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Reinforcement learning meets minority game: Toward optimal resource allocation
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The main point of this paper is to provide an affirmative answer through exploiting reinforcement learning
(RL) in artificial intelligence (AI) for eliminating herding without any external control in complex resource
allocation systems. In particular, we demonstrate that when agents are empowered with RL (e.g., the popular
Q-learning algorithm in AI) in that they get familiar with the unknown game environment gradually and attempt
to deliver the optimal actions to maximize the payoff, herding can effectively be eliminated. Furthermore,
computations reveal the striking phenomenon that, regardless of the initial state, the system evolves persistently
and relentlessly toward the optimal state in which all resources are used efficiently. However, the evolution
process is not without interruptions: there are large fluctuations that occur but only intermittently in time. The
statistical distribution of the time between two successive fluctuating events is found to depend on the parity of
the evolution, i.e., whether the number of time steps in between is odd or even. We develop a physical analysis
and derive mean-field equations to gain an understanding of these phenomena. Since AI is becoming increasingly
widespread, we expect our RL empowered minority game system to have broad applications.
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I. INTRODUCTION

The tremendous developments in information technology
have made it possible for artificial intelligence (AI) to pene-
trate every aspect of human society. One of the fundamental
traits of AI is decision making—individuals, organizations,
and governmental agencies tend to rely more and more on AI
to make all kinds of decisions based on vast available infor-
mation in an increasingly complex environment. At present,
whether a strong reliance on AI is beneficial or destructive
to mankind is an issue of active debate that attracts a great
deal of attention from all professions. In the vast field of
AI-related research, a fundamental issue is how AI affects or
harnesses the behaviors of complex dynamical systems. In this
paper, we address this issue by focusing on complex resource
allocation systems that incorporate AI in decision making at
the individual agent level, and we demonstrate that AI can be
quite advantageous for complex systems to reach their optimal
states.

Resource allocation systems are ubiquitous and provide
fundamental support for the modern economy and society,
which are typically complex systems consisting of a large
number of interacting elements. Examples include ecosystems
of different sizes, various transportation systems (e.g., the
Internet, urban traffic systems, and rail and flight networks),
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public service providers (e.g., marts, hospitals, and schools),
as well as social and economic organizations (e.g., banks and
financial markets). In a resource allocation system, a large
number of components/agents compete for limited public re-
sources in order to maximize payoff. The interactions among
the agents can lead to extremely complex dynamical behaviors
with negative impacts on the whole system, among which
irrational herding is of great concern as it can cause certain
resources to be overcrowded but leave others unused, and
it has the potential to lead to a catastrophic collapse of the
whole system in a relatively short time. A general paradigm
to investigate the collective dynamics of resource allocation
systems is complex adaptive systems theory [1–3]. At the
microscopic level, multiagent models such as the minority
game model [4] and interaction models based upon traditional
game theory [5–7] have been proposed to account for the
interactions among the individual agents.

The minority game is a paradigmatic model for resource
allocation in a population. It was introduced in 1997 [4]
to study quantitatively the classic El Farol bar-attendance
problem first conceived by Arthur in 1994 [8]. In the past
two decades, the minority game and its variants were studied
extensively [9–35], where a central goal was to uncover
the dynamical mechanisms responsible for the emergence of
various collective behaviors. In the original minority game
model, an individual’s scheme for state updating (or decision
making) is essentially a trial-and-error learning process based
on the global historical winning information [4]. In other
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models, learning-mechanism-based local information from
neighbors was proposed [11,12,16,17,25,28,31–35]. The issue
of controlling and optimizing complex resource allocation
systems was also investigated [32], e.g., utilizing pinning
control to harness the herding behavior, where it was demon-
strated that a small number of control points in the network
can suppress or even eliminate herding. A theoretical frame-
work for analyzing and predicting the efficiency of pinning
control was developed [32], revealing that the connecting
topology among the agents can play a significant role in the
control outcome. Typically, control requires external interven-
tions. A question is whether herding can be suppressed or even
eliminated without any external control.

