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Dynamics of multiplayer games on complex networks using territorial interactions
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The modeling of evolution in structured populations has been significantly advanced by evolutionary graph
theory, which incorporates pairwise relationships between individuals on a network. More recently, a new
framework has been developed to allow for multiplayer interactions of variable size in more flexible and
potentially changing population structures. While the theory within this framework has been developed and
simple structures considered, there has been no systematic consideration of a large range of different population
structures, which is the subject of this paper. We consider a large range of underlying graphical structures for
the territorial raider model, the most commonly used model in the new structure, and consider a variety of
important properties of our structures with the aim of finding factors that determine the fixation probability
of mutants. We find that the graphical temperature and the average group size, as previously defined, are
strong predictors of fixation probability, while all other properties considered are poor predictors, although the
clustering coefficient is a useful secondary predictor when combined with either temperature or group size.
The relationship between temperature or average group size and fixation probability is sometimes, however,
nonmonotonic, with a directional reverse occurring around the temperature associated with what we term
“completely mixed” populations in the case of the hawk-dove game, but not the public goods game.
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I. INTRODUCTION

Evolutionary graph theory is an important methodology for
considering evolution in a population with structure, where
certain groups of individuals are more likely to interact than
others, for example due to geographical proximity or social
status. It considers the evolution of a population of individuals
in which each interacts with its neighbors through a graphical
structure, and these interactions affect individual fitness and
how the population updates, with replacements occurring
between neighboring pairs. The population structure, i.e., its
topology, can strongly affect its evolution [1–7]. Instead of
considering homogeneously structured infinite populations, as
is common in evolutionary game theory [8–10], inhomoge-
neous populations are considered. Interactions are generally
pairwise, using standard games such as the prisoner’s dilemma
and the hawk-dove game [11–13]. We note that finite and/or
spatial populations have previously been considered in differ-
ent ways; for example [14,15] considered the spatial evolution
of cooperative behavior, [16] considered a finite population
whose members play a hawk-dove game, and [17] considered
a hawk-dove game on a lattice.
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Evolutionary graph theory generally considers pairwise in-
teractions on a fixed graph structure between individuals along
graph edges, although it is possible to consider multiplayer
games through grouping all neighbors of an individual. This
nevertheless generally involves certain groupings of fixed size
[18]. For many species, animals live either alone or in distinct
groups on a territory, which can vary considerably in size over
time, and often overlaps with other territories. The same place
can thus be used by one, two, or many individuals that will
interact and sometimes compete, with the size and composi-
tion of the competing group varying significantly; examples
include African wild dogs [19] or roadrunners [20]. Groups
can be large cooperative units—for example, ant colonies.
Primate groups can also be quite large, including conflicts
over dominance and resource division. Such groupings can be
even more complex and varied in human society.

To model such situations, evolutionary games with more
than two individuals are needed. Such multiplayer games were
introduced by [21] in biological problems and theoretically
expanded by [22] and [23]; more recent modeling work has
also been considered in [24], [25], and [10], chapter 9]. A
multiplayer hawk-dove game was introduced in [26], and
public goods games have been considered in a number of
papers [27–34].

Thus there is a need for models of evolution on structured
populations that incorporate multiplayer games of varying
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numbers of players. Broom and Rychtář developed a general
framework for analyzing such multiplayer games in structured
populations in [26], with further work on this in [35–38].
In particular, [36] considered evolution using three classical
game scenarios (hawk-dove, prisoner’s dilemma, and fixed
fitness) in structured populations using the invasion process
dynamics for some simple cases, using the “territorial raider”
model, which used an underlying graphical structure as its
basis [39].

In this paper we develop the above work to consider evo-
lution on a large range of complex networks with a range of
structural properties. Complex networks have previously been
used in population evolution by using scale-free graphs and
lattices [6,11,29,40], and random [11] and regular networks
[29,41]. Although these models consider topological proper-
ties of the mentioned networks, they do not explore a wide
range of topological parameters and structures, which is the
focus in this paper. By considering complex network models
[42], we attempt to use topological parameters and different
structures to analyze how they are related to the fixation
probability of mutants. Five types of complex network are
considered in this paper: the Erdös-Renyi (random) network,
small-world, scale-free, random regular, and Barábasi-Albert.

In general throughout the paper we shall use the alternative
term “network” in place of “graph”; they are interchangeable,
except that we wish to emphasize that the graphs or networks
that we use represent the population in a way that is distinct
to that of a graph in evolutionary graph theory (we shall only
use “graph” for the evolutionary graph which describes how
the population updates).

We will see throughout the paper that in order to simulate
the model in a full range of different networks and population
parameters, we had to run about ten billion different simu-
lations. An analytical analysis in these circumstances is hard
to describe, and a numerical process had to be formalized to
get the results in an acceptable computational time, which is
a critical point in the area [4,43] for either a large number of
cases or big populations.

In Sec. II we outline the population model used in this
paper, before describing the computational methodology in
Sec. III and our results in Sec. IV. We conclude with a
discussion of the paper and suggestions for future work in
Sec. V.

II. THE MODELING FRAMEWORK

The modeling framework is given in full generality in
[26]. It incorporates three key components: the population
structure, the evolutionary dynamics, and the evolutionary
game. In particular the general population structure is very
flexible. Below we describe an important special case, which
will be the basis of the work in this paper.

