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Detecting single-cell stimulation in a large network of integrate-and-fire neurons
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Several experiments have shown that the stimulation of a single neuron in the cortex can influence the local
network activity and even the behavior of an animal. From the theoretical point of view, it is not clear how
stimulating a single cell in a cortical network can evoke a statistically significant change in the activity of a
large population. Our previous study considered a random network of integrate-and-fire neurons and proposed
a way of detecting the stimulation of a single neuron in the activity of a local network: a threshold detector
biased toward a specific subset of neurons. Here, we revisit this model and extend it by introducing a second
network acting as a readout. In the simplest scenario, the readout consists of a collection of integrate-and-fire
neurons with no recurrent connections. In this case, the ability to detect the stimulus does not improve. However,
a readout network with both feed-forward and local recurrent inhibition permits detection with a very small bias,
if compared to the readout scheme introduced previously. The crucial role of inhibition is to reduce global input
cross correlations, the main factor limiting detectability. Finally, we show that this result is robust if recurrent
excitatory connections are included or if a different kind of readout bias (in the synaptic amplitudes instead of
connection probability) is used.
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How can we understand the ways in which the brain
processes sensory input? One classical approach used both
in experiments and theoretical investigations is to present a
stimulus (e.g., a movie, a sound sequence, or a movement of a
tactile sensor) and to analyze how it is represented at different
stages of sensory processing. While this kind of analysis
has provided tremendous insights in particular at the sensory
periphery [1], it can become more difficult to interpret the
results in higher brain areas. Here, neurons are strongly and
recurrently connected to each other and receive huge amounts
of feedback from other regions. Their complex autonomous
quasistochastic dynamics can also be captured with recurrent
spiking network models [2–8] but even in these models it
is often hard to predict how this activity is affected by the
feed-forward sensory input.

One alternative way to explore how information about
sensory stimuli is encoded in networks of the brain is the
approach of reverse physiology [9]. Instead of provoking a
response by presenting a sensory stimulus, neurons in the
sensory cortex are directly stimulated to elicit a behavioral
response. Surprisingly, it was found on several occasions that
single-cell stimulation can have a “macroscopic” impact on
the brain state [10–12] or behavior [13–16]. These observa-
tions are in marked contrast to common textbook wisdom
that only the activity of large neuronal populations can signal
something meaningful. It is a challenging theoretical en-
deavor to understand how networks can display a spontaneous
activity compatible with brain recordings and at the same
time exhibit such sensitivity to the stimulation of a single
neuron [17].
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The behavioral response is probably the result of a long
chain of events possibly involving many brain areas. A
reasonable simplification of this problem focuses on an impor-
tant first step that has to take place if the single-cell stimula-
tion is to be perceivable by the animal: the stimulation should
cause a statistically significant change in a macroscopic part
of the network. Put differently, the (strong) single-cell signal
has to be transferred into a (possibly weak) population sig-
nal. A further constraint for the model is that the network’s
spontaneous activity should be asynchronous and irregular,
as typically observed in cortical networks when the animal
is attentive and performing a task [5,18].

In our previous study [19], we explored this problem in
a random network of integrate-and-fire neurons and found
that single-cell stimulation can be detected in the activity
of a subpopulation of the network if this readout is biased
toward specific neurons. Here, we build on those results
and show that a second network can be used to detect the
perturbation. Remarkably, in the simplest implementation of
the second network we cannot achieve any improvement in
detecting the single-cell stimulus, whereas an incorporation
of more biological details enables a significant enhancement
of the detection performance compared to the case without an
explicit readout network.

Our paper is organized as follows. In Sec. I we first
present the core structure of the model and then describe its
various parts in more detail. In Sec. II we show how the
detectability of the single-cell stimulation in the theoretical
model introduced here compares to our previous model [19].
In the final Sec. III, we discuss the relevance of our results
and we mention some limitations of this study and possible
future directions. Three Appendices provide more mathemat-
ical details on our analytical approach and on the statistics of
the detection process.
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I. MODEL

As in Ref. [19], we mimic the single-cell stimulation exper-
iment in the rat’s barrel cortex [14] in a large (105 neurons)
random recurrent network of integrate-and-fire neurons. In
this paper, we compare how well the stimulus can be detected
in two theoretical setups (Fig. 1). Both setups have in common
the network representing a portion of the barrel cortex, in
which a randomly selected cell is stimulated. Although this
recurrent network model does not possess features specific to
a particular cortical area, for concreteness we refer to it as
the “barrel cortex network” (BCN). The two setups differ in
how the activity of the BCN is read out and forwarded to the
detector.

In setup A [Fig. 1(a)], a subset of neurons (SA) is chosen at
random but with a bias toward the set of neurons (indicated
as B1) receiving direct input from the stimulated cell. The
filtered activity of SA is fed to a detector, whose sensitivity is
parametrized by the position of a decision threshold. By vary-
ing the threshold, the receiver-operating-characteristic (ROC)
curve of the detector can be obtained. In this standard way
of characterizing the performance of a detector, the correct
detection rate (also known as hit rate or true positive rate)
is plotted versus the false positive rate. The distance from
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FIG. 1. Illustration of the two detection schemes compared in
this paper. One neuron embedded in a large recurrent network
representing the barrel cortex (BCN) is stimulated. We compare
the readout scheme A [panel (a)], introduced in Ref. [19], with the
readout scheme B [panel (b)]. In the readout scheme A, the activity
of a subpopulation SA is fed to the detector. Varying the detector
sensitivity (θ±) yields the receiver operating characteristic (ROC)
curve, which describes the performance of the detector as a function
of its sensitivity. The distance of the ROC curve from the diagonal
for a false positive rate of 25% defines the effect size Ȳ . In the
readout scheme B, the readout network (RN) receives feed-forward
input from the barrel cortex network. The activity of the excitatory
neurons within the RN, SB, is then fed to the detector. In both cases,
the parameter λ quantifies the bias of the readout toward the set
of neurons B1, the neurons one synapse away from the stimulated
neuron.

the diagonal (the chance level) for a suitably chosen value of
the threshold defines the effect size Ȳ , the final output of the
model. Apart from some minor differences discussed in the
following, this is the setup considered in Ref. [19].

In setup B [Fig. 1(b)], a readout network (RN) receiving
feed-forward input from the BCN is introduced. Each neuron
in the RN receives input from a different subset of the BCN.
These sets of input neurons are chosen again at random with
a bias toward B1. The activity of all excitatory neurons in
the RN, SB, is then fed to the same detector as in setup A.
For both setups, the bias is parametrized by 0 � λ � 1, where
λ = λ0 means no bias, λ = 1 is the maximum bias toward B1,
and λ = 0 is the maximum bias against B1. In the following
subsections the components of the two setups are described
in more detail. Furthermore, in Table I all parameters used in
this paper are reported with their numerical value.

A. Barrel cortex network

The BCN is modeled as a variant of the Amit-Brunel net-
work [20,21]. All neurons are leaky integrate-and-fire (LIF)
point neurons [22]: the membrane potential of the kth neuron,
vk , evolves according to

τmv̇k (t ) = −vk (t ) + Rm[Iext,k (t ) + Irec,k (t )], (1)

where τm = 20 ms is the membrane time constant, Rm is the
membrane resistance, and Iext,k (t ) and Irec,k (t ) are the external
background input and the recurrent input from other neurons
in the network, respectively. Action potentials are mimicked
by the fire-and-reset rule: whenever vk (t ) crosses the firing
threshold vT = 20 mV (voltages are measured with respect
to the resting potential) a spike is emitted and vk (t ) is set
and clamped to vR = 10 mV for the duration of the absolute
refractory period τref = 2 ms. The times of threshold crossings
of the kth neuron, ti,k , define xk (t ), the spike train emitted by
neuron k:

xk (t ) =
∑

i

δ(t − ti,k ). (2)

The BCN network consists of NE = 8 × 104 excitatory and
NI = γ NE = 2 × 104 inhibitory neurons, which corresponds
to the size of about five cortical barrels [23]. Neurons are
coupled by current-based synapses, so that the input current
from the BCN to neuron k is

Irec,k (t )= τm

Rm

⎡
⎣ ∑

j∈Pe(k)

Jk jx j (t −Dk j )−g
∑

�∈Pi (k)

Jk�x�(t −Dk�)

⎤
⎦,

(3)

where Pe(k) is a random set of CE = 4000 excitatory neu-
rons, Pi(k) is a random set of CI = γCE = 1000 inhibitory
neurons, Jk j and Jk� are independent exponentially distributed
random numbers with mean J = 0.1 mV, and Dk j and Dkl are
transmission delays, randomly drawn in the interval 0.5 ms to
2.0 ms. Autapses (self-coupling) were excluded; i.e., Jii = 0
for any i. By construction, the connection probability between
two neurons is approximately independent of the neuron type
and is pc ≈ C/N = 0.05, where N = NE + NI = 105 is the
total network size and C = CE + CI = 5 × 103 is the total
number of inputs per neuron. Hence, the connectivity of the
network is sparse.
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TABLE I. List of parameters used in this paper with respective numerical values.