In this paper, we address the question of how AI can
be exploited to harness undesired dynamical behaviors to
greatly benefit the operation of the underlying complex sys-
tem. More generally, we aim to study how reinforcement
learning (RL) in AI affects the collective dynamics in complex
systems. For this purpose, we introduce a minority game
model incorporating RL at the individual agent level, where
the agents participating in the game are “intelligent” in the
sense that they are capable of RL [36], a powerful learning
algorithm in AI. Empowered with RL, an agent is capable
of executing an efficient learning path toward a predefined
goal through a trial-and-error process in an unfamiliar game
environment. Our model is constructed based on the interplay
of a learning agent and the environment in terms of the states,
actions, rewards, and decision making. In RL, the concepts
of value and value functions are key to intelligent explo-
ration, and there have been a number of RL algorithms, such
as dynamic programming [36,37], the Monte Carlo method
[36,37], temporal differences [36,38], Q-Learning [36,39,40],
Sarsa [36], Dyna [36], etc. We focus on Q-learning, which
was demonstrated previously to perform well for a small
number of individuals in their interaction with an unknown
environment [41–45]. In particular, it was demonstrated that
incorporating Q-learning into minority game dynamics [46]
can suppress herding. Distinct from previous work, here we
study minority game dynamics with a large number of “intel-
ligent” players, where Q-learning is adopted for state updating
in a stochastic dynamical environment, without involving any
other algorithm. The question is whether the multiagent RL
minority game system can self-organize to generate optimal
collective behaviors. Our main result is an affirmative answer
to this question. In particular, we find that the population
of RL-empowered agents can approach the optimal state of
resource utilization through self-organization regardless of
the initial state, effectively eliminating herding. However, the
process of evolution toward the optimal state is typically
disturbed by intermittent, large fluctuations (oscillations) that
can be regarded as failure events. There can be two distinct
types of statistical distributions of the “laminar” time intervals
in which no failure occurs, depending on their parity, i.e.,
whether the number of time steps between two consecutive
failures is odd or even. We develop a physical analysis and use
the mean-field approximation to understand these phenomena.
Our results indicate that Q-learning is generally powerful in
optimally allocating resources to agents in a complex inter-
acting environment.

II. MODEL

Our minority game model with agents empowered by
Q-learning can be described as follows. The system has
N agents competing for two resources denoted by r = +1
and −1, and each agent chooses one resource during each
round of the game. The resources have a finite capacity
Cr , i.e., the maximum number of agents that each resource
can accommodate. For simplicity, we set Cr = N/2. Let A(t )
denote the number of agents selecting the resource r = +1 at
time step t . For A(t ) � Cr , agents choosing the resource +1
belong to the minority group and win the game in this round.
Conversely, for A(t ) > Cr , the resource +1 is overcrowded, so
the corresponding agents fail in this round.

The Q-learning adaptation mechanism [40] is incorporated
into the model by assuming that the states of the agents
are parametrized through Q functions that characterize the
relative utility of a particular action. The Q functions are
updated during the course of the agents’ interaction with the
environment. Actions that lead to a higher reward are rein-
forcement. To be concrete, in our model, agents are assumed
to have four available actions, and we let Q(s, a) be the Q
value of the corresponding action at time t , where s and a
denote the current state of agent and the action that the agent
may take, respectively. A Q function can then be expressed in
the following form:

Q =
[

Q(+1,+1) Q(+1,−1)
Q(−1,+1) Q(−1,−1)

]
.

For an agent in state s, after selecting a given action a, the
corresponding Q value is updated according to the following
rule:

Qt (s, a) = Qt−1(s, a) + α
[
Rt (a) + γ Qmax

t−1 (s′, a′)

− Qt−1(s, a)
]
, (1)

where s denotes the current state of the agent, i.e., the agent’s
action in the last step, a denotes the action that the agent may
take, α ∈ (0, 1] is the learning rate, and Rt (a) is the reward
from the corresponding action a at time t . The parameter γ ∈
[0, 1) is the discount factor that determines the importance
of future reward. Agents with γ = 0 are “short sighted” in
that they consider only the current reward, while those with
larger values of γ care about reward in the long run. The
quantity Qmax

t−1 (s′, a′) is the maximum element in the row of
the s′ state, which is the outcome of the action a based on s,
that is, s′ is equal to action a at the current time step. Equation
(1) indicates that the matrix Q contains information about
the accumulative experience from history, where the reward
Rt (a) (for action a from state s) and the expected best value
Qmax

t−1 (s′, a′) based on s′ both contribute to the updated value
Qt (s, a) with the weight α, and the previous value Qt−1(s, a)
is also accumulated into Qt (s, a) with the weight 1 − α.