A. The fully independent model

A population contains N individuals I1, . . . , IN who are
able to move around M places P1, . . . , PM . The probability of
individual In being at place Pm is denoted by pnm; see Fig. 1
for a visual representation using a bipartite network. Based on
discrete time, at each time step of the simulation, all individ-

FIG. 1. The fully independent model from [26]. There are N
individuals who are distributed over M places such that In visits place
Pm with probability pnm. Individuals interact with one another when
they meet; for example, I1 and I2 can interact with one another when
they meet in P1.

uals move following their given distribution, resulting in the
formation of groups at the different places (the group formed
is simply the collection of all individuals at the given place).
Letting G denote any group of individuals, the probability
χ (m,G) that group G forms in place Pm is given by

χ (m,G) =
∏
i∈G

pim

∏
j /∈G

(1 − p jm). (1)

When a group of individuals is formed they play a mul-
tiplayer game, and individual In will receive a payoff that
depends on the group G it is present in and the place Pm

occupied by this group, denoted by Rn,m,G . Individual In’s
fitness is then calculated by averaging its payoffs over all
possible groups and places, which is given by

Fn =
∑

m

∑
G

n∈G

χ (m,G)Rn,m,G . (2)

The fully independent model is still very general, and
different examples were introduced in [26]. Perhaps the most
important one of these was the territorial raider model, which
was further developed in [36] and is the basis of the work in
this paper.

B. The territorial raider model

In the territorial raider model of [26], a population of N
individuals I1, . . . , IN can move to, and interact at, N different
places P1, . . . , PN ; see Fig. 2(a). In particular it is assumed
that individual In lives at place Pn and can also move to
neighboring places; that is, individual In has place Pn as its
original place, returning to it at the end of each iteration.
The population is modeled using a network to represent this
scenario, with nodes representing both individuals and places.

We assume that all individuals make moves which are
independent of the moves of others, and also of the past move-
ments of all individuals (including itself). The probability of
an individual In being at place Pm at any time can thus be
denoted by pnm. The networks that we will study in later
sections are thus representations of territorial raider models as
described here, and not the standard graph as in evolutionary
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(a) (b)

FIG. 2. (a) Population structure represented using a network
where nodes represent individuals and places. Individual In lives in
place Pn and can visit any neighboring places. For example, the home
place of I1 is place P1 but it can visit places P2, P3, and P4. (b) An
alternative visualization on a bipartite network where individuals and
places are clearly separated.

graph theory; i.e., they relate to the general representation as
shown in Fig. 2(b).

We could allow each individual In to have a distinct
movement distribution (pnm)m=1,...,N , but this would generate
(up to) N − 1 independent movement parameters for each
individual, and make comparison between different networks
difficult. We instead use a natural model in which a single
parameter h governs every movement, so that an individual
with d neighbors stays at its home node with probability
h/(h + d ) and moves to the node of a given one of its
neighbors with probability 1/(h + d ); that is, the individual
does not move with probability h/(h + d ) and moves with
probability d/(h + d ). We term h the home fidelity parameter,
as it is a measure of an individual’s preference for its home
node. For high home fidelity, individuals do not move much
and will usually be alone; for low values they move a lot, and
there is usually a lot more interaction within the population.
Note that choosing h = 1 means that all allowable places,
including the home node, are visited with equal probability.

C. Evolutionary dynamics

An evolutionary graph [1,44] is a graph with a weighted ad-
jacency matrix W = (wi j ), where wi j � 0 is the replacement
weight, strongly influencing which individuals are more likely
to replace which others. Often weights are right-stochastic,
i.e.,

∑
j wi j = 1, and this is the case for the current paper.

Every node vn of the evolutionary graph is occupied by
precisely one individual, and if wi j > 0 then the individual
on vi can place a copy of itself in v j to replace the existing
individual. Weights are selected so that the graph is strongly
connected, so there is a route between any pair of nodes.

In this paper, the evolution of the population is described
using the invasion process [1], a birth-death process in which
the selection happens in the birth event. This process is very
commonly used in evolutionary graph theory, originating in
[1], and was adapted to the modeling framework used here in
[36]. In particular, an individual is chosen to give birth to an
offspring with probability

bi = Fi∑N
n=1 Fn

(3)

who then replaces one of its neighbors with probability

di j = wi j∑N
k=1 wik

. (4)

There are other replacement dynamics that can be considered;
for example, see [37,44] for a list of different evolutionary
dynamics that can be used.

We shall define a well-mixed population as one where
all replacement weights (except perhaps the self-replacement
weights) take equal value.

The replacement weights used in this paper are based on
the assumption that an offspring of individual Ii is likely to
replace another individual I j proportional to the time Ii and I j

spend together (note that the offspring of Ii can also replace Ii

itself, and the probability that this happens is proportional to
the time Ii is alone). The probability that Ii and I j meet is given
by summing χ (m,G) over all m such that i, j ∈ G. When
they meet, it is assumed that Ii will spend an equal amount
of time with each other individual in group G and, therefore,
we weight χ (m,G) with 1/(|G| − 1) since there are |G| − 1
other individuals. Note that this is consistent with the payoffs
from our public goods game, as we define in Sec. II D, where
each pairwise payoff equally contributes to the total payoff an
individual receives. When i = j, we can sum χ (m,G) over all
m such that G = {i}. Here there is no need to weight χ (m,G)
because Ii is alone. The replacement weights are therefore
calculated as follows:

wi j =

⎧⎪⎨
⎪⎩

∑
m

∑
G

i, j∈G
χ (m,G )
|G|−1 , i �= j,

∑
m χ (m, {i}), i = j

. (5)

Let S be a state of the population such that n ∈ S implies
that node n is occupied by an individual of type A. There
are two absorbing states ∅ in which there are no type A
individuals, and N = {1, 2, . . . , N}, where all individuals are
of type A. The probability that a population with initial state S
is absorbed in state N is denoted ρA

S , and is referred to as the
fixation probability for state S , most commonly when there is
only one type A individual in S , i.e., S = {i} for i ∈ N . The
probability ρA

S is obtained by solving

ρA
S =

∑
S′⊂{1,2,...,N}

PSS ′ρA
S ′ , (6)

where PSS ′ is the probability of transitioning from state S to
S ′. Since there are N states with one type A individual in
them, the average fixation probability ρA is taken, which is
calculated as follows:

ρA = 1

N

N∑
i=1

ρA
{i}. (7)

We can similarly define the fixation probability for a type B
individual.