Symbol Value Description

τm 20 ms membrane time constant
τref 2 ms refractory period
vT 20 mV threshold voltage
vR 10 mV reset voltage

RmI0 5.2 mV constant external input (RmI0 = −18 mV for the RN in Sec. II A)
Cext 700 number of excitatory external Poisson inputs per neuron
rext 12 Hz rate of excitatory external Poisson inputs

NE 80 000 number of excitatory neurons in the BCN
γ 0.25 ratio of inhibitory to excitatory neurons
NI γ NE number of inhibitory neurons
CE 4000 number of excitatory inputs per neuron
CI γCE number of inhibitory inputs per neuron
J 0.1 mV average synaptic coupling strength
g 7 strength of inhibitory relative to excitatory coupling
Dmin 0.5 mV minimum transmission delay
Dmax 2.0 ms maximum transmission delay

Ĉ 4000 feed-forward (from the BCN to the RN) inputs per neuron (Ĉ = 1000 in Sec. II C)
NB 10 000 number of excitatory neurons in the RN, i.e., in SB

NI γ NB number of inhibitory neurons in the RN
CE CE − Ĉ number of recurrent excitatory inputs per neuron in the RN
CI CI number of recurrent inhibitory inputs per neuron in the RN

Ts 400 ms stimulus duration
Rm�I0 23 mV stimulus intensity
Tw 1200 ms time window for single-cell detection
τ f 100 ms width of time filter for detection
NA Ĉ number of neurons in the readout set SA

Tic 500 ms initial simulation time to forget initial conditions
T 3000 ms simulation time (data acquisition)
�t 0.1 ms simulation time step
Ntrials 900 number of trials for each network simulation

The strength of inhibition relative to excitation g = 7 is
chosen such that the spontaneous firing of the BCN is asyn-
chronous and irregular (AI) with low mean firing rate rsp ≈
2 Hz. This choice is motivated by the fact that the AI firing
regime is generally associated with the attentive state [5] and
spontaneous firing rates in the barrel cortex are typically quite
low [24,25]. The external input is the sum of a constant part I0

and of Poissonian (temporally uncorrelated) shot noise

Iext,k (t ) = I0 + τm

Rm

⎡
⎣ Cext∑

j=1

∑
l

Jk, j,lδ(t − tk, j,l )

⎤
⎦, (4)

where tk, j,l are independent spiking times with mean rate
rext = 12 Hz, Cext = 700 is the number of external inputs
per neuron, and Jk, j,l are i.i.d. samples from an exponential
distribution with mean value J = 0.1 mV. The constant input
RmI0 = 5.2 mV is chosen such that the total mean external in-
put is slightly above the firing threshold RmI0 + τmCextJrext =
22 mV. Note that the mean recurrent input is inhibitory. There-
fore, the total mean input is below the firing threshold and
neurons fire driven by input fluctuations. The mean voltage
can be roughly estimated by

〈v〉 = RmI0 + τmJ[Cextrext + CE rsp(1 − gγ )] ≈ 10 mV, (5)

which is well below the firing threshold (the actual 〈v〉 is
slightly lower because of the effect of spikes). A crude es-
timate of the magnitude of the voltage fluctuations can be
obtained by assuming (spatially and temporally) uncorrelated
Poisson input:

σv ≈
(∫ +∞

−∞
df

τ 2
mJ2

1 + (2πτm f )2
[Cextrext + CE rsp(1 + g2γ )]

) 1
2

=
(

τmJ2

2
[Cextrext + CE rsp(1 + g2γ )]

) 1
2

≈ 3.5 mV. (6)

The measured σv is actually ≈20% larger than predicted
by Eq. (6) but still rather small compared to the distance
from 〈v〉 to the threshold, which is consistent with irregular
fluctuation-driven firing. Previous theoretical work has shown
that combining total mean external input above threshold and
net negative recurrent feedback is necessary to obtain AI firing
at low rate for this kind of network model [4].

B. Stimulus and firing rate response

In the experiment [14], each cell was stimulated several
times (15 times on average). However, the final result was
averaged over many cells (51) from many animals. For sim-
plicity, we chose here to simulate a comparable total number
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FIG. 2. (a) Illustration of the network representing the barrel
cortex (BCN). B0 is the stimulated cell; B1 is the set of cells receiving
direct input from B0; B2 is the set of cells receiving no direct
input from B0. Note that the network is completely random and
unstructured, and cells are grouped together only for visualization
purposes. (b) Firing rate deviation of B1 and B2 in response to the
stimulus, filtered with two different time steps (black curve for 1 ms,
blue for 20 ms) to reduce fluctuations due to the finite number of
trials (1000). The thicker red line is the theory resulting from Eqs. (9)
and (11).

of trials (900) and to change the network on every trial. As
a consequence, trial average implies also averaging over the
network connectivity (including weights and delays), over
the random initial conditions, and over realizations of the
input noise. With this premise, we can now describe how we
mimicked the single-cell stimulation experiment.

On each trial, the network was first run for Tic = 500 ms
to forget initial conditions. Afterward, the network is sim-
ulated for a total time of T = 3000 ms. In the middle of
the simulation time, at t = 0, one randomly selected cell is
stimulated for Ts = 400 ms. The stimulus consists of a current
step of intensity Rm�I0 = 23 mV which brings the firing rate
of the stimulated cell to about 80 Hz, comparable to the
evoked rate increase in the experiment [14]. The network was
implemented in C++ and integrated with an Euler scheme
with time step 0.1 ms.

The stimulation protocol and the notation are illustrated in
Fig. 2(a). The stimulated cell is labeled as B0 and can be either
excitatory or inhibitory. Cells receiving direct input from the
stimulated neuron, i.e., neurons that are—postsynaptically—
one connection away from B0, are labeled as B1. Neurons that
receive no direct input from B0 form the set B2, which are al-
most surely exactly two links away from B0 (the probability of

observing a neuron three synapses away is extremely small).
Note that the network has no spatial structure, and neurons in
Fig. 2 are grouped only for illustration convenience.

During the stimulus, the network quickly reaches a new
steady state, in which the average firing rates of B0, B1, and
B2, are different from each other and from the spontaneous
value rsp. For the time-dependent firing rate of population B�

we employ the common definition [22]

r�(t ) =
〈

1

N�

∑
j∈B�

x j (t )

〉
, (7)

where � = 0, 1, 2 and N� is the size of the respective pop-
ulation. Angular brackets indicate here (as well as in the
following) averaging over different realizations of the network
connectivity, of the input noise, and of the random initial
conditions.

To avoid an overladen notation, we will indicate with
r� with no time argument the steady-state firing rate the
population B� reaches during the stimulation. These rates can
be approximately predicted by solving a system of equations
numerically, in which each output firing rate is a function
of its excitatory (νe,�, with � = 0, 1, 2) and inhibitory (νi,�)
input firing rates. These equations describe the state of the
system during the stimulation in the static picture (i.e., after
all transients have passed) and for an average network real-
ization. The input to the �th subpopulation is determined by
the sum of the input firing rates from all other subpopulations
multiplied by the respective average number of connections to
B�. Excitatory input rates also have an additional term due to
the external Poissonian drive. For the case of excitatory B0 the
system is

r0 = φsn(νe,0, νi,0, I0 + �I0),

r1 = φsn(νe,1, νi,1, I0),

r2 = φsn(νe,2, νi,2, I0),

νe,0 = pcCE r1 + (1 − pc)CE r2 + Cextrext,

νe,1 = r0 + pc(CE − 1)r1 + (1 − pc)(CE − 1)r2 + Cextrext,

νe,2 = pcCE r1 + (1 − pc)CE r2 + Cextrext,

νi,0 = pcγCE r1 + (1 − pc)γCE r2,

νi,1 = pcγCE r1 + (1 − pc)γCE r2,

νi,2 = pcγCE r1 + (1 − pc)γCE r2. (8)

In these equations we assume (CE − 1)/(NE − 1) ≈
CE/(NE − 1) ≈ pc. Within this approximation, B1 contains
on average NE pc = CE excitatory neurons. Consider the
excitatory inputs to B0 and to B2 (fourth and sixth lines
in the above equations): the probability of receiving input
from B0 is zero, either because autapses are forbidden or
by definition of B2; the probability of receiving input from
B1 is CE/NE = pc; the probability of receiving input from
B2 is 1 − pc. Therefore, the prefactors multiplying r0, r1,
and r2 are zero, pcCE , and (1 − pc)CE , respectively. If we
consider a neuron belonging to B1 (fifth line of the above
set of equations), the probability of receiving input from B0

is unity by definition, which imposes the prefactor one to
r0 and leaves only CE − 1 connections to assign to r1 and
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r2. These remaining CE − 1 connections will originate from
B1 with probability pc and from B2 with probability 1 − pc,
which explains the factors pc(CE − 1) and (1 − pc)(CE − 1)
multiplying r1 and r2, respectively. Similar considerations
motivate the prefactors of the inhibitory input terms (again
neglecting corrections of order 1/N).

For inhibitory B0 only two equations change compared to
Eq. (8):

. . . ,

νe,1 = pcCE r1 + (1 − pc)CE r2 + Cextrext,

. . . ,

νi,1 = r0 + pc(γCE − 1)r1 + (1 − pc)(γCE − 1)r2,

. . . . (9)

In both sets of equations, the input-output relation is a
straightforward adaptation of Eq. (10) from Ref. [26], the
firing rate of a LIF neuron driven by excitatory and inhibitory
shot noise:

φsn(νe, νi ) =
[
τref + τm

∫ 1/J

0

ds

s
Z−1

0 (s, νe, νi )

×
(

esv̂T

1 − Js
− esv̂R

)]−1

, (10)

where Z−1
0 (s, νe, νi ) = (1 − Js)τmνe (1 + gJs)τmνi , v̂R = vR −

RmI0, and v̂T = vT − RmI0.
Note that Eq. (10) is exact for Poissonian shot noise with

exponentially drawn weights. Neurons in our network receive
an external input noise that satisfies these conditions; how-
ever, inputs from recurrent connections do have a temporal
correlation [8,27], and weights are drawn only once when
the network is constructed, but then remain unchanged. Still,
given the low firing rate and the high number of connections
per neuron, both conditions are approximately satisfied also
by the recurrent input. Indeed, the solution of Eq. (8) predicts
the network spontaneous and evoked firing rates rather well
also in the absence of external shot-noise input (see Ref. [19]).
The prediction is more accurate than the more commonly used
diffusion approximation.

