rewiring algorithm of Ref. [42] to
obtain networks with positive correlations between degrees of
individual nodes and that of their neighbors. This procedure
leads to a modular structure where nodes of similar degree
are more likely to be connected with each other. Although the
assortativity of the original neutral scale-free networks is low
(a = 0.020 ± 0.005) [43], the rewiring procedure increases
assortativity to a = 0.25 ± 0.02, which corresponds to signif-
icant degree-degree correlations. The assortativity of each net-
work is demonstrated by the block structure of the adjacency
matrix showed on Fig. 2. Although our algorithm can produce
assortativity as high as a = 0.45 ± 0.05, we choose a more
moderate assortativity to reduce degree-induced modularity,
and to better match the assortativity of empirical networks
[44].

In Fig. 2 we demonstrate how the probability for nodes
to topple changes with cascade size for both neutral and
assortative networks. In assortative scale-free networks, low
degree nodes topple more often in small cascades than in large
ones. The opposite is true for high degree nodes. We therefore
infer that high degree nodes must topple if a large cascade is
to occur. In comparison the likelihood for nodes to topple in
neutral networks is much less dependent on degree.

IV. SAND DISTRIBUTION ASSUMPTION

In the previous section, we notice the relationship between
cascade size and node degree is different for neutral and assor-
tative scale-free networks. In particular, the almost constant
probability for nodes to topple in the neutral topology comes
as a surprise, because it contradicts the existing assumption
that the probability that a node topples is proportional to the
inverse of a node’s degree, which is commonly referred to as
the 1/k ansatz. This ansatz is often a fundamental assump-
tion when determining how the dynamics approach a critical
branching process [2,28,32]. Because we observe that high-
degree nodes topple with a relatively high probability that
strongly diverges from 1/k, we are motivated to investigate the
validity of the 1/k ansatz. In Ref. [32] the authors do show that
the 1/k assumption is not strictly valid and that higher degree
nodes are more likely to be at capacity. Yet, they attribute the
observed power law distribution of failures sizes to be due
to universality. We shown below that analyzing the out of
equilibrium distribution of sand on nodes for the BTW model
provides the resolution for how a critical branching process
can arise from a system seemingly poised for a super-critical
branching process.

FIG. 2. Chance of toppling in a cascade of size s. Top four
panels show chance of a node toppling in cascades of size: (a) 50 <

s < 100, (b) 100 < s < 500, (c) 500 < s < 1000, and (d) s > 2500.
In a neutral network (red circles), nodes of various degree are
approximately equally likely to participate in cascades of different
sizes. In an assortative network (blue squares) high degree nodes
topple frequently in large cascades and infrequently in small ones,
while the reverse is true for low degree nodes. Bottom two panels
illustrate chance that a link between two nodes is used in sand
redistribution during a cascade. Adjacency matrices for (e) neutral
scale-free network and (f) assortative network, where nodes in each
figure are sorted from low degree (bottom left corner) to high degree
(top right corner). Colors indicate the probability that, in a large
cascade, a given link participates in sand redistribution. These panels
further demonstrate that, in assortative networks, links connected to
high degree nodes are more likely to participate in large cascades.

A. Equilibrium configuration of the sandpile model

We begin by considering the distribution of sand on the
network in equilibrium (just before an additional grain of
sand is dropped). A corollary of the 1/k ansatz is that the
probability for a degree-k node to have i grains of sand is
constant and equal to 1/k, such that there is no typical amount
of sand in any inactive node [2,28,32]. In Fig. 3, we notice that
the distribution of sand differs significantly from analytic as-
sumptions. Although past works [2,28,32] report that the 1/k
corollary approximately holds, our observations demonstrate
a more complex picture. As shown in Fig. 3, the probability
that a degree-k node has i-sand is not 1/k, but is strongly
skewed towards larger values of i. This observation holds for
various node degrees, network topologies, network sizes, and
various values of the dissipation rate, f , as discussed in detail
in the Appendix.
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FIG. 3. A corollary of the “1/k ansatz” is that the probability for
a degree-k node to have i grains of sand is constant and equal to 1/k,
as denoted by the dashed line. However, for k-regular networks, as
well as neutral and assortative scale-free networks, behavior deviates
strongly from this corollary. Degree-10 nodes (a) and degree-20
nodes (b) are more likely to have near-critical amounts of sand,
and less likely to have low amounts of sand. Furthermore, nodes in
assortative scale-free networks behave similarly to nodes in k-regular
graphs of the same degree, while nodes in neutral scale-free networks
show the strongest deviation from the 1/k ansatz, with loads skewed
strongly towards critical capacity. Network size is N = 5000 and the
degree distribution scale-free exponent is γ = 3.00.