The temperature of an individual was defined in [1] to
measure how likely an individual will be replaced in the case
of a neutral population in which all individuals have constant
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fitness. The temperature is defined as follows:

Tj =
N∑

i=1,i �= j

wi j . (8)

Note that the higher the temperature of an individual, the more
likely that that individual will be replaced. In a homogeneous
population structure, such as a complete network, each indi-
vidual will have the same temperature.

D. Multiplayer games in structured populations

In this section we shall describe three multiplayer games,
the public goods game, the hawk-dove game, and the “game”
with fixed fitnesses. In each game we will consider a contests
between two different types of individual, A and B, and we
will later consider the fixation probability of a single A in a
population of Bs as well as the fixation probability of a single
B in a population of As.

1. The multiplayer hawk-dove game

A population consists of hawks, which we label A, and
doves, which we label B. All individuals that meet on a place
play a multiplayer hawk-dove game, competing for a single
reward V . If all of these individuals are doves, they divide the
reward equally among themselves. If there are one or more
hawks, the doves concede and then all of the hawks fight,
with the winner getting the reward, while the others receive a
cost C. In addition, all individuals receive R as a background
reward, representing the reward gained from other activities.
Therefore, for a single game involving a group of a hawks
and b doves, the average payoffs for the hawks and the doves,
respectively, are

RA
a,b = R + V − (a − 1)C

a
, (9)

RB
a,b =

{
R, if a > 0,

R + V
b , if a = 0.

(10)

We note that the classical two-player hawk-dove game is just
a special case of our game as defined. For the two-player
game for the infinite well-mixed population there is a unique
mixed evolutionarily stable strategy (ESS) if V < C, and
otherwise pure hawk is the unique ESS. For a fixed group
size n this condition becomes V < (n − 1)C, and depends
on the distribution of the group size when this is variable,
as in our case. The parameter values we have used in this
paper (V = 2,C = 1) would thus favor hawks for the 2-player
game, but not necessarily for larger groups.

2. The public goods game

Here a population consists of cooperators, A, and defectors,
B. They again start with a background payoff R, and then
play a public goods game among all of the individuals on a
given place. Following [33], a cooperator pays a cost C so
that other individuals in the group share the benefit V . We
note that we assume that this cost is always paid even if the
cooperator is alone. Whether this is in fact the case would
depend on the precise nature of the biological scenario, and
it would have been equally plausible to assume that for lone

individuals the cost is not paid. An interesting alternative way
of considering lone individuals was also modeled in [45]. The
method that we use is consistent with that used in [36] and
makes the evolution of cooperation harder to achieve than if
this was not the case, and this game is thus a tougher test of
when cooperation can evolve than alternatives. We also note
that no similar ambiguity about lone individuals exists for the
hawk-dove game above, where the payoff to lone individuals
is a natural extension of the contested game.

A single game involving a group of a cooperators and b
defectors, yields, respectively, average payoffs for cooperators
and defectors of

RA
a,b =

{
R − C, a = 1, b = 0,

R − C + a−1
a+b−1V, otherwise,

(11)

RB
a,b = R + a

a + b − 1
V. (12)

3. Fixed fitness case

For the fixed fitness game, fitness is frequency-independent
and individuals do not really interact with each other but
simply receive a constant payoff depending only on their type,
independently of the composition of the group. For a group of
a individuals of type A and b individuals of type B, we define

RA
a,b = R + V, (13)

RB
a,b = R. (14)

E. Evolutionary graph theory and complex networks

As discussed in Sec. II B, the territorial raider model that
we use is based on an underlying network structure, and
different network structures can yield very different results,
for example in terms of fixation probability. We shall consider
a range of such networks in this paper, and here we discuss
these, together with a few important network properties.

Erdös and Rényi [46] formulated a random network model,
where n nodes are connected by e edges randomly chosen
among the n(n − 1)/2 possible edges, so that the network
contains a fraction q = e/[n(n − 1)/2] of possible edges (this
fraction of existing edges is also called the density). Watts and
Strogatz [47] proposed a model with similar average shortest
path length to the Erdös-Rényi network (usually small), which
can also aggregate nodes in clusters. Consider a regular net-
work with each node connected to m close individuals; then
rewire a fraction p of the connections. It creates a small-world
network, mainly locally connected with long-distance random
connections. When p = 1, the network is totally random, as
for the Erdös-Rényi model.

Such an aggregation of nodes is measured by the clus-
tering coefficient. Consider a node i of the network; then
the clustering coefficient ci for the node i is the fraction
of existing connections among these neighbors and the total
possible, and the average clustering coefficient is given by
c̄ = (1/n)

∑n
i=1 ci [47].

Some real networks have the property of the rich get richer;
that is, nodes that are introduced into the network are more
likely to connect with nodes that have a high number of
connections (the degree of a node). The degree distribution
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FIG. 3. Fixation probability as a function of (a) clustering coefficient, (b) shortest path length, (c) density, (d) diameter, and (e) average
degree for all network simulations for the hawk-dove game. The dark gray dots represent the case of H invading D, the light gray dots
represent the case of D invading H, and for both cases, black dots represent simulations with well-mixed networks. The parameter values are
R = 10, C = 1, V = 2.

of these networks follows the expression π (k) ∼ k−γ , with
γ � 2.2 [48,49]. A distribution of nodes π (k) = Ak−γ , with
A and k constants, is termed scale-free [50]. Deriving from
the scale-free model, Barabási and Albert [51] proposed a
different rule: preferential attachment, where the probability
πba that a new node will connect to a node i is a proportional
to ki, the degree of i, that is, πba(ki ) = ki/

∑n
j=1 k j .

III. METHODOLOGY

The networks are representations of territorial raider mod-
els. We will consider five models of undirected networks:
Erdös-Rényi, small-world, Barabási-Albert, scale-free, and
regular, with fixed size of N = 20 nodes. The parameters
forming the networks will be varied accordingly in order to
provide the widest topological range within a model. The
library iGraph [52] generates the networks and returns the
topological properties.