The time-dependent firing rates of the populations B1 and
B2 in response to the single-cell stimulation can be described
by an exponential relaxation from the spontaneous value to the
new steady-state value. If we include also the part of the time
course after we have switched off the stimulus the response of
B� can be well approximated by

�r�(t ) = r�(t ) − rsp ≈ (r� − rsp)�a(t )

≈ �r�

[
H (t )

(
1 − e− t

τ1
) − H (t − Ts)

(
1 − e− t−Ts

τ2
)]

,

(11)

where �r� = r� − rsp is the steady-state deviation of the firing
rate of population B� and H (t ) is the Heaviside step function.
In the asynchronous state and for a weak signal, a “quasista-
tionary” approximation can be attempted (see [22], chapter
15), in which both time constants are taken equal to the
membrane time constant. Indeed, setting τ1,2 = τm provides
a reasonable agreement with the rate changes observed in the
simulations, as seen in Fig. 2(b). Here, the firing rate response

for the case of inhibitory B0 is plotted. Intuitively, the firing
rate response is stronger for B1 than B2. Furthermore, the two
effects are of opposite sign. To understand why stimulating an
inhibitory cell has an excitatory effect on B2, we recall that
the net recurrent input is inhibitory. Therefore, the inhibiting
effect of B0 on B1 reduces the amount of recurrent inhibition
that B2 receives from B1, causing a weak increase in the firing
rate of B2. In the case of excitatory B0, the firing rate response
of B1 is positive, while that of B2 is negative (not shown; see
also [19], Fig. 1).

Of course, the actual network response is more complex
than Eq. (11). For instance, a transient, high-frequency oscilla-
tion is excited just after the stimulus is switched off [Fig. 2(b),
just after t = 400 ms]. However, one must consider that this
brief oscillation is rather weak in the first place, if compared to
the noise level of a single trial [curves in Fig. 2(b) are averaged
over 1000 trials]; then, it is low-pass filtered by the detector
(see next section). Hence, it is unlikely that the synchro-
nization seen in Fig. 2(b) or other high-frequency transients
can play a significant role in the detection of the stimulus.
Even the most prominent feature of the time-dependent rate
dynamics—i.e., the exponential relaxation seen in Eq. (11)—
happens on a timescale that is much smaller than the stimulus
duration and has no large impact on the detectability of the
stimulus. Therefore, when discussing the firing-rate response
in the Results section, we will neglect any time dependence of
r�(t ) and assume that firing rates jump almost instantaneously
to the new constant value r� as predicted by Eqs. (8) and (9).

C. Readout

The detector receives input from the set of neurons SX .
We recall that λ ∈ [0, 1] quantifies the bias when selecting
input neurons from B1 (the subpopulation that receives input
directly from the stimulated cell B0). The value of λ0 (no bias)
is the size of B1 divided by the total size of the BCN.

In the first setup [Fig. 1(a)], X = A, and SA is a subset
of Ĉ excitatory neurons excluding the stimulated cell. In line
with the meaning of λ explained above, SA is constructed by
randomly selecting λĈ neurons from B1 and (1 − λ)Ĉ from
B2. In the following we use Ĉ = 4000 except for Sec. II C,
where Ĉ = 1000.

In the second setup [Fig. 1(b)], SB is the set of all excitatory
neurons of the RN. The size of SB is NB = 1 × 104, which is
the order of magnitude of a cortical column [23]. Each neuron
in SB receives feedforward input from Ĉ neurons in the BCN
in addition to the local recurrent input and external shot noise.
This feedforward input is purely excitatory, in line with the
view that long-range projections are mainly excitatory. Hence,
the kth neuron in SB evolves according to

τmv̇k (t ) = −vk (t ) + Rm[Iext,k (t ) + Irec,k (t ) + IFF,k (t )], (12)

where Iext,k (t ) are Irec,k (t ) analogous to Eqs. (3) and (4),
respectively. The third input term represents the input from
the BCN to the RN and reads

IFF,k (t ) = τm

Rm

∑
j∈Qλ(k)

JFF
k j x j

(
t − DFF

k j

)
, (13)

where the weights JFF
k j are distributed exponentially with mean

J = 0.1 mV and the delays DFF
k j are uniformly distributed in
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FIG. 3. Illustration of the detector. Two trials of the readout ac-
tivity RA

λ are plotted for two values of the bias parameter λ. Crossings
of the threshold θ+ or of the threshold θ− define false positive events
if they occur before the stimulus onset, i.e., for −Tw < t < 0, or
correct detection events for 0 < t < Tw .

the range 0.5 ms to 2.0 ms, as for the BCN. The presynaptic
population of the kth neuron, Qλ(k), consists of Ĉ excitatory
neurons drawn from B1 with probability λ, otherwise taken
from B2 (to be consistent with the first setup, B0 is excluded).
Therefore, λ represents here the average overlap between
B1 and Qλ(k); the overlap for each Qλ(k) is binomially
distributed with a narrow relative standard deviation as the
number of feed-forward inputs per neuron is large.

While Eq. (12) describes the general case considered in
this paper, we investigate and compare various configurations
for the RN, so that some details differ for each case and are
therefore discussed in the respective subsection of the Results.

D. Detection and effect size

The detection is common to the two setups and works
as follows. First, the input spike trains are summed up and
filtered to obtain the readout activity RX

λ (t ):

RX
λ (t ) = 1

NX

∑
j∈SX

x j (t )  Fτ f (t ), (14)

where NX is the number of neurons in SX and  means
convolution with the filter, a truncated Gaussian

Fτ f (t ) = H (t )H (3τ f − t )√
πτ 2

f /2
exp

[
−(t − 3τ f /2)2

τ 2
f /2

]
. (15)

The filter is causal and its width is controlled by the parameter
τ f = 100 ms. The chosen value for this timescale is well in
the range of slow NMDA synapses [28] and reflects a typical
speed for the integration of information.

As an example, two trials for the activity RA
λ (t ) are plotted

in Fig. 3 for inhibitory B0 and for two particular values
of λ. Before the stimulus onset (occurring at t = 0), RA

λ (t )
fluctuates around the network spontaneous firing rate. After-
ward, it reaches transiently a new plateau rλ = r1λ + r2(1 −
λ), where r1 and r2 can be calculated by either Eq. (8) or
Eq. (9) [19].

Because the stimulated cell can be either excitatory or in-
hibitory, we consider in fact two distinct detectors (differently
from Ref. [19]), and consider their output separately. One
detector reacts to deviations in the positive direction while

the other one responds to deflections in the negative direction.
More precisely, we set both an upper threshold θ+ and a lower
threshold θ− together with a detection window Tw = 1200 ms.
The θ+ detector will react whenever a trajectory exceeds θ+
(we use the same symbol to indicate the detector and the
corresponding threshold) while the θ− detector whenever a
trajectory falls below θ− in the relevant time interval: If the
crossing event happens before the stimulus onset, i.e., in the
interval (−Tw, 0), it is considered as a false positive and
indicated with either Z+(θ+) or Z−(θ−) depending on the
detector type. Otherwise, if it happens for 0 < t < Tw it is
classified as a correct detection and indicated as W+(θ+) or
W−(θ−). The fraction of trials in which an event is detected
defines the respective detection rates as a function of the
threshold. For the θ+ detector

Z+
λ (θ+) =

〈
max

t∈(−Tw,0)

{
H

(
RX

λ (t ) − θ+
)}〉

, (16)

where H (t ) is again the Heaviside function. For downward
crossings

Z−
λ (θ−) =

〈
max

t∈(−Tw,0)

{
H

(
θ− − RX

λ (t )
)}〉

, (17)

and correct detection rates W±
λ (θ ) are analogously defined

but for t ∈ (0, Tw ). Plotting the correct detection rate as a
function of the false positive rate upon variation of the detector
sensitivity (a high θ+ or a low θ− corresponds to low sensi-
tivity, i.e., low detection rates) yields the receiver-operating-
characteristic (ROC) curve, the standard way of visualizing
the performance of a detector (see Fig. 1). Following [14],
we define the effect size as the difference between correct
detection and false positive rate,

Y±
λ (θ±) = W±

λ (θ±) − Z±
λ (θ±), (18)

which depends both on λ and θ±. In experiments, the sensi-
tivity, i.e., the guessing or false positive rate, can be indirectly
influenced by rewards during training but cannot be directly
controlled or varied, being a property of each individual ex-
perimental subject. Here, we choose a value for the FP rate of
25% which roughly corresponds to the average false positive
rate measured experimentally [14]. Hence, our measure for
the overall performance of the detector is

Ȳ±(λ) = Y±
λ (θ̄±), (19)

with the threshold θ̄± obeying

Z±
λ (θ̄±) = 0.25. (20)

With this choice, the maximum effect size that can be achieved
is 1 − Z±

λ (θ̄±) = 0.75, and the minimum is −Z±
λ (θ̄±) =

−0.25, i.e., the effect size can be negative, which means that
the detector reacts less frequently to a stimulus than chance
level. For each case considered here, the effect size was
obtained from 900 trials and p values were calculated with
Fisher’s exact test to assess the statistical significance at the
standard level of 5%.

We note that the detector considered in Ref. [19] was simi-
lar but showed two differences: First, instead of two detectors
with one threshold, a single detector with two symmetric
thresholds was considered there, which relies on a rather
precise a priori knowledge of the spontaneous firing rate.
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Second, because in the experiments the detection task was
preceded by a training phase, it was assumed that the detection
threshold is optimized during learning. Hence, the effect size
was defined as the maximum of Eq. (18), which corresponds
to the maximum distance of the ROC curve from the diagonal.
The problem of this choice lies in the determination of the p
value: Briefly, applying the standard significance test to the
same data set used to find the optimal threshold does not give
the correct p value.

One proper procedure would be to use separate data sets
to select the optimal threshold and to calculate the effect size,
but this is computationally expensive. Therefore, we choose
here not to optimize the threshold but to select a fixed value, as
explained above. In Appendix B we show that results obtained
by the detector as defined here and as in Ref. [19] are rather
similar. Furthermore, in Appendix C we give more details on
significance tests for the detector with fixed false positive rate
and with optimized threshold.

E. Effect size and signal-to-noise ratio

For a given stimulation time and under simplifying cir-
cumstances, there is a monotonic relationship between the
effect size and the (signed) signal-to-noise ratio (SNR) of the
readout activity, defined as

δX (λ) = �rX
λ

σX
= rX

λ − rsp

σX
, (21)

where only rX
λ , the steady-state deviation of the firing rate

of the population SX , is considered as signal, and σX is the
stationary standard deviation of the population activity

σX =
√〈

RX2
λ

〉 − 〈
RX

λ

〉2
. (22)

Here, angular brackets indicate both averaging over trials and
over the time interval that can be considered stationary, that is,
before the stimulus onset. The dependence of σX on λ will be
mostly ignored in the following and not explicitly indicated.
Note that our SNR (needed for the calculation of the effect
size) differs from the standard definition [29,30] in that we
take into account by the sign whether the signal consists of a
positive or negative deviation from the spontaneous value.