Furthermore, we observe a strong effect of degree corre-
lations: degree-k nodes in neutral and assortative scale-free
networks are characterized by different sand distributions. The
departure from 1/k distribution is particularly pronounced for
the neutral topology, where probability for a node to be close
to capacity is nearly twice what we would expect theoretically.

Additionally, we notice strong similarities between i-sand
distributions for k-regular and assortative networks. This
property, combined with the modular nature of assortative
network, suggests that modules of similar degree dynami-
cally behave like regular graphs with the same degree. One
could interpret the BTW dynamics on assortative scale-free
networks as one on a set of coupled regular graphs of increas-
ing degree. We will demonstrate later that this property has
significant impact on the occurrence of catastrophic failures
in interconnected heterogeneous networks.

In summary, the probability that a node topples (Fig. 2),
and the probability that a node has i grains of sand (Fig. 3)
both show strong deviations from theoretical assumptions
previously relied upon to explain the critical dynamics of
the BTW model. Because empirically we observe that the
probability of a node toppling is greater than 1/k, it would
naively imply that the BTW model always produces a super-
critical branching process. Why, then, does all past research
observe a power-law tail in the distribution of cascade sizes, a
signature of a critical process? Figure 1, for example, shows
that the cascade size and area distribution for scale-free net-
works broadly follows a power-law distribution over several
orders of magnitude. Larger networks produce even stronger
agreement with the theoretical power-law distribution.

B. Dynamics out of equilibrium

To understand why the BTW model creates power-law
distributions, we study out-of-equilibrium behavior of the

model’s dynamics. Namely, we investigate the probability of
a degree-k node having i-sand as a large cascade progresses.
We consider a cascade evolution scheme that proceeds ac-
cording to generations, in parallel with the nomenclature of
the branching processes. The node toppling as a result of the
initial random deposition of a grain of sand is called a root
and forms the first generation of the cascade. Each successive
generation is formed by the nodes that received sand from
the previous generation’s nodes that have toppled. Figure 4
demonstrates our results. We find that, regardless of node
degree, the sand distribution on nodes in the nth generation is
a better and better approximation of the analytic assumption
of 1/k.

Initial generations strongly disagree with theory. For ex-
ample, there is a clear peak in the distribution at second
generation because, for a cascade to be large, a high number
of neighbors must topple. These initial generations, however,
consist of very few nodes. The second generation consists
of at most k nodes, and the third generation has less than
k × 〈k〉nn nodes on average, where 〈k〉nn is the mean degree
of the nearest neighbors. Each generation g is bounded by
k × (〈k〉nn)g−2 thus the bulk of the nodes in large cascades
are those in the later generations that happen to closely
approximate the 1/k assumption.

In summary, the BTW dynamics are characterized by the
equilibrium sand distribution differing from 1/k ansatz, but,
over the course of a cascade, the sand distribution among
nodes that receive sand evolves to the theoretically expected
distribution. There are two properties of large cascades that
allow the observed BTW dynamics to more closely approxi-
mate the prediction of the theory. First, the out-of-equilibrium
statistics are only based on nodes that receive sand, implicitly
introducing a biased sub-sampling of sand distribution on the
nodes. This is why the equilibrium distribution disagrees with
the 1/k assumption. Second, we observe the nodes that top-
pled in earlier generations receive sand in future generations,
but never enough sand to topple a second time. For example,
a node that topples during a cascade will send sand back
to the parent node that toppled it. Additionally, due to the
non-tree-like structure of the network, a nonnegligible fraction
of nodes receive two and more grains of sand per generation.
Thus, loops present in the network affect the sand distribution
on the network and are responsible for skewed equilibrium
i-sand distribution.