For the Erdös-Rényi network, the only parameter used
as an input is the fraction of connections. Therefore, mer

is varied for the values mer = 0.2, 0.205, 0.21, 0.215, . . . , 1,
generating 161 types of random network. For small-world, the

number of close neighbors connected to each node msw and
the fraction of rewired connections psw are the input parame-
ters, and the ranges of each parameter are msw = 2, 4, . . . , 18
and psw = 0.05, 0.01, . . . , 1 generating 180 different types of
network.

The Barabási-Albert networks also have two input param-
eters: mba is the number of connections generated per node,
and γba the exponent of the probability of a node i with degree
ki being chosen to get an edge πba(ki ) = (ki/

∑n
j=1 k j )γba ac-

cording to the nonlinear preferential attachment. When γba =
1 we have the linear and traditional form of the Barabási-
Albert model [51]. Therefore, these parameters are varied
according to mba = 2, 4, . . . , 18 and γba = 1, 1.2, 1.4, . . . , 5,
generating 189 different types of networks.

The scale-free networks also have the exponent γs f as an
input, as well as qs f . The first is the exponent of the power
law distribution π (ki ) ∼ k−γ

i of the network, and the second
is the percentage of total edges to be added to the network.
Therefore, we used the values qs f = 0.25, 0.25, 0.3, . . . , 1
and γs f = 2, 2.25, 2.5, . . . , 5, generating 208 types of net-
works. In this case, the configuration model used by iGraph
is described in [53].
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FIG. 4. Fixation probability as a function of temperature considering the public goods game for (a) all networks, (b) Erdös-Rényi, (c) small-
world, (d) scale-free, (e) Barabási-Albert, and (f) random regular networks. For the selected parameters, the fixation probability for C invading
D is effectively zero in all cases, so we have omitted these results. The light gray dots represent the case of D invading C and the black dots
represent simulations with well-mixed networks. The parameter values are R = 2, C = 1, V = 2.

For regular networks, the only input parameter for generat-
ing the network is the degree of each node, which varies in the
interval k = 3, 4, . . . , 19, and we have 17 types of networks.

Each combination of the three games described in Sec. II D
with two situations per game (the invasion of a randomly
placed individual of each type placed into a population of
the other type) as simulated for each type of network listed
previously. Moreover, in order to have enough variation for h,
50 simulations with random h were run for each combination
of games and situations and each type of network, giving
226 500 cases. The value of h is randomly chosen in the inter-
val 0.01 � h � 100 uniformly distributed on the logarithmic
scale.

One simulation is delineated as follows:
(1) Given the parameters, a network is formed using

iGraph.
(2) The mutant is randomly put on one of the nodes.
(3) Each individual moves (or not) from its home place

according to the model. Every group with one or more indi-
viduals plays the multiplayer game.

(4) Each individual moves (or not) from its home place ac-
cording to the model. Run the birth-death process: Randomly
pick an individual proportional to its fitness, and it replaces a

random individual from the group it is in; if it is alone, there
is no replacement.

(5) The simulation ends when either individuals A or B
dominate the population.

(6) This process is run 50 000 times to minimize the
statistical variability of the results [95% confidence intervals
of estimates always have width (sometimes much) less than
0.01].

Note that we use the typical initial condition called uniform
initialization [54]; that is, all nodes have the same probability
to have the initial mutant, in order to maintain consistency
with the previous work [36]. There is also an alternative
method called temperature initialization; see for example [55].

IV. RESULTS

The aim of our analysis is to find good predictors of the key
properties of our evolutionary process, concentrating on the
most important, the fixation probability. When dealing with
complex networks, the first objective is often to analyze the
dynamical properties of the system with topological parame-
ters. However, in the model presented, the standard parame-
ters, including the clustering coefficient, shortest path length,
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FIG. 5. Fixation probability as a function of temperature considering the hawk-dove game for (a) all networks, (b) Erdös-Rényi, (c) small-
world, (d) scale-free, (e) Barabási-Albert, and (f) random regular networks. The dark gray dots represent the case of H invading D, the light
gray dots represent the case of D invading H, and for both cases, black dots represent simulations with well-mixed networks. The parameter
values are R = 10, C = 1, V = 2.

density, and diameter, seem to give very little information
about the fixation probability. We can see this in the case of
(a) clustering coefficient, (b) shortest path length, (c) density,
and (d) diameter for all network simulations for the hawk-
dove game in Fig. 3. The cases for all networks separately,
and also for the other two games in combination with each
of the networks, are similar. However, as we shall see, the
clustering coefficient does have an important secondary role to
play.

Note that from here, we will use the original letters of the
game’s strategies: for the public goods game, C for coopera-
tors and D for defectors, and for the hawk-dove game, H for
hawks and D for doves.

For small networks [36], we have already seen that the
temperature is a good predictor of the fixation probability.
Thus we considered it for this far wider range of (and, with
20 nodes, larger) networks. The temperature is similarly a
good predictor over the range of possibilities that we have
considered. Figures 4, 5, and 6 show the fixation probability
as a function of temperature for (a) all networks, (b) Erdös-
Rényi, (c) small-world, (d) scale-free, (e) Barabási-Albert,
and (f) random regular networks, for our three games, the
public goods game, hawk-dove game, and the fixed fitness

case, respectively. Moreover, Figs. 7, 8, and 9 show the
fixation probability as a function of average group size for the
same cases.

In this paper we consider the group size from the individ-
ual’s perspective, as opposed to from the observer’s perspec-
tive; see [36] (in [56] these were referred to as the “experi-
enced group size” and simply the group size, respectively).
For example, if half of all groups are of size 2 and half are
of size 6, then 3/4 of individuals are in groups of size 6, so
the mean from the individual’s perspective is 5, but from the
observer’s perspective is 4.