As the SNR is a simpler quantity than the effect size, we
will use it to interpret the qualitative behavior of the effect
size for the two setups. To this end, it suffices to know that
the effect size is an increasing function solely of the SNR, as
long as the activity is approximately Gaussian and the signal
is not too short. The relation between SNR and the effect size
is further described in Appendix A.

In the following, we will make use of the fact that the
variance of the population activity can be decomposed into
two parts, one of which is proportional to the low-frequency
limit of the spike-train power spectrum of a single neuron
Sxx(0), and the other one proportional to the low-frequency
limit of the cross spectrum between spike trains of different
neurons Sx1x2 (0):

σ 2
X ≈ Sxx(0)√

πτ f NX
+ Sx1x2 (0)√

πτ f
. (23)

Here, we exploited the fact that the size of the population NX

is large and that spectral measures depend weakly on frequen-
cies up to 1/τ f , above which the filter is essentially zero. We
note that the approximation in Eq. (23) is rather precise, unlike
many approximations we make in the following, but valid only
in the stationary situation. More details on the definition of
spectral measures and on the relation in Eq. (23) are given in
Appendix A.

II. RESULTS

We now study and compare the detection performance
of the setups A and B, depicted in Fig. 1. As explained
above, setup B differs from setup A in that the detector
does not read in input directly from the BCN, where the
single-cell stimulation occurs, but from an intermediate pro-
cessing stage, the RN. We consider three configurations for
the RN, in order of increasing complexity: (i) a population of
neurons receiving only feed-forward input and no recurrent
connections, (ii) a population of neurons receiving both feed-
forward excitation and local recurrent inhibition, and (iii) a
fully recurrent E-I network receiving feed-forward input from
the BCN.

A. Purely feed-forward readout

The first configuration for the RN we consider is a popu-
lation of LIF neurons receiving feed-forward input from the
BCN, additional shot noise, and no further recurrent input
(Fig. 4). Accordingly, each neuron in SB obeys

τmv̇k (t ) = −vk (t ) + Rm[Iext,k (t ) + IFF,k (t )], (24)

where the external and feed-forward input currents are given
by Eqs. (4) and (13), respectively, and the usual fire-and-reset
rule is applied. Neurons in SB receive as much excitatory
input as neurons in the BCN but no inhibition. To replace
the missing recurrent inhibition and keep the average firing
rate low, the constant input current [included in Iext,k (t ); see
Eq. (4)] is set here to RmI0 = −18.0 mV. With this choice,
rB

sp, the spontaneous firing rate of the RN, is very close to the
spontaneous firing rate of the BCN, that is, rB

sp ≈ 2 Hz. There-
fore, the filtered readout activities of the two setups, RA

λ (t )
and RB

λ (t ), fluctuate around a similar mean value. However,
the magnitude of the fluctuations for the two setups is very
different: fluctuations are small for RA

λ (t ) (σA ≈ 0.09 Hz) and
much larger for RB

λ (t ) (σB ≈ 1.6 Hz). The strong fluctuations
in setup B are due to the amplification of the common input
noise in the driven population of uncoupled cells (cf. [31,32]
for a similar setup and for analytical approaches in this
situation).

As discussed above, the input is not perfectly Poisso-
nian. However, Eq. (10) can still be exploited to obtain a
rough estimate of the output fluctuations. We start from the
decomposition of the readout variance Eq. (23) (see also
Appendix A):

σ 2
B ≈ SE

xx(0)√
πτ f NB

+ SEE
x1x2

(0)√
πτ f

. (25)
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FIG. 4. Detectability of single-cell stimulation does not improve if the readout network (RN) has no recurrent connections but only
integrates feed-forward input from the barrel cortex network (BCN), in which a randomly selected cell (B0) is stimulated. The four panels
on the right side show the effect size as a function of the bias λ for setup A (black symbols and lines) and setup B (orange symbols and
lines). Detection via the θ+ detector is represented by upward pointing triangles (simulations) and continuous lines (theoretical approximation
discussed in Appendix A). Detection via the θ− detector is depicted with downward pointing triangles (simulation) and dashed lines (theory).
In all panels, the vertical dotted line marks λ0, which corresponds to no bias in the input to the detector. Closed symbols indicate statistically
significant points (Fisher’s exact test, p value <0.05). Panels (a) and (c) show results for excitatory B0, while (b) and (d) show results for
inhibitory B0. In panels (a) and (b) the mean input is set such that the spontaneous firing rate of SB is equal to that of the BCN (≈2 Hz). In
panels (c) and (d) the firing rate of the readout is higher (≈15 Hz) to make the readout activity more Gaussian.

The magnitude of the cross correlations at low frequen-
cies is SEE

x1x2
(0) ∼ 0.5 Hz, which has to be compared with

SE
xx(0)/NB ≈ rB

sp/NB ≈ 2 × 10−4 Hz, so that the first term in
Eq. (25) can be safely neglected. In the linear approximation,
output correlations are proportional to the cross correlation
between the input to two neurons (here arbitrarily labeled with
1 and 2) [33,34],

SEE
x1x2

(0) ≈
∣∣∣∣∣drB

sp

dμ

∣∣∣∣∣
2

SE
η1η2

(0). (26)

In the above equation the derivative of rB
sp is taken with respect

to the mean input μ = RmI0 and SE
η1η2

= 〈η̃1η̃
∗
2〉/T , where the

tilde indicates Fourier transformation, asterisk the complex
conjugate, and ηk is the input to the kth neuron in SB. This
input term can be written explicitly as

η̃k = τm

∑
j∈Qλ(k)

Jk je
2π iDk j f x̃ j . (27)

The delay term e2π iDk j f becomes irrelevant in the limit f →
0. Equation (27) can be multiplied by its complex conjugate
and averaged term by term to find an expression for SE

η1η2
(0).

Inserting the result into Eq. (26) yields

SEE
x1x2

(0) ≈
∣∣∣∣∣drB

sp

dμ

∣∣∣∣∣
2

τ 2
mJ2

[
λcĈSE

xx(0) + (Ĉ2 − λcĈ)SEE
x1x2

(0)
]

≈
∣∣∣∣∣drB

sp

dμ

∣∣∣∣∣
2

τ 2
mJ2Ĉ2

[
λcSE

xx(0)

Ĉ
+ SEE

x1x2
(0)

]

= α2

[
λcSE

xx(0)

Ĉ
+ SEE

x1x2
(0)

]
, (28)

where we recall that Ĉ is the number of feed-forward inputs
per neuron. Approximately λcĈ = [λ2 + (1 − λ)λ0]Ĉ inputs
are common to the two neurons. These inputs yield terms
proportional to the single-neuron spike-train spectrum SE

xx(0),
while all remaining pairs yield a term proportional to cross
correlations between excitatory neurons in the BCN SEE

x1x2
(0).

We defined α = τmJĈdrB
sp/dμ as shorthand for the lineariza-

tion of the input-output relation.
For our choice of parameters, the term proportional to the

power spectrum in Eq. (28) can be neglected except for the
largest values of λ. Exploiting this fact, we can insert Eq. (28)
without the first term into Eq. (25), which yields

σ 2
B ≈ SEE

x1x2
(0)√

πτ f
≈ α2SEE

x1x2
(0)√

πτ f
≈ α2

[
σ 2

A − SE
xx(0)

NA
√

πτ f

]
, (29)
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where in the last step we have used Eq. (23) with X = A.
Neglecting also the second term related to the power spectrum
in the last equation gives a simple proportionality between the
variances of RA

λ (t ) and RB
λ (t ):

σ 2
B ≈ α2σ 2

A . (30)

In the linear response approximation the numerators of the
SNR are also proportional to each other:

�rB
λ ≈ drB

sp

dμ
τmJĈ�rA

λ = α�rA
λ . (31)

Therefore, by combining the above equations one finds that
the SNRs for the two setups should be approximately the
same:

δB(λ) = �rB
λ

σB
≈ α�rA

λ

ασA
= δA(λ). (32)

Although not precise [35], these approximations suggest
that the effect sizes for setups A and B should be similar. In
Fig. 4 we plot the effect size for the two setups as a function
of the bias λ. The vertical dotted line indicates λ = λ0, i.e.,
no readout bias. Black symbols and lines correspond to setup
A, while orange symbols and lines correspond to setup B.
Upward pointing triangles (simulation results) and continuous
lines (theoretical approximation discussed in Appendix A)
stand for detection by the upper-boundary detector θ̄+, while
downward pointing triangles (simulations) and dashed lines
(theory) represent the effect size obtained from the lower-
boundary detector θ̄−. Closed symbols are statistically signifi-
cant points. In Fig. 4(a) we consider the case of excitatory B0:
a significant detection is possible only for rather large values
of the readout bias and setup A slightly outperforms setup B.
Only for λ = 0.5 is the lower barrier significantly different
from zero, but the effect size is negative (i.e., the detector
reacts less frequently to a stimulus than chance). Otherwise,
only the upper-barrier detector can detect the stimulus. If
the stimulated cell is inhibitory [Fig. 4(b)], the roles of the
two detectors are reversed, and the effect size is much larger
and rather similar for both setups, although setup A is again
slightly better than setup B. The minimum bias needed for
significant detection here is λ ≈ 0.1. The better detectability
of inhibitory neurons is consistent with the experimental
results [14,15] and in our model is due to the stronger weights
of inhibitory neurons. We emphasize that strong inhibition is
needed to achieve a stable spontaneous AI firing at low rates
and was not chosen to increase the detectability of inhibitory
neurons.

Because the LIF model performs a nonlinear transforma-
tion of the input, the parameters of the nonlinearity determine
to which degree Eq. (32) approximately holds. For instance,
we can choose not to match the spontaneous firing rates of
the two populations and increase the baseline input to SB and
thus its spontaneous firing rate to rB

sp ≈ 15 Hz. In this case, the
SNR and the effect size change slightly and the performance
of setup B is increased (nothing changes for setup A), as
can be seen in Fig. 4(c) for excitatory and in Fig. 4(d) for
inhibitory B0, but the change is moderate.