While agents select the action mostly through RL, certain
randomness can be expected in decision making. We thus
assume that a random action occurs with a small probability
ε, and agents select the action with a large value of Q(s, a)
with probability 1 − ε. For a given setting of parameters α

and γ , the Q-learning algorithm is carried out, as follows.
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First, we initialize the matrix Q to zero to mimic the situation
in which the agents are unaware of the game environment,
and we initialize the state s of each agent randomly to +1 or
−1. Next, for each round of the game, each agent chooses an
action a with a larger value of Qt (s, a) in the row of its current
state s with probability 1 − ε, or chooses an action a randomly
with probability ε. The Q(s, a) value of the selected action is
then updated according to Eq. (1). The action leading to the
state s′ identical to the current winning (minority) state has
Rt (a) = R = 1, and the action leading to the failed (majority)
state has Rt (a) = 0. Finally, we take the selected action a to
update the state from s to s′.

Distinct from the standard supervised learning [47], agents
adopting RL aim to understand the environment and maxi-
mize their rewards gradually through a trial-and-error process.
The coupling or interaction among the agents is established
through competing for limited resources. Our RL-based mi-
nority game model also differs from the previously studied
game systems [32] in that our model takes into account
agents’ complicated memory and decision-making process.
For our system, a key question is whether the resulting collec-
tive behaviors from RL may lead to high efficiency or optimal
resource allocation in the sense that the number of agents that
a resource accommodates is close to its capacity.

III. SELF-ORGANIZATION AND COMPETITION

In minority game dynamics, a common phenomenon is
herding, in which a vast majority of the agents compete for a
few resources, leaving other resources idle. The phenomenon
emerges due to the feedback on historical information in the
game system, i.e., the individuals rely on global or local
historical information before making a decision. Herding is
harmful and undesired as it can lead to starvation of certain
resources and ineffective usage of others, greatly reducing the
system’s efficiency. Herding can even cause the whole system
to collapse in a short time. In our system with RL, herding
also occurs but, due to the intrinsic Q-learning mechanism, the
behavior is spontaneously suppressed in a periodic fashion, as
the periodic bursts of failures can lead to dramatic fluctuations
in the utilization of the resources.

In the traditional minority game, the dynamical rules stip-
ulate that competition and learning among agents can lead
to the detrimental herding behavior to which game systems
composed of less diversified agents are particularly suscepti-
ble [32–35]. In our minority game system of agents empow-
ered with RL, herding is dramatically suppressed. To give a
concrete example, we set the parameters for Q learning as
follows: learning rate α = 0.9, discount factor γ = 0.9, and
exploration rate ε = 0.02. Figure 1(a) shows the temporal
evolution of the number A(t ) of agents choosing resource +1.
The main features of the time series are the continuous oscil-
lations of A(t ) about the capacity Cr of resources, convergence
of the oscillation amplitude, and bursts of A(t ) that occur
intermittently. As the oscillations converge to the optimal
state, the two resources r = +1 and −1 play as the minority
resource alternatively. The remarkable feature is that the agent
population tends to self-organize into a nonequilibrium state
with a certain temporal pattern in order to reach the highly

1000 1500 2000 2500

1000

2000

3000

4000

A
(t

)

(a)

0 20 40 60 80
t

0

50

100

Q
(s

,a
)

(c)
Q3
*Q2

*

Q1
*Q(s+,a+),Q(s-,a-)

Q(s+,a-),Q(s-,a+)

+1 -1

n(+,-)

n(-,+)
n(-,-)n(+,+)

(b)

FIG. 1. Typical temporal evolutionary behavior of the proposed
minority game system with RL empowered agents. (a) Time series
of the attendance A(t ) of resource +1. Interactions among the agents
make the system self-organize into a special temporal pattern with
two main features: the convergence of regular oscillations toward
the optimal value Cr = N/2, and intermittent bursts of failures in
utilizing resources. (b) A schematic sketch of the state transitions of
agents during the dynamical process. There are self-satisfied agents
in a fixed state and speculative agents that continuously switch states
between +1 and −1. (c) Time series of Q(s, a) as the numerical
solutions of Eqs. (2)–(4). The parameters are as follows: learning
rate α = 0.9, discount factor γ = 0.9, exploration rate ε = 0.02, and
system size N = 5001.

efficient, optimal state