In our figures we have tried to pick out sets of parameters
that yield interesting results. There are many combinations
of games and parameters in which one of the strategies is
completely dominant for all networks, or in which there is
no appreciable difference across the networks, so that the
effects are drowned out by the statistical variability due to our
simulations. This is in fact a useful observation; for networks
generated in the different random ways that we do, there is
often no appreciable difference between fixation probabilities
over the full range of networks, and interesting differences
that can be found may be due to quite exceptional constructed
networks, which while of interest lack general applicability.
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FIG. 6. Fixation probability as a function of temperature considering the fixed fitness game for (a) all networks, (b) Erdös-Rényi, (c) small-
world, (d) scale-free, (e) Barabási-Albert, and (f) random regular networks. The dark gray dots represent the case of A invading B, the light
gray dots represent the case of B invading A, and for both cases, black dots represent simulations with well-mixed networks. The parameter
values are R = 50, C = 1, V = 2.

For the public goods game we could not find a marked net-
work effect in cases in which each strategy could reasonably
invade the other, so a nonflat line could only be found for one
strategy to invade at the expense of the other. Thus in Figs. 4
and 7, the probability of C invading D is small for all networks
leading to a flat line close to zero, so we have omitted this
and plotted a range of values on the y axis to better illustrate
the more interesting case of D invading C. For hawk-dove
games there was interesting behavior for many parameters, so
we have simply chosen parameters as in [36] in Figs. 5 and
8. Finally for the fixed fitness case there was no interesting
behavior, and we have simply selected parameters that feature
both fixation probabilities clearly on the graph in Figs. 6 and
9, but these flat lines happened in all cases.

It is worth noting that in panel (e) of Figs. 4–9, Barabási-
Albert networks have the wider range of fixation probability
and temperature values and their curves are thus almost the
same as for the all-network data [panel (a) of Figs. 4–9].

In Fig. 4 we see that for the public goods game there
is a strong linear trend for the fixation probability in terms
of the temperature for all networks, and a straight-line fit
would be accurate over the full range for the majority of the
networks. However there are some outlying networks, and
the Barabási-Albert networks in particular yield some very

unusual behavior for the lower temperatures. We shall revisit
this interesting feature in Sec. IV B below.

The hawk-dove game in Fig. 5 similarly yields nice
straight-line fits for the fixation probability in terms of the
temperature for all network types except again for Barabási-
Albert networks, and to some extent scale-free networks.
For hawks invading a dove population this is an increasing
trend, but for a dove invading a hawk population a decreasing
one. For Barabási-Albert and scale-free networks the trend is
reversed at around the completely mixed temperature, marked
by the black dots (see Sec. IV A) for invading doves, and
a value somewhat higher than that for the invading hawks.
This is complicated by the split in the trend in the case of
Barabási-Albert networks, where a branch breaks off the main
trend in at least two places for both types of individual; we
shall investigate this phenomenon in more detail in Sec. IV B.

The fixed fitness game simply yields flat lines in Fig. 6.
There is some between-network variation, not simply due to
simulation statistical errors, but the temperature is not useful
in predicting these at all.

Figure 7 shows a clear relationship between fixation prob-
ability and average group size for the public goods game. Fig-
ure 8 shows a similar relationship between fixation probability
and average group size for the hawk-dove game. We discuss
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FIG. 7. Fixation probability as a function of average group size considering the public goods game for (a) all networks, (b) Erdös-Rényi,
(c) small-world, (d) scale-free, (e) Barabási-Albert, and (f) random regular networks. The light gray dots represent the case of D invading C
and black dots represent simulations with well-mixed networks. The parameter values are R = 2, C = 1, V = 2. The C invading D situation
is a flat line close to 0.

the interesting issues above in Sec. IV B. We see similar flat
lines to before for the fixed fitness case in Fig. 9. In general
average group size and temperature are strongly correlated, so
it is not a surprise to see a similar relationship here.

Linearity with the temperature can partly be explained
by the fact that for the models in this paper an individual’s
temperature effectively reduces to the probability of it not
being alone at the replacement event and in the contests that
lead to payoffs (note that these two need not be the same
[38] and that a more complex temperature concept was needed
when subpopulations formed on nodes [37]). Thus for small
temperatures, mean temperature is strongly correlated with
the intensity of selection, and the fixation probabilities are
close to straight lines at a temperature of 0. This can be most
clearly seen for the hawk-dove game, where lone individuals
of both types gain reward V and the intercept with the y axis
is simply 1/N = 1/20. This is also true for the public goods
game, though here the y axis intercept is around 1/2, which
occurs since lone cooperators and defectors have different
rewards. For our chosen parameter values the defectors have
twice the fitness of the cooperators, and the value of (actually
marginally above) 1/2 is that obtained from the classical
Moran process. It is remarkable here, however, that even for

quite low temperatures there is quite a variety in fixation
probabilities; i.e., this linear relationship breaks down quite
quickly.

A. Well-mixed and completely mixed populations

A well-mixed population was previously defined in
Sec. II C as one where all replacement weights (except per-
haps the self-replacement weights) take equal value. For the
territorial raider model with movement controlled by the
single home fidelity parameter h this happens whenever the
network is complete. There is a stronger criterion, namely a
completely mixed population that occurs when h = 1.

The temperature at a given node, as stated in Sec. II C,
in the territorial raider model is the probability that that
individual is not alone. For a complete network with h = 1,
all individuals will have the same probability of being alone,
and consequently the network temperature is simply given by

Tw = 1 −
(

1 − 1

n

)n−1

≈ 1 − e−1 = 0.632 (15)

(note that the value of the above formula for the case n =
20 used in this paper is Tw = 0.623). Networks with many
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FIG. 8. Fixation probability as a function of average group size considering the hawk-dove game for (a) all networks, (b) Erdös-Rényi,
(c) small-world, (d) scale-free, (e) Barabási-Albert, and (f) random regular networks. The dark gray dots represent the case of H invading D,
the light gray dots represent the case of D invading H, and for both cases, black dots represent simulations with well-mixed networks. The
parameter values are R = 10, C = 1, V = 2.

connections and h not too far from 1 will have temperatures
close to this. We note that here the distribution of the number
of an individual’s group mates is approximately Poisson (1)
and so for example the probability of groups of size 1, 2, 3,
and 4 or more are 0.368, 0.368, 0.184, and 0.080, respectively.
Here the mean group size is just 2, and so larger mean groups
will present larger actual group sizes with higher probability.