V. INTERCONNECTED SCALE-FREE NETWORKS

In this section, we study how network topology affects
the probability of large cascades with various intra- and
interlayer connectivity statistics. We focus on the excep-
tionally large cascades in the BTW sandpile model due to
the disproportionate cost associated with such large extreme
events, when compared to the cost of small events, occurring
in real interconnected systems. We generate two scale-free
networks, denoted here network (or layer) A and network
(or layer) B, each with N nodes (2 × N nodes total). We
connect nodes within layers either at random or assortatively,
and connect nodes between layers either at random or in a
hub-to-hub fashion. Random interlayer connectivity is created
by connecting p × N random pairs of nodes together between
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FIG. 4. Distribution of sand in and out of equilibrium; (a) degree-5, (b) degree-10, and (c) degree-20 nodes. Black lines are the equilibrium
distribution, just before any sand is dropped. Red, blue, cyan and magenta lines correspond to the sand distribution among nodes that receive
grains of sand over the course of large cascades, where s > N/2 nodes topple. As the cascade progresses (from early generations to later ones),
the sand distribution approaches the 1/k corollary, and sand topples with probability 1/k in agreement with the ansatz. In the figures, the
networks are neutral scale-free with γ = 3.00 and size N = 5000. Other topologies show similar behavior.

layers. Hub-to-hub inter-layer connectivity is created with the
following algorithm:

(1) Sort nodes in each network from highest-degree to
lowest-degree

(2) Connect p × N nodes in each network together start-
ing with the highest-degree node and working down.

The parameter p, which varies between 0 and 1, dictates
the strength of coupling between individual networks.

A. Assortative scale-free networks

We first focus our attention on the effect that the presence
of other layers has on an individual network layer (without
loss of generality, we can choose layer A). For each cas-
cade, we record the number of nodes that toppled during
the process, sA and sB, separately for both layers. We then
determine the probability sA > N/2. We differentiate between
the chance of large cascades occurring locally in layer A,
denoted PAA(sA > N/2), and that of cascades originating in
layer B (inflicted cascades) and traversing into layer A, de-
noted PBA(sA > N/2). This allows us to understand how local
cascades spread within and across networks.

In Fig. 5, we find that the probability of large cascades in
coupled assortative networks depends strongly on the mode of
interlayer coupling. With hub-to-hub coupling, we notice that
PAA(sA > N/2) initially drops dramatically with increasing
interlayer coupling and, furthermore this probability barely
changes for p > 0.2. In comparison, PBA(sA > N/2) increases
initially but also reaches a constant value for p > 0.2. The
overall probability of large cascades stays thus constant for
p > 0.2. With random inter-layer coupling, however, moder-
ate to high inter-layer connectivity significantly increases the
likelihood of large cascades that originate in both layer A or B.
This latter behavior resembles one observed in random regular
networks examined by Brummitt et al. [17], suggesting a
similar mechanism.

The decrease in the likelihood of large cascades for hub-to-
hub coupled assortative networks lies in their highly modular

structure (see connectivity of nodes in Fig. 2). Hub-to-hub
connectivity extends the modular structure of individual layers
to the entire dual-layer system, preserving linkage of nodes of
similar degree. Furthermore, in an individual assortative layer,
the occurrence of a large cascade is conditioned on toppling
of several high degree nodes (see Fig. 2), a rare event. It is
quadratically less probable that such condition will be met in
a double layer system. Coupling layers of assortative scale-
free networks in a hub-to-hub fashion therefore decreases the
likelihood of large cascades by absorbing excess load from a
layer.

In contrast, by coupling the layers of assortative networks
randomly, there is a greater amount of connectivity between

FIG. 5. The probability of a large cascade for two coupled as-
sortative scale-free networks versus the connectivity probability p.
Interlayer connectivity has a strong impact on the BTW dynamics,
with the hub-to-hub coupling resulting in a constant chance of
cascading failures, while random coupling results in an increasing
occurrence of large events. Each network has N = 5000 and the
dissipative parameter f = 0.01.
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FIG. 6. The probability of a cascade greater than N = 5000
versus inter-layer connectivity p. Shown are neutral networks with
random and hub-to-hub coupling as well as assortative networks with
random and hub-to-hub coupling.

degree-k modules, and the connectivity gives rise to a more
homogeneous network, reminiscent of coupled random regu-
lar networks studied by [17]. Following Brummitt et al. [17],
we believe that an increase in the probability of large cascades
for large p is caused by diverted loads that return to the
network. Random wiring allows for high-degree nodes in one
layer to connect to low-degree nodes in another, which allows
for cascades to more easily cross layers because low-degree
nodes topple more often. Because low-degree nodes shed their
sand more often, there is also a greater likelihood for high-
degree nodes to topple, thereby triggering a large cascade.