The results of this subsection show that a population of
cells purely integrating input from the BCN does not give

a clear advantage to setup B over setup A because both
signal and noise are similarly amplified by the input-output
relation of the LIF model. For a linear system, the SNR
would not change under any circumstance. However, as any
integrate-and-fire neuron model is certainly nonlinear, playing
with parameters can improve the detection performance in
principle. As shown above, increasing the output firing rate of
the readout can enhance the SNR for setup B but yields only
a modest improvement. Another simple way to influence the
SNR would be to change the size of SB, thus reducing the first
term in Eq. (25) and the total readout variance σ 2

B . However,
cortical populations cannot be arbitrarily large and firing rates
in the cortex are typically low, which constrains the possible
improvement with the readout considered in this subsection.

B. Readout population with local inhibition

In cortical circuits, excitatory neurons are interconnected
with inhibitory neurons; therefore it is natural to extend the
RN and include a second population of inhibitory neurons. As
for the BCN we keep the ratio of excitatory to inhibitory neu-
rons at four to one. Therefore, the size of this local population
of inhibitory neurons I is NI = γ NB = 2500. Feed-forward
connections do not specifically target excitatory neurons [36].
Therefore, all excitatory and inhibitory neurons in the RN
receive the same number of feed-forward excitatory inputs
from the BCN and the same local recurrent inhibition (see
Fig. 5). Each neuron in the RN evolves according to

τmv̇k (t ) = −vk (t ) + Rm[Iext,k (t ) + Irec,k (t ) + IFF,k (t )]. (33)

The external input term is as in the previous subsection,
while the recurrent input is purely inhibitory,

Irec,k (t ) = τm

Rm

⎡
⎣−g

∑
�∈Li (k)

Jr
k�x�

(
t − Dr

k�

)⎤⎦, (34)

for both excitatory and inhibitory neurons in the RN. Here,
Li(k) are sets of CI = 1000 neurons selected at random within
I. The feed-forward input is the same as in Eq. (13),

IFF,k (t ) = τm

Rm

∑
j∈Qλ

e (k)

JFF
k j x j

(
t − DFF

k j

)
, (35)

where λ = λe if the considered neuron is in SB and λ = λi

if it is in I. Put differently, the readout bias to excitatory
and inhibitory readout neurons is regulated by two separate
parameters. To avoid confusion, from now on we indicate with
λA the readout bias for setup A.

Because each neuron in SB and I receives the same num-
ber of excitatory and inhibitory inputs, the spontaneous firing
rate of the two populations is similar to the spontaneous rate
of the BCN, rB

sp ≈ rIsp ≈ rsp ≈ 2 Hz.
We first consider the scenario in which learning involves

primarily excitatory-excitatory feed-forward connections. To
this end, we vary λe and fix λi = λ0. We also set λA = λe

to compare the two setups. In Figs. 5(a) and 5(b) we show
the effect size as a function of λe for the case of excitatory
and inhibitory B0, respectively. Colors and symbols are as in
Fig. 4. The difference between the two setups is striking: For
excitatory B0 the detection is always significant except for val-
ues of λe very close to the unbiased case λe = λ0 [Fig. 5(a)].
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FIG. 5. Large enhancement in the detectability of single-cell stimulation owing to local inhibition. Here, the readout network (RN) consists
of the population SB and the local inhibitory population I. Both SB and I receive feed-forward input from the barrel cortex network (BCN),
in which a random cell is stimulated, and inhibitory input from I. Panels on the right side show the effect size as a function of the bias for
setup A, setup B, and both detector types θ±. Color code and symbols are as in Fig. 4. Panels (a) and (c) show results for excitatory B0, while
panels (b) and (d) show results for inhibitory B0. In panels (a) and (b) λe (the connection bias from the BCN to SB) is varied while λA = λe

and λi = λ0. In panels (c) and (d) λi (the connection bias from the BCN to I) is varied while λA = λi and λe = λ0.

For inhibitory B0, the only point for which the detection is
not significant is λe = λ0 [Fig. 5(b)]. For excitatory B0 and
λe = 0.5 [Fig. 5(a)], and for inhibitory B0 and many values of
λe [Fig. 5(b)], the maximum effect size of 0.75 is achieved.
For excitatory B0 and λe > λ0 the upper threshold detects
the signal [upward pointing triangles and continuous lines in
Fig. 5(a)]. For λe < λ0 the lower threshold detects the signal
[downward pointing triangles and dashed lines in Fig. 5(a)],
because here the detector is biased against B1 and toward B2,
which responds to the stimulus in the opposite direction (see
also Sec. I B). The role of the two barriers is swapped in the
case of inhibitory B0 [Fig. 5(b)].

We can interpret this striking difference between the two
setups in terms of the SNR, similarly to the previous subsec-
tion. To this end, we first consider the linear response of the
inhibitory interneurons of the RN population,

�rI ≈ drB
sp

dμ

[
τmJĈ�rA

λi
− gτmJCI�rI

]
, (36)

and solve it for �rI ,

�rI = α
�rA

λi

1 + gγα
, (37)

where we used the fact that CI = γCE = γ Ĉ and �rA
λ =

λ�r1 + (1 − λ)�r2. Note that drB
sp/dμ (and thus α) here is

smaller than in the previous subsection, presumably because
of the much larger input noise due to the 1000 inhibitory
inputs absent in Sec. II A. We can use Eq. (37) to calculate

the linear response of the readout neurons SB:

�rB ≈ α
(
�rA

λe
− gγ�rI

) = α

(
�rA

λe
− gγα�rA

λi

1 + gγα

)
. (38)

If we assume that γ gα � 1 and �rA
λi
/�rA

λe
≈ λi/λe (this

second approximation is not very precise if λe, λi are very
small), we obtain

�rB ≈ α�rA
λe

(
1 − λi

λe

)
. (39)

Turning to the variance of the readout activity σB, we first
consider input cross correlations that affect σB via Eqs. (25)
and (26). Input cross correlations can be computed in the
same way as in the previous subsection. However, here neuron
pairs must be distinguished depending on the neuron type, as
average cross correlations are different for different neuron
types [37]. Carrying out the averaging yields

SE
η1η2

(0) ≈ τ 2
mJ2Ĉ

[
λcSE

xx(0) + λ̂γ g2SI
xx(0) + (Ĉ − λc)SEE

x1x2
(0)

− 2gγ ĈSEI
x1x2

(0) + g2γ (γ Ĉ − λ̂)SII
x1x2

(0)
]

≈ τ 2
mJ2Ĉ2

[
λcSE

xx(0) + λ̂γ g2SI
xx(0)

Ĉ
+ SEE

x1x2
(0)

− 2gγ SEI
x1x2

(0) + g2γ 2SII
x1x2

(0)

]
, (40)

where SE
xx(0) and SI

xx(0) are low-frequency limits of the single
spike-train power spectra of excitatory neurons in the BCN
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and of inhibitory neurons in I, respectively. Furthermore, λ̂ =
CE/NB, λc = λ2

e + (1 − λe)2λ0, the term SEI
x1x2

(0) represents
cross correlations between excitatory neurons in the BCN
and neurons in I, and the term SII

x1x2
(0) represents cross

correlations between pairs of neurons within I. The cross
spectra SII

x1x2
(0) and SEI

x1x2
(0) both depend nontrivially on λi,

which we do not indicate for simplicity.
Because of the dense connectivity in I, the term SII

x1x2
(0)

is negative, while the term SEI
x1x2

(0) is positive, because exci-
tatory neurons in the BCN drive neurons in I. Taking into
account the prefactors, we see that both terms contribute
negatively to the sum in Eq. (40) and thus reduce the total
input cross correlation for low frequencies. Again, the linear
response ansatz Eq. (26) largely overestimates the output
cross correlation. However, numerical measurements reveal
that SEE

x1x2
(0) ≈ SEE

x1x2
(0) and that in the end (except for large

values of λe � 0.2, for which the first term proportional to the
power spectrum becomes large),

σ 2
B ≈ σ 2

A . (41)

We can now combine this last observation with Eq. (38),
which yields for the SNRs δA, δB of the two setups

δB

δA
≈ α

�rA
λA

(
�rA

λe
− gγα�rA

λi

1 + gγα

)
≈ α

�rA
λA

(
�rA

λe
− �rA

λi

)
.

(42)

With the help of Eq. (42) we can interpret the results of
Figs. 5(a) and 5(b) discussed above. There, λA = λe and λi =
λ0, so that Eq. (42) is further reduced to (again under the
assumption γ gα � 1 and �rA

λ0
/�rA

λe
≈ λ0/λe)

δB

δA
≈ α

(
1 − gγα�rA

λ0

(1 + gγα)�rA
λe

)
≈ α

(
1 − λ0

λe

)
. (43)

The input-output linearization is rather steep, α ≈ 8. Hence,
for λe �= λ0 we expect a sizable improvement in the SNR and,
thus, in the effect size. In Figs. 5(a) and 5(b) we see indeed
that the effect size is much larger for setup B whenever λe is
sufficiently larger or smaller than λ0, in line with Eq. (43).
When λe is smaller than λ0, the approximation Eq. (43)
predicts a sign flip and a divergence. In Fig. 5(b) we can see
a small range (between 0.04 � λe � 0.05) where the sign is
indeed swapped: there, the role of the two barriers for setups
B and A is interchanged. However, for smaller values of λe,
the ratio of the two SNRs is actually positive, which means
that Eq. (43) is no longer valid. Going back to Eq. (42) (again
with λA = λe, λi = λ0) and letting λe → 0 we obtain that the
ratio of the SNRs should saturate to

δB

δA
−−−→
λe→0

α

(
1 − �r1

�r2
λ0

)
. (44)

We recall that �r1 and �r2 have opposite signs (see Sec. I B).
Hence, the term in parentheses is larger than one, which
explains why setup B yields a better effect size also for λe 
λ0, as seen in Figs. 5(a) and 5(b).