Erdös-Rényi, small-world, and random regular networks
have a maximum temperature of around 0.63, so that the
temperatures of completely mixed populations are the max-
imum value found. The small average group size is due to the
random (and uniform) distribution of connections that does
not concentrate individuals in larger groups. Barabási-Albert
networks and scale-free networks can reach higher tempera-
tures and higher group sizes than the other types of networks,
however. In general more irregular networks combined with
low h can give higher temperatures; for example a star with
h = 0 would yield a temperature of 1 − 1/n, as the central
individual would always be alone at another node, while all
others would be together in the center. The black dots in
Figs. 4 to 9 indicate cases where the population is close to
being completely mixed. We have used randomly generated
h values (and only a few of our networks were complete), so
none of the selected networks are exactly completely mixed.

Thus we have marked networks in which 0.9 � h � 1.1 and
the density is higher than 0.9, since these are approximately
completely mixed (and as we see, give close to the above
completely mixed fixation probability).

Moreover, Barabási-Albert networks and to a small extent
scale-free networks have a change in the temperature trend
when the temperature is around 0.63 and average group size is
around 2 in the case of the hawk-dove game. These values are
related to well-mixed populations and are a threshold between
networks of different character, where the higher temperature
networks have connections concentrated on a few nodes and
low clustering coefficients, as we discuss below.

B. Unusual network features

In this section we investigate some unusual features of our
plots. In particular we consider two aspects. First, we ask why
there is a turning point in the main trend for the hawk-dove
game in Figs. 5(e) and 8(e). Second, we ask why on some plots
there is a subset of networks that display completely different
trends from the rest, in particular the two breakaway lines in
Fig. 5(e) and the set of diverse trends for the low-temperature
values in Fig. 4(e).
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FIG. 9. Fixation probability as a function of average group size considering the fixed fitness game for (a) all networks, (b) Erdös-Rényi,
(c) small-world, (d) scale-free, (e) Barabási-Albert, and (f) random regular networks. The dark gray dots represent the case of A invading B,
the light gray dots represent the case of B invading A, and for both cases, black dots represent simulations with well-mixed networks. The
parameter values are R = 50, C = 1, V = 2.

Tables I and II show the average standard deviation of
the node temperature, average clustering coefficient, average
iterations (number of iterations for either type of individual to
dominate the population), average h, the average group size,
and the average degree for different intervals of temperature
for Barabási-Albert and scale-free networks, respectively. The
interval 0.58 < t < 0.68 is centered around where the turning
point occurs for the hawk-dove game, and the intervals t �
0.58 and t � 0.68 display two distinct linear trends, separated
by this turning point.

We can see from the tables that the midtemperature net-
works have both a higher clustering coefficient and lower stan-
dard deviation of the node temperature than for the lower and
higher temperature networks. These midtemperature networks

are generally the best connected, which naturally leads to a
higher clustering coefficient, at least in the types of networks
that we have considered. These are also the networks closest
to the completely mixed populations, where identical nodes
lead to zero standard deviation in the node temperature. Thus
in this range, this standard deviation is low.

We also see that higher temperature is correlated with
larger group size. This can help explain the turning point
for the hawk-dove game, where hawks do best (as invader
or invaded population) compared to the other cases. In the
cases that we consider hawks generally outperform doves,
but for lone individuals the payoffs are the same. Thus for
low temperature and so group size, hawk and dove fixation
probabilities are not much different (each converging to 1/20,

TABLE I. Data for different temperature intervals for Barabási-Albert networks.

Average standard Average clustering Average Average Average
Temperature (t) deviation of node temperature coefficient iterations Average h group size degree

t � 0.58 0.1009 0.65 227.1 34.08 1.53 11.91
0.58 < t < 0.68 0.0380 0.86 101.7 1.66 2.03 16.04
t � 0.68 0.1954 0.45 93.9 0.25 3.77 8.11
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TABLE II. Data for different temperature intervals for scale-free networks.

Average standard Average clustering Average Average Average
Temperature (t) deviation of node temperature coefficient iterations Average h group size degree

t � 0.58 0.0690 0.61 211.8 33.63 1.49 10.97
0.58 < t < 0.68 0.0373 0.67 102.8 1.11 1.98 12.26
t � 0.68 0.1263 0.41 99.2 0.04 2.56 5.58

since the population size is 20 as temperature converges to
0 and group size converges to 1). Similarly large groups
can involve multiple hawk-hawk fights and so are also bad
for hawks. There is thus an intermediate region where hawk
performance is relatively at its highest.

Now consider the unusual patterns that depart from a
linear trend in the earlier figures, in particular for the low
temperatures for the public goods game from Fig. 4. In Fig. 10
we see a color-coded plot, where four of the key figures from
before are repeated, but this time lighter dots represent higher
clustering coefficients. Considering Fig. 10(a) we can clearly
see the different lines for low temperature correspond to

different values of clustering coefficients in a very clear way.
Higher clustering coefficients give the linear trend of fixation
probability, while low values give the different patterns of low
temperatures. The split into distinct lines here comes about
from the way we chose our parameters for the Barabási-Albert
model. For instance, the darkest line near low temperatures on
Fig. 10(a) is related to the number of connections generated
per node mba = 2, and the space between this trend and the
next would be filled if we used mba = 3, since the next trend
is related to mba = 4. We note that for higher temperatures
there is less variability in the clustering coefficients, with all
mba cases tending to the same a single trend line here.

FIG. 10. Fixation probability as a function of temperature [(a) public goods game, (b) hawk-dove game] and average group size [(c) public
goods game, (d) hawk-dove game] with a closer look at the clustering coefficient (see the vertical bar accompanying each figure), with D
invading C and D invading H.
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FIG. 11. Fixation probability as a function of temperature [(a) public goods game, (b) hawk-dove game] and average group size [(c) public
goods game, (d) hawk-dove game] with a closer look at the standard deviation of node temperature (see the vertical bar accompanying each
figure), with D invading C and D invading H.