We can extend our results to large cascades affecting both
layers of the network as well. We show in Fig. 6 that for
p > 0.3, the regime where large cascades are suppressed,
assortative, hub-to-hub coupled networks have the smallest
probability of large cross-network cascades where s > N .
Predictably, however, greater connectivity increases the prob-
ability of large cascades overall. In real systems, however, it
may be important to connect all regions together, therefore the
assortative hub-to-hub topology produces the best trade-off
of inter-connectivity without as large a probability of large
cascades.

B. Neutral scale-free networks

In this section, we focus on coupled random scale-free
networks. This represents networks with the least intra-layer
structure. As illustrated in Fig. 7, the probability for large
cascades that originate in network A drops substantially with
p, while the probability of large inflicted cascades rises.
The overall probability that any cascade occurs in network
A, PA, is reduced with introduction of interlayer coupling,
although for p > 0.3, the probability is roughly constant,
similar to assortative scale-free networks coupled hub-to-hub.
The mechanism responsible for this behavior, however, differs
fundamentally from that in the case of assortative networks.

FIG. 7. The probability of a large cascade occurring in a system
of two coupled neutral scale-free networks versus the connectivity
probability, p. This probability is virtually indistinguishable between
hub-to-hub and random interlayer connectivity. As the connectivity
probability p increases, cascading failures reach a constant. In each
network, N = 5000 and the dissipative parameter f = 0.01.

Namely, the lack of degree correlations in neutral scale-
free network causes the toppling rate to be almost inde-
pendent of node degree (Fig. 2), regardless of cascade size.
Thus, interlayer coupling, whether random or hub-to-hub, has
approximately the same effect on the dynamics. With low
coupling, network A benefits from shedding load to network
B, but once there is moderate coupling, the two networks act
as a single random network, implying the probability of large
cascades does not vary significantly for p > 0.2.

Finally, we notice that random networks produce higher
probabilities of large cross-network cascades compared to as-
sortative networks, as seen in Fig. 6. This further demonstrates
the rationale for assortative networks, and suggests that real
systems undergoing failure cascades may be evolutionarily
disinclined to be random.

VI. DISCUSSION

We set out to better understand the dynamics of the
BTW sandpile model, a prototypical SOC model [26,27].
In doing so, we first noticed an under-appreciated aspect of
the model: the node sand distribution differs markedly from
the theoretical assumption. The distribution would seemingly
imply that the dynamics are super-critical in equilibrium,
but the nonequilibrium statistics demonstrate that the sand
redistributes to create critical dynamics.

Although the BTW model is simplistic, it creates important
insights into how the spread of cascading failures is affected
by underlying network topology. We demonstrate that the
robustness of interconnected systems is a function of cor-
relations between intra- and interlayer interactions. This is
similar to earlier results of Reis et al. [15], based on studies
of bond percolationlike process on interconnected scale-free
networks.

Intriguingly, the network topology that we found most
effective in reducing large cascades—assortative scale-free
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FIG. 8. Choice of the dissipation rate f adopted in the sandpile dynamics affects the tail of the distribution of cascade sizes, P(s). Inverse
power law scaling that characterises P(s) is preserved for (a) regular random graph, (b) neutral scale-free network, and (c) assortative scale-free
network.

networks with hub-to-hub interconnectivity—is found in
functional brain networks [15,18–21,23]. Because neuronal
avalanches appear to self-organize to a critical state [1–4], the
human brain can be modeled in a simplified manner via the
BTW model. Taking these results together, we would predict
that the brain is constructed so as to prevent large cascades. If
we were to interpret large cascades as seizures, for example,
this would make the surprising suggestion that a healthy brain
naturally reduces the likelihood of seizures, and a reduction
in assortativity, or hub-to-hub interconnectivity would make
seizures more likely. This agrees with recent findings that
particular abnormal functional brain networks, such as those
observed in schizophrenia [45,46], increase the likelihood of
seizures [47,48].