If we consider the scenario of learning taking place at the
excitatory-to-inhibitory (BCN to RN) synapses, λi is varied
while λe = λ0, i.e., the bias for feed-forward E-E connections
is left at its “natural” value. To compare with setup A, we now

set λA = λi. Performing these substitutions in Eq. (42) and
making the same approximation as in Eq. (43) yields

δB

δA
≈ −α

(
1 − λ0

λi

)
. (45)

The last equation suggests that the increase in the effect size
should be very similar in magnitude to the previous case but
reversed in sign. Indeed, simulation results for setup B in
Figs. 5(c) and 5(d) are almost a copy of Figs. 5(a) and 5(b)
with the role of the barriers exchanged.

A further prediction of Eq. (42) is that for λe = λi = λA

setup B should bring no improvement compared to setup A.
Simulations confirm that in this case setup B performs always
worse than setup A (not shown). In addition, if λe and λi are
both changed in opposite directions, for instance by setting
λe = λ0 + �λ, λi = λ0 − �λ, setup B can significantly detect
the stimulus for �λ as small as ≈0.01 for excitatory B0 and
�λ ≈ 0.005 for inhibitory B0 (not shown).

To sum up the results of this subsection, we conclude that
feed-forward inhibition removes to a great extent input cross
correlations, thus suppressing the main source of noise in
the detection. If the bias of the excitatory readout neurons
is equal to the bias of the inhibitory neurons (i.e., λe = λi),
there is also a similar cancellation effect for the signal and,
consequentially, the detection performance is similar or worse
to that for pure feed-forward excitation. If, however, the
fraction of inputs from B1 to the excitatory and inhibitory
neurons in RN is significantly different (λe �= λi) we find a
strong enhancement of the detection performance.

C. Fully recurrent readout population

Although including a local population of inhibitory in-
terneurons in the RN adds to the realism of the setup, it is
still a somewhat artificial assumption to exclude recurrent
excitatory connections among neurons in the RN. In this
subsection, we allow for recurrent connections between ex-
citatory neurons in the RN. Specifically, we set Ĉ = 1000;
otherwise, the feed-forward input term is as in Eq. (13). The
number of recurrent excitatory inputs within the RN is set to
CE = CE − Ĉ = 3000 so that the total number of excitatory
inputs per neuron remains the same for all neurons as in the
previous cases. Each neuron in RN (both SB and I) evolves
according to Eq. (33), where now the recurrent input term is

Irec,k (t )= τm

Rm

⎡
⎣ ∑

j∈Le(k)

Jr
k jx j

(
t −Dr

k j

)−g
∑

�∈Li (k)

Jr
k�x�

(
t −Dr

k�

)⎤⎦,

(46)

where Le(k) are randomly selected subsets of CE neurons
in SB.

We consider again the special case λi = λ0 and set λA = λe

to compare the two setups [Figs. 6(a) and 6(b)]. We can
see that the qualitative picture is very similar to that of the
previous subsection: the effect size for setup B is everywhere
larger than for setup A, and detection is significant for many
values of λe both for excitatory [Fig. 6(a)] and inhibitory
[Fig. 6(b)]. Again, the detection drops in the vicinity of
λe = λ0.
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FIG. 6. Fully recurrent E-I network also enhances the detectability of the single-cell stimulation. Here, the readout network (RN) consists
of an excitatory population SB and an inhibitory population I, both recurrently connected. The RN receives recurrent excitatory input from SB

(75% of the total recurrent input) and feed-forward excitatory input from the barrel cortex network (BCN) (25% of total input). Panels (a) and
(c) show results for excitatory B0, while panels (b) and (d) show results for inhibitory B0. In panels (a) and (b) the effect size as a function
of the connection bias for excitatory feed-forward projections λe (as in the previous cases) is plotted (λi = λ0 and λA = λe), while in panels
(c) and (d) the bias β represents the relative strength of connections from B1 (see text). Color code and symbols are as in Figs. 4 and 5.

Although the difference between the two setups is quanti-
tatively smaller than in Sec. II B, the difference is still very
pronounced and can be explained similarly to the previous
subsection (justifying the lengthy discussion therein). In anal-
ogy with Eq. (43), we find

δB

δA
≈ α̂

(
1 − λ0

λe

)
, (47)

where

α̂ = α

[
1 − αCE

Ĉ + gγα(Ĉ + CE )

]−1

. (48)

The effective amplification α̂ is here the linear response as in
Sec. II B but corrected by the factor in square brackets due to
recurrent excitation. We note that α is here smaller by a factor
four compared to Sec. II B because of its proportionality to
Ĉ. This reduction is partially compensated by the recurrent
excitation (the factor in square brackets is ≈1.7). As a con-
sequence, α̂ is still significantly larger than one. The most
crucial implication of this in Eq. (47) is that the SNR for setup
B is significantly larger than for setup A if λe is sufficiently
different from λi.

Although formation and elimination of synapses is indeed
observed in the adult brain as a consequence of learning
[38], an interesting question is whether the detection of the
stimulus requires (in our model implicit) rewiring of the
graph or can be realized by changing synaptic weights. In
the following, we address this question by considering this
last setup, depicted in Fig. 6 and modifying the definition of

readout bias: Instead of biasing the connection probability, we
now bias the connection strength. More precisely, we draw
connections with probability λ0 from neurons in B1 to neurons
in SB from an exponential distribution with mean βJ and
with probability 1 − λ0 from neurons in B2 to SB from an
exponential distribution with mean Ĵ = J (1 − βλ0)/(1 − λ0).
By this construction, the average coupling amplitude remains
J and is thus independent of β. From the definition of Ĵ it also
follows that β can be at most 1/λ0. The feed-forward input to
each neuron in the RN reads

IFF,k (t ) = τm

Rm

⎡
⎣ ∑

j∈Qe(k)∩B1

βJFF
k j x j

(
t − DFF

k j

)

+
∑

i∈Qe(k)∩B2

ĴFF
ki xi

(
t − DFF

ki

)⎤⎦. (49)

For setup A, the readout bias is implemented by weighting
differently neurons in B1 and B2. In other words, the readout
activity is now

RA
β (t ) = 1

NA

⎡
⎣β

∑
j∈A∩B1

x j (t ) + 1 − βλ0

1 − λ0

∑
i∈A∩B2

xi(t )

⎤
⎦  Fτ f (t ),

(50)

where the prefactors guarantee again that the mean of RA
β (t )

does not depend on β. In Figs. 6(c) and 6(d) we plot the
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effect size as a function of β for excitatory and inhibitory
B0, respectively. Here, the vertical dotted line marks β = 1,
i.e., no bias. Otherwise, the color coding and symbols are
as in the previous cases. The results are qualitatively very
similar to those of Figs. 6(a) and 6(b). In more detail, we see
that the effect size is rather small for setup A and significant
detection is possible only for very large values of β (only for
the maximum β in the case of excitatory B0). On the contrary,
a significant effect is observed for many values of β for setup
B. For inhibitory B0, the effect is significant for all β �= 1.

To sum up the results of this section, we have added
recurrent excitatory connections to the RN and considered an
alternative definition of the readout bias based on different
connection strength rather than on different connection prob-
ability. In both cases we found a very similar qualitative pic-
ture: the single-cell stimulation can be much better detected in
the activity of a recurrent readout network than in the activity
of the directly stimulated network.

III. DISCUSSION

In this paper we considered the problem of detecting the
strong but brief activation of a single neuron in a large net-
work of integrate-and-fire neurons. We extended our previous
model of Ref. [19] in ways that are both more biologically
plausible and effective.

The detection scheme introduced in Ref. [19] consisted of
a detector reacting to crossings of an upper or lower threshold
by the filtered activity of a subpopulation of the stimulated
network. This represented a cartoon of a readout population
integrating input from the barrel cortex and triggering a down-
stream decision. If the detector represents an excitatory popu-
lation, the downstream reaction would be reasonably triggered
by crossing a certain activity level, i.e., an upper threshold. If
the detector stands for an inhibitory readout population, the
downstream event would be triggered by disinhibition, i.e., by
reducing the inhibition to its target. This mechanism requires
a dip in the instantaneous firing, i.e., the crossing of a lower
threshold. Because neuronal populations are either excitatory
or inhibitory, a detector playing both roles at the same time
disagrees with this picture. Furthermore, using two symmetric
thresholds requires high precision in centering the detector
on the mean firing rate: if the detector is misaligned, one
threshold becomes useless causing the detection performance
to decrease. Requiring such fine-tuning is another weakness
of the detector introduced previously. Here, by using two sep-
arate detectors we solve both issues at the same time: θ+ may
represent a caricature for the effect triggered by an excitatory
neuronal population, while θ− could be the threshold for a
disinhibitory pathway.

The second difference in the detector used here is that we
no longer optimized the detection threshold, but chose a level
corresponding to a fixed false positive rate. Although it is
conceivable that the animal optimizes the threshold during
training, using the optimal threshold poses a technical prob-
lem (discussed in Appendix C): it requires generating separate
data sets for the extraction of the optimal threshold and the
calculation of significance levels, which is computationally
expensive. In addition, learning the optimal threshold requires
training during the single-cell stimulation. In reality, most of

the training is done by extracellular microstimulation, which
activates a group of cells in the local network [39,40]. On
the contrary, choosing a threshold corresponding to a fixed
false positive rate, as done here, only requires the spontaneous
activity and is therefore more consistent with the experiments.

These considerations suggest that the detector we use here
is a better, although very simplistic, representation of how the
activity of the readout population can trigger the behavioral
effect. However, feeding the detector with the activity of a
subpopulation of the stimulated network (as done in setup A,
akin to the procedure in Ref. [19]) is equivalent to assuming
that the decision about the presence of the stimulus is taken
within the stimulated network itself. Functionally, this is
highly unlikely and thus including a second population is an
important extension of the model.

The first possibility we considered for the readout network
(Sec. II A) can be regarded as an implementation of the single-
barrier detector with LIF neurons: the neuronal dynamics play
the role of the filtering and the firing that of the decision
threshold (the reset mechanism has no parallel in the detector).
Therefore, it may appear in the hindsight not too surprising
that the readout performance is similar. Still, a population
of threshold units with independent noise can in principle
decode a signal better than the single unit, an effect known
as suprathreshold stochastic resonance [41–44]. In our case,
however, the input noise is highly correlated, which makes
adding more readout neurons effectively redundant.