Regarding Figs. 10(b)–10(d), the unusual patterns are al-
ways related to low clustering coefficient values. Comparing
these results with Fig. 11, we can see that these points
are also related to high values of the standard deviation of
the node temperature. Note that for the hawk-dove game,
the temperature trend starts to change where the standard
deviation of the node temperature is high. For Figs. 10(c),
10(d), 11(c), and 11(d), for large average group size there
are a few large groups, which decreases the clustering co-
efficient and increases the standard deviation of the node
temperature.

Figures 10 and 11 are plotted by overlapping the dots. In
this case, the data regarding low clustering coefficient are the
first to be plotted, and high clustering coefficient data are in
the front of the figure. Figure 12 shows a three-dimensional
perspective of the same networks, adding the clustering coef-
ficient in the new axis. Note that the low clustering coefficient
trend (which would be all the very dark dots in Fig. 10)
was hidden. The gaps between the curves are related to the
parameters chosen to form the network. For instance, the
curve with the lowest clustering coefficient is associated with
mba = 2, followed by the curve with mba = 4, and so on.

We can see from Fig. 10 [and also from Figs. 12(a) and
12(c)] that for fixed group size, defectors perform better for
the cases with a lower clustering coefficient, and so should
allow for better mixing within the population, which is known
to favor defectors. In addition, as we saw in Tables I and II,
a lower clustering coefficient is associated with a higher stan-
dard deviation of node temperature and thus also with a more
variable group size, and we see a consistent effect in Fig. 11.
The advantage of defectors over cooperators in any given
group is the size of the cost C (the only chance for cooperators
to outperform defectors being in clustering preferentially with
other cooperators), but the total payoff is smaller, and so the
relative advantage larger, for lone individuals, with any group
size above 1 that involves a cooperator being approximately
equivalent. Thus defectors have the largest fixation probability
when the probability of individuals being alone is largest,
which occurs when the group size is most variable. More
variable group sizes are similarly bad for hawks as we have
discussed above, so there is a similar effect here with lower
clustering coefficients favoring doves.

For a fixed temperature, group size increases with a de-
creasing clustering coefficient. Thus for a fixed temperature,
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FIG. 12. Three-dimensional figure for the fixation probability as a function of clustering coefficient and temperature [(a) public goods
game, (b) hawk-dove game] and average group size [(c) public goods game, (d) hawk-dove game] with a closer look at the standard deviation
of node temperature (see the vertical bar accompanying each figure), with D invading C and D invading H.

a lower clustering coefficient again favors doves as we see
in Fig. 10(a). However, for defectors, this effect is reversed
with a higher clustering coefficient favoring defectors, since
the smaller group size means there is a greater probability of
being a lone individual.

In summary, the Barabási-Albert model is the only one
to allow temperatures significantly higher than those found
in well-mixed populations, considering the size of the net-
work used in this paper. The preferential attachment rule
of the model allows the network to have a small number
of highly connected nodes, which return a higher average
group size. The networks with few connections have low
clustering coefficient and the widest temperature range. Small
groups favor hawks invading doves and defectors invading
cooperators (the small groups should be bigger than 1 to
favor the hawks). Since the Barabási-Albert network allows
large groups, it favors doves invading hawks and decreases
the fixation probability for defectors invading cooperators.

V. DISCUSSION

In this paper, we have built on the existing framework of
Broom and Rychtář [26], in particular investigating factors
that determine the fixation probability of mutants using their
territorial raider model for a large range of different popula-

tion structures. This model is built on an underlying network
structure, and we used five types of complex networks: Erdös-
Renyi (random), small-world, scale-free, Barábasi-Albert, and
random regular networks. We also considered a number of
population properties in conjunction with these networks;
these were five topological parameters of the generated net-
works: average degree, clustering coefficient, shortest path,
density, and diameter, together with the graphical temperature
(using the replacement weight matrix), the mean group size,
and the model’s “home fidelity” parameter.

The main objective of the paper was to find population
properties that could predict the fixation probability. The
topological parameters were poor predictors, and out of the
other factors, the graphical temperature was the best predictor,
as also found in previous work on very small networks [36],
and average group size was also a strong predictor. In addition,
the clustering coefficient proved to be a useful secondary
predictor, in conjunction with the others.

The predictions of our model are often in accord with those
from classical evolutionary graph theory. Populations struc-
tured over star networks tend to favor doves invading hawks
due to large groups [1], and we also have this effect for small
networks [36]. In [29], the wealth distribution model using the
public goods game found that stars increase the inequality in
the population due to a better situation for defectors. In [11],
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scale-free networks were the hottest network in the paper,
and the hottest cases were where the doves performed better.
We note that the linear relationship with mean temperature
is new; typically evolutionary graph theory models exclude
self-weights, and then the mean temperature is just 1 for all
graphs (for some consequences of including self-weights in
evolutionary graph theory, see [44]). A similar relationship
with a differently defined temperature can be seen in [57] for
a model of a finite well-mixed population.

This similarity of predictions is not surprising, as both
models are built on sensible assumptions that are realistic for
nonextreme situations (e.g., graphs that are close to being well
mixed). There are some phenomena that we have observed
in our model that have not been observed for evolutionary
graph theory, however, in particular the results from Sec. IV B
where we discuss unusual features of our plots, including the
turning point in the graphs with high temperatures and the
plots where for some temperatures there are multiple trend
lines associated with different clustering coefficients. These
features occur for graphs that are in some sense extreme, with
the potential for very high temperatures and group sizes, and it
is in such graphs that the assumptions of our model and those
of classical evolutionary graph theory differ most. When large
groups can form, the nonlinearity of our model and the payoffs
of the constituent games are most in evidence.