Furthermore, in agreement with our model (Fig. 2), rich
club nodes (hub nodes in assortative networks) are strongly
associated with generation seizures [49]. Overall, our results
show that despite the BTW model’s simplicity, it can quali-
tatively approximate the occurrence of brain seizures. More-
over, it can provide insight into the evolutionary motivation
of functional brain network topologies. At the same time we
realize that complex, multi-scale structure of real networks
poses challenges for the identification of unique topological
features responsible for observed cascading behavior. Nu-
merous network features, such as clustering, assortativity, or
broad degree distributions, are present concurrently in real
systems, such as brains. Therefore, any changes in topological
structure often affect those measures simultaneously, making
controlled experiments extremely difficult. This demonstrates
the validity of computational studies of networks possessing
realistic features observed in real systems, such as one pre-
sented in this paper.

Our work suggests several avenues of future research.
We find that high-degree nodes in assortative networks are
likely to topple in large cascades, therefore one could design
protocols controlling the amount of load on those nodes or
devise quarantine scenarios to limit the spread of catastrophic
failures. Moreover, a fruitful avenue of research would be
predicting large cascades when a cascade is beginning, such
as detecting whether hub nodes shed their load. In addition,
we only explored this behavior for the BTW model. It is an
open question to understand if these same three features of

heterogeneous degree distributions, internal network assorta-
tivity and interlayer degree correlations also suppress large-
scale failure for other types of cascade models, such as
threshold models.
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APPENDIX

In this section, we discuss several details of the model that,
in the interest of space, we leave out of the main text.

FIG. 9. Probability that a degree-k node holds i grains of sand
stays constant despite significant variation in the dissipation rate f
of the sandpile process. Behavior of a random 10-regular network is
compared with k = 10 nodes of a neutral and assortative scale-free
network, respectively.
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FIG. 10. Probability that a degree-k node holds i grains of sand
saturates as a network size N increases. Behavior of a sandpile
process on a random 10-regular network with dissipation rate (a) f =
0.01 and (b) f = 0.001 is shown.

1. Dissipation rate and system size

After observing the sand distribution shown on Fig. 3,
which differs from theoretical assumption of critical branch-
ing process, one might suspect that presented results are side
effects of one of the model’s two parameters: the dissipation
rate, f , or the system size, N . However, varying those param-
eters does not appear to better approximate the 1/k corollary.

First we consider the effect of different values of the
dissipation rate f on the sandpile dynamics. Because this
constant regulates total amount of sand on the network, higher
values correspond to increased sand removal, while lower
values lead to the accumulation of load in the system. This
behavior is reflected in the statistics of observed cascades,
illustrated in Fig. 8. The former condition of lowering load
results in decreased probability of large cascades, denoted
by a truncation of the tail of the cascade size distribution.
However, excessive sand accumulation gives rise to more
frequent large cascades, as shown by a visible peak in the P(s)
function for s ∼ O(N ).

However, even though varying f significantly changes
the cascade size distribution, it has little effect on the sand
distribution on individual nodes (Fig. 9). As lower value of
f leads to sand accumulation, we observe slight increase
in probability of node being at capacity, but the effect is

FIG. 11. Chance of large cascades occurring in a system of
(a) neutral and (b) assortative interconnected scale-free networks,
where scaling exponent of the individual layer degree distribution is
γ = 2.50. Despite differences in absolute probability values, quali-
tative behavior remains the same as for γ = 3.00 (compare to Figs. 7
and 5).

very subtle, especially when contrasted with the impact that
change in f has on macroscopic observables, such as P(s). As
noted earlier, the distribution of sand on nodes of assortative
scale-free network overlaps with the distribution of sand on
random regular network of the same degree, independent of
the selected value of f .

Finally, we consider the impact of finite system size, N . In
Fig. 10 we show, that despite increasing the system size by
three orders of magnitude, the disparities in sand distribution
are preserved.

2. Exponent of the scale-free network degree distribution

All results reported in the main text refer to scale-free
networks with a degree distribution P(k) ∼ k−3, therefore we
want to test if heavier-tail distributions affect significantly
those observations. However, we find that, e.g., for P(k) ∼
k−2.5, our results appear similar to those discussed in the main
text. Despite differences in absolute values of probabilities of
large cascades, qualitative behavior for all considered intra-
and interlayer coupling modes is the same, as shown in
Fig. 11.
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