In the second configuration (Sec. II B), we added inhibi-
tion, thus enhancing the plausibility of the readout model.
Local inhibitory neurons track global fluctuations in the in-
put and, by inhibiting themselves and the excitatory readout
neurons, actively cancel input cross correlations [5]. Reducing
cross correlations decreases the noise; however, the signal
itself can be seen a source of cross correlation that feed-
forward inhibition can track and remove [45], which does
happen, for instance, in the case of no learning, i.e., of no
readout bias.

The presence of inhibitory neurons in the readout also
implies that two different sets of feed-forward connections can
be biased: those from the stimulated network to the excitatory
readout neurons (corresponding to the bias parameter λe) and
those from the stimulated network to the inhibitory readout
neurons (bias parameter λi). We showed that increasing λe is
tantamount to increasing λi, provided that the upper threshold
detector θ+ is exchanged with the lower threshold detector θ−.
Furthermore, decreasing λe or λi below the natural value λ0

also reverses the role of the barrier, which makes possible to
detect both excitatory or inhibitory B0 by using only the θ+ or
only the θ− detection scheme. Although one type of detector is
enough to detect both kinds of stimuli, two separate detectors
are still required. Using the very same detector, for instance
θ+, would require increasing λe to detect an excitatory B0 and
increasing λi to detect an inhibitory B0. However, if both bias
parameters are changed in parallel, the two signal pathways
(the direct one and the inhibitory one) are still balanced and
the signal is suppressed. Consequently, two different detectors
are needed to detect excitatory and inhibitory B0.

We showed plots for simulations in which λe and λi were
varied separately but another way of breaking the balance is
to change both at the same time. As discussed at the end of
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Sec. II B, the two parameters must be changed in opposite
directions to improve detectability. If we imagine the bias
as the product of a Hebbian-like learning rule, it is intuitive
that maximizing correlation between the firing rate of B1 and
of SB can be done both by potentiating direct connections
between the two and by weakening feed-forward inhibition.
Put differently, changing λe and λi in opposite directions is
two ways of obtaining the same effect. Conversely, it seems
unlikely that a learning rule would increase or decrease λe and
λi by the same amount, as the two effects cancel each other.

It must be noted that the bias increases the correlations
due to common inputs. However, the larger component of
input cross correlations consists of global oscillations and not
of shared input. These global cross correlations are removed
by inhibition regardless of the bias, which hence enables the
readout inhibition to cancel a large portion of noise without
eliminating the signal.

In the third part of the results (Sec. II C) we checked
the robustness of the results by adding recurrent excitation
to the readout network and decreasing the number of feed-
forward inputs. The recurrent excitatory connections increase
cross correlations within the readout network, thus increasing
the readout noise, while the smaller number of feed-forward
inputs reduces the signal. Nevertheless, the single-cell stim-
ulation remained detectable even if the feed-forward input
from the stimulated network was only one fourth of the total
recurrent input (and an even smaller fraction of the total input,
considering the external shot noise). Still, a sufficiently large
number of feed-forward inputs is needed to have amplification
of the signal-to-noise ratio (to increase what we called α in
this study), or possibly fewer inputs with stronger synaptic
efficacy.

Finally, we considered a change of synaptic amplitudes as
a different possibility to bias the readout: we strengthened (or
weakened) direct connections from B1 to SB while keeping
the mean input to each neuron constant, which in turn ensures
that the mean firing rate does not change too much. An explicit
learning model is beyond the scope of this paper, but it is
conceivable that such a synaptic change could be achieved by
means of a Hebbian learning rule with local homeostasis.

In all configurations considered here, the intermediate
readout network of setup B considerably lowered the neces-
sary bias for detection, which means that a smaller rewiring or
synaptic change from the naive state is required. Importantly,
some learning is still necessary, which is consistent with the
experiments: if the stimulus were detectable in our model
with no bias at all, it would be at odds with the fact that
untrained animals cannot report single-cell stimulation [14].
One potential inconsistency of our model is that the bias refers
to a specific B1, and therefore to a B0, while the training is not
specific to a particular cell (it is done by using microstimu-
lation, which affects a larger area). Still, microstimulation is
repeated in between trials to keep the rat attentive [14]. It is
possible that microstimulation redirects the bias in between
trials toward the area around B0, thus effectively adjusting
λ. For this picture to make sense, a network with spatial
structure is needed, which is missing in our model. Although
the kind of dynamics and cross correlations in networks
with spatial structure can be very different from those of a
homogeneous random network, a global hidden variable can

be a major source of correlations, i.e., affecting the whole
population [46]. In such a case, feed-forward inhibition could
still effectively remove cross correlations while the biased
input would permit detection. It is an interesting open problem
to consider the detectability in spatially structured networks.

Besides neglecting a spatial profile in the connectivity, we
made further simplifying assumptions regarding the synaptic
interactions in our model. To ease the theoretical analysis, we
modeled the input from other cells as delta-current pulses.
A more realistic choice would be to use conductance-based
synapses with an additional filter dynamics (for a comparison
of the network dynamics with conductance-based and current-
based synapses, see [47]). Changing the synaptic dynamics
in this way will cause quantitative differences in the firing
statistics and response behavior of the network. However, as
long as the network still resides in the asynchronous state with
low firing rates, we do not expect that fast synaptic dynamics
would impact our results on the detection problem signifi-
cantly. Likewise, we do not believe that the exact choice of the
transmission delays (whether they are randomly distributed, as
in our study, or set to a sharp value, as in many other studies)
is crucial for the detectability of the single-cell stimulation.

This paper focused on the role of feed-forward configura-
tions, although feedback projections from other cortical areas
to the barrel cortex exist [36]. How could feedback projections
from the readout network to the stimulated network change
our results? For concreteness, let us focus on the case of
excitatory B0, θ+ detector, and positive λe as in Fig. 5(a), solid
line. We can imagine that a beneficial effect for detectability
could be provided by excitatory feedback projections from the
readout SB to excitatory neurons in the stimulated BCN. Such
connections could form as the result of learning and would
not need to be biased toward particular excitatory neurons to
build a positive feedback loop: the excitatory B0 with positive
bias λe raises the firing rate of SB; the excitatory feedback
would then raise the firing rate of neurons in the BCN thus
increasing �rA and, remembering Eq. (39), �rB. For the case
of inhibitory B0, a second dedicated readout is required, for
instance a θ+ detector and positive λi bias, as in Fig. 5(d),
solid line. In this case, the feedback projections should target
inhibitory neurons of the stimulated network, thus amplifying
the negative firing-rate response of both the BCN and the
readout network. These considerations suggest that a suitable
feedback may potentially improve detectability by providing
additional drive to the BCN that goes in the same direction
as the stimulus. However, a positive feedback loop will also
amplify fluctuations in the readout activity, thus exerting a
negative effect on the detectability. It is hard to predict which
effect would prevail and whether the feedback would provide
a net gain in the detectability.

In this study we showed how stimulating a single cell
can transiently trigger a detectable change in the activity of
a second network. Is the activation of this second network
enough to trigger the behavioral response, or do we need
to consider a chain of networks? Anatomical studies show
that there are direct connections from the somatosensory area
S1 (to which the barrel cortex belongs) to the motor area
M1 [36]; it has also been shown that stimulating a single
neuron in M1 can elicit whisker movements [13]. One could
speculate that the readout population considered here may
be embedded in M1 and thus directly cause the response.
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Still, compared to the brief wiggle of a whisker, the licking
response is a more complex movement that may require a
“conscious” decision and the concerted involvement of other
cortical areas. It is therefore an interesting open problem
to consider more elaborate readout configurations involving
multiple populations.
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APPENDIX A: SPECTRAL MEASURES, THEORETICAL
APPROXIMATION OF THE EFFECT SIZE, AND ITS
CONNECTION TO THE SIGNAL-TO-NOISE RATIO

We define the spike-train power spectrum of a single
neuron as

Sxx( f ) = lim
T →∞

〈x̃( f )x̃∗( f )〉
T

, (A1)

where the tilde indicates Fourier transform

x̃( f ) =
∫ T

0
dt e2π i f t x(t ), (A2)

the asterisk the complex conjugate, and T is the duration of
the spike train. Angular brackets indicate averaging over trials
and over different neurons in a homogeneous population. The
cross spectrum between two neurons is defined analogously:

Sx1x2 ( f ) = lim
T →∞

〈x̃1( f )x̃∗
2 ( f )〉

T
, (A3)

where the averaging is here meant over trials and neuron pairs.
All spectral measures defined here as well as the following
derivation Eq. (A4) hold for stationary processes and refer
to the spontaneous activity of the network, that is, before the
stimulus onset.

First, we would like to derive Eq. (23), i.e., the subdivision
of σ 2

X , the variance of RX
λ (t ), and the filtered readout activity

Eq. (14). We start by expressing σ 2
X as the integral over its

power spectrum [48], isolate terms with the same index, and
use the above definitions. We then make use of the fact that all
spectral measures we consider are rather flat for frequencies
up to the inverse of the filter time constant 1/τ f = 10 Hz (not
shown), and that the size of the readout population NX is large
for both X = A, B. Furthermore, when integrating the filter we
neglect the Heaviside function in Eq. (15):

σ 2
X =

∫ +∞

−∞
df SRR( f ) = 1

T

∫ +∞

−∞
df 〈R̃( f )R̃∗( f )〉

=
∫ +∞

−∞
df

|F̃τ f ( f )|2
T N2

X

∑
xi,x j∈SX

〈x̃i( f )x̃∗
j ( f )〉

=
∫ +∞

−∞
df |F̃τ f ( f )|2

(
Sxx( f )

NX
+ NX (NX − 1)Sx1x2 ( f )

N2
X

)

≈
(

Sxx(0)

NX
+ NX (NX − 1)Sx1x2 (0)

N2
X

) ∫ +∞

−∞
df |F̃τ f ( f )|2

≈ Sxx(0)

NX
√

πτ f
+ Sx1x2 (0)√

πτ f
. (A4)

We now give more details on the relation between effect
size and SNR. The population activity RX

λ (t ) is the sum of
many weakly correlated low-pass filtered spike trains; there-
fore it can be approximated as a Gaussian process. The effect
size is defined as the difference between correct detection
and false positive rate for a given threshold θ±. Both rates
are related to an integral over the first passage time (FPT)
density of the stochastic process RX

λ (t ) either in the absence
or presence of the stimulus. Finding the exact FPT density is
a difficult problem even within the Gaussian approximation.