In general, an important feature of our model is the ex-
istence of variable group sizes, which is a realistic feature
absent from evolutionary graph theory models. The fact that
evolutionary graph theory and our more involved framework
often yield similar results can be argued as a case of the
simpler model being sufficient to make good predictions in a
range of circumstances, just as well-mixed populations from
classical evolutionary game theory give results close to evolu-
tionary graph theory in general, and only when the structural
component is significant do the advantages of the evolutionary
graph theory methodology become apparent. In the same
way, it is when structure would yield significantly variable
group sizes, and in particular large groups, that evolutionary
graph theory models do not produce the predictions that our
methodology does.

The variability of group sizes includes the possibility of
being alone. Thus how we define the payoff for being alone
can have a significant effect, especially when mean group
sizes are small, as we have mentioned in Sec. II D 2. We
note that it would be possible to consider lone individuals in
evolutionary graph theory too by introducing self-loops within
the graph, and the likelihood of individual interactions could
be decided by choosing an appropriate weight to this link. The
public goods game considered also has a maximum payoff of
V , irrespective of how many cooperators there are. Alternative
games could thus yield a stronger effect of group size overall.
We note that there are many different multiplayer games that
we could use, including different types of public goods games,
and we consider these, and the effect of different mean group
sizes, in the paper [58]. In fact the discussion about the effect
of individuals being alone can in one sense be seen as a
strength of our work. Lone individuals arise naturally as part
of our framework, and we would argue that this important
feature has often been lost due to the imposition of pairwise
models for all interactions.

An interesting feature of our results is that for the pub-
lic goods game, the fixation probability of defectors has a
decreasing trend with the average group size. At first sight
this contradicts earlier work where the defectors’ fixation
probability increased with the group size as in [37] or [33].
A key difference here is that in the above work the group sizes
were fixed, or the variability of the group sizes was low (in
the case of [37]). Here we have very variable group sizes, with
a significant probability of lone individuals. This particularly
affects the initial trend for small mean group sizes as defectors
do well for lone individuals, and cooperators do especially
well for actual (as opposed to mean) group size two (again
see [37]). We can see from the Figs. 7(d) and 7(e) that the
trend is initially steep but flattens down. In our version of the
public goods game, lone cooperators still pay a cost. We have
checked an alternative version of the game where they do not
(figure not shown). In that version, the trend is reverted, and
we observe a clear increase in the fixation probability with the
mean group size, for all group sizes.

The existence of lone individuals is not completely the
answer, as the trend does keep decreasing even for quite large
group sizes. The variability of the group sizes itself is an
important factor here. A common (but definitely not universal)
feature of variable group sizes (see [58], which considered
a range of multiplayer games) is that the more variable the
group size, the better the cooperators perform relative to the
defectors (in particular the larger the incentive function, the
larger the payoff to a cooperator minus that to a defector). As
group sizes go up for our model both mean and variance in-
crease, so that these effects pull in opposite directions. In gen-
eral specific choice of game, underlying graph, dynamics, and
variability of group size will all have an effect on this issue.

Although the temperature (and to a lesser extent group
size) is a good predictor of the fixation probability, an interest-
ing result is the nonmonotonic trend found on scale-free and
Barábasi-Albert networks for the hawk-dove game. Moreover,
the temperature has values higher than for the completely
mixed case only for these networks, and the turning point in
the trend happened at around the completely mixed tempera-
ture of 0.632. For these cases, consideration of the clustering
coefficient helped us to understand that the concentration of
connections to a small number of nodes enables “hotter”
networks that suppresses selection. In particular, when the
clustering coefficient is low, there could be a marked deviated
from the trend as observed in the figures.

Moreover, the proposed numerical methodology is an al-
ternative to deal efficiently with large networks. The system
of linear equations grows exponentially with the number of
nodes [36,59], and considering the large number of different
networks treated here, an analytical resolution would be ardu-
ous. The methodology used here can be applied to consider
models from the framework of [26] even for much larger pop-
ulations. Therefore, this framework can be computationally
optimized to deal with even larger populations.

There are a number of promising directions for future
work. In previous work, especially [36], we have only consid-
ered this model for relatively small networks, and while our
results are consistent with the earlier ones, consideration of
many larger networks has enabled a clearer pattern, and also
unusual features, to emerge. In future work we will explore
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these various patterns in more detail, and also consider the
effect of different dynamics on the fixation probability. We
can apply the methodology for larger networks as described
above. Although the simulations for 20 nodes took about 1100
hours to complete on a PC with 4.4 GHz and 16 GB RAM,
increasing the size of the network would result in a wider
range of parameters, and it would be interesting to see whether
the trend change found for scale-free networks would be
similar to the Barábasi-Albert case. We use an infrastructure
for parallel computation, which reduced the simulation time
by approximately 70%.

Can we combine the existing predictors, temperature, mean
group size, and clustering coefficient to provide a more effec-
tive single predictor? Can we find other additional secondary
predictors, that in combination with the existing predictors,
especially the temperature, provide even more effective pre-
dictors?

There are a number of different evolutionary dynamics that
can be applied, as detailed in [37], and it is important to
see what predictive factors are needed for these alternative
dynamics; for example, will a different type of temperature
be needed in some cases? It is known that different dynamics
can have a big effect in evolutionary graph theory, and that is
also true in this framework, as seen in [37].

Predicting network properties is a relevant problem in
different areas. In evolutionary graph theory, the graph struc-
tures that promote the evolution of cooperation have been
extensively analyzed, for instance, using direct reciprocity
on graphs [60] and directed networks [61]. Recently, [62]
considered linking together structures that are unpromis-
ing for cooperation to produce an overall structure that fa-
vors it; this is a similar effect to that from our more ex-
treme Barabási-Albert networks that generate a small number
of separate clusters. Related problems consider the evolu-
tion of social behavior [34] and spatial evolutionary games
[14,15,17,63–65].
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71, 1551 (2015).

[37] K. Pattni, M. Broom, and J. Rychtář, J. Theor. Biol. 425, 105
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