As already discussed in [19], a crude “sampling” approx-
imation yields fair results. We imagine that the probability
for the Gaussian process RX

λ (t ) exceeding a certain threshold
within the time window Tw is equivalent to asking how likely
it is that at least one out of n independent draws of a Gaussian
variable exceeds this threshold. The number of draws can be
estimated as the ratio of the time window and the correlation
time of the stochastic process, i.e., n = Tw/τc. Because the
filter time constant τ f is longer than the correlation time of
the unfiltered network activity, one can approximate τc ≈ τ f .
Within this picture, the correct detection rate is

W (θ±) ≈ 1 −
Tw/τc∏
k=0

pR(θ±, kτc), (A5)

and pR(θ±, kτc) is the probability of RX
λ (t ) being below θ+

or above θ− at time t = kτc, respectively. For a Gaussian
process, this probability is simply the cumulative density
for θ+ or the complementary density for the case of θ−.
The presence of the stimulus renders both the mean and
variance time-dependent. However, to simplify the theory, we
make the following approximations: (i) we treat the variance
as time-independent and equal to the stationary value σ 2

X ;
(ii) we approximate the time dependence of the mean by a
box-shaped function of duration Ts and height �rX

λ , added
on top of the stationary mean. Under these assumptions, the
correct detection rate becomes

W (θ±) ≈ 1 − pR(θ±, δX )Ts/τ f pR(θ±, 0)
Tw−Ts

τ f , (A6)

where

pR(θ+, δX ) =
∫ θ+

−∞
daN

(
a,�rX

λ , σX
)

= 1

2

[
1 + erf

(
θ+ − �rX

λ√
2σX

)]

= 1

2

[
1 + erf

(
θ+√
2σX

− δX√
2

)]
, (A7)

where erf is the error function. The false positive rate can
be approximated in the same way. Here, the probability of
exceeding the threshold for a single sample does not depend
on time so that the result is even simpler:

Z (θ±) ≈ 1 − pR(θ±, 0)Tw/τ f . (A8)

Equation (A8) can be solved for θ± and inserted into Eq. (A6)
to obtain an approximation for the ROC curve.

To obtain the effect size, we assume a false positive rate
of 0.25 and solve Eq. (A8) for the corresponding value of the
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threshold-to-noise ratio:

θ̄+√
2σX

= erf−1

[
2

(
3

4

)τ f /Tw

− 1

]
. (A9)

The final expression for the effect size reads

Ȳ+ = pR(θ̄+, 0)
Tw−Ts

τ f
[
pR(θ̄+, 0)

Ts
τ f − pR(θ̄+, δX )

Ts
τ f

]
. (A10)

For given values of Tw, Ts, τ f , the effect size is a monotoni-
cally increasing function of the SNR, a property we exploit
in the Results section. Theoretical lines are obtained by
evaluating Eqs. (A7), (A9), and (A10) (and the analogous
expressions for the lower boundary detector). The numerator
of δA is obtained from the mean-field equations (8) and (9) and
the numerator of δB is calculated via linear response theory,
as explained in Secs. II A and II B. For the calculation of
the cross correlations, linear response theory is inadequate.
Therefore, for the denominator of the SNR we use σA and
σB as measured from network simulations in the case of
λ = λ0, thus ignoring the dependence of cross correlations on
λ. The only exception is the case of setup A in Figs. 6(c) and
6(d), where the dependence of the variance σ 2

A on the bias
parameter β is rather strong and follows a simple quadratic
equation

σ 2
A = σ 2

A (β = 0) + (β2 − 2β )
SE

xxλ0

NA(1 − λ0)
√

πτ f
, (A11)

which can be calculated by using Eq. (50) and Eq. (A4).

APPENDIX B: SINGLE-BARRIER VERSUS
DOUBLE-BARRIER DETECTOR

Here, we compare the results of Sec. II B to those obtained
with the detector introduced in Ref. [19], which employs two
symmetric thresholds instead of a single one and picks the
optimal threshold instead of a fixing a false positive rate.

We first study the effect of using two thresholds placed
at w ± θd , in the following referred to as the θd detector. In
Fig. 7(a) we reconsider the case of Fig. 5(a) and plot the effect
size obtained with w = 2 Hz with orange circles together with
results for the θ+ and θ− detectors for comparison. If the
detector is centered on the correct spontaneous firing rate,
i.e., w = rsp, it can detect both a positive and a negative
deflection. In Fig. 7(a) we see that the θd detector can indeed
detect both positive (λ > λ0) and negative (λ < λ0) deviations
from the mean and always lies between the other two. The
effect size for the θd detector is smaller than for the best
of the other two detectors because of the interference of the
second threshold. If the detector is not perfectly centered on
the correct mean rsp, one of the two thresholds becomes less
relevant: if the baseline level w is chosen too low, the upper
threshold becomes less relevant; if it is chosen too high, the
opposite happens. For weak signal, as for λ < λ0 in Fig. 7(a),
even a small imprecision in the choice of w becomes apparent
with the curve for the θd detector clinging to that of the θ−
detector.

In Fig. 7(b) we plot the effect size obtained by optimizing
the threshold instead of fixing a false positive rate. In other
words, for each ROC curve we select the threshold that max-
imizes the distance to the diagonal. For reasons explained in
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FIG. 7. Qualitative effects do not depend on the choice of the
detector. Effect size obtained from the detector used in this study and
in Ref. [19], applied to the case considered in Sec. II B. The detector
with two symmetric thresholds (orange circles) detects both above
and below λ0 but the effect size is smaller in magnitude. In panel
(a) are plotted results for a fixed false positive rate, as done in the
main text; in panel (b) we plot results for an optimized threshold,
as done in Ref. [19]. With this definition the effect size cannot
be negative. Otherwise, for positive effect size it can be seen that
optimizing the threshold has a very small effect as comparison to
panel (a) reveals. In (b) we omit indicating the statistical significance
(see Appendix C).

Appendix C, the statistical significance for this case requires
particular care and was omitted here. While all points are
slightly higher compared to the case of fixed threshold of
Fig. 7(a), the qualitative picture is very similar, and even
quantitatively differences are not large.

APPENDIX C: STATISTICAL SIGNIFICANCE
OF EFFECT SIZE

Here, we assess the applicability of the statistical sig-
nificance test used here and in Ref. [19]. Specifically, we
illustrate how optimizing the threshold from a data set and
then calculating the significance level from the same data set
leads to potentially wrong p values. To this end, we use the
simplified description of the detection process described in
Appendix A. For concreteness, we restrict ourselves to the
case of the single upper threshold and use the readout activity
RB(t ) with parameters as in Sec. II B. However, the following
considerations apply to all detectors considered and do not
depend on the particular choice of parameters.

For different scenarios we mimic a so-called catch trial,
in which false positive and correct detection rates are both
calculated in the absence of the stimulus. We first measure the
histogram of the stationary activity RB(t ) without stimulus.
We then draw independently two sets of n = 10 independent
samples from the histogram. Again, the particular choice of n
does not influence the following considerations. If at least one
sample out of n in the first (second) set is above the detection
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FIG. 8. Simplified detection experiment without signal in order
to mimic catch trials. Distribution of effect size (here only due to
finite-size fluctuations) and p value calculated with Fisher’s test
for three ways of choosing the threshold: fixed threshold [(a), (b)],
threshold corresponding to fixed false positive rate [(c), (d)], and
optimal threshold [(e), (f)].

threshold θ+, a false positive (correct detection) event is
registered. Because the two sets are drawn from the same
distribution, this represents a “catch trial” in the detection
experiment. By repeating this random sampling Ntrials = 900
times—the number of trials used in all simulations—and
averaging, we obtain a false positive and a correct detection
rate and, hence, an effect size. A p value can be calculated
for this effect size by using Fisher’s exact test. Because of the
finite size of the sample, the effect size will not be exactly
zero, but randomly distributed. Depending on the procedure

we use to choose the threshold and, therefore, the effect size,
the resulting distribution will be different. We consider three
possibilities: (i) we fix a threshold a priori and use it to
determine both false positive and correct detection rate; (ii) we
fix a false positive rate, find the corresponding threshold, then
use this threshold to calculate the correct detection rate, which
is the procedure we use in the main text; (iii) we select the
threshold that maximizes the effect size and use it to determine
both false positive and correct detection rate, which is the
procedure used in Ref. [19]. For each case, we construct a
histogram for effect size and p value obtained from 200 000
repetitions of the “catch trial” procedure described above.

If the threshold is fixed beforehand (case i) the effect
size has the distribution of the difference of two binomial
variables. For a large number of trials it is approximately
Gaussian and symmetric [Fig. 8(a)]. For this case, p values
are roughly uniformly distributed as expected [49], although
not perfectly because of the finite number of trials [Fig. 8(b)].
Increasing the number of trials (red histogram) renders the
histogram flatter.

If a false positive level is fixed and used to determine a
threshold (case ii) the histogram is still symmetric [Fig. 8(c)]
but has an increased width, due to the spread in the threshold.
Still, p values are uniformly distributed as in the case of fixed
threshold [Fig. 8(d)].

Finally, if the threshold is optimized with respect to the ef-
fect size (case iii) we obtain a histogram that is not symmetric
[Fig. 8(e)]. The mean value of the effect size is here not zero,
and the histogram of p values is not flat [Fig. 8(f)]. In particu-
lar, the probability of p < 0.05 is three times larger than 5%,
and therefore its value does not express the intended statistical
significance. One conceptually simple but computationally
very expensive way to solve this problem would be to generate
two distinct data sets, and use the first one to determine the
optimal threshold and the second one to compute effect sizes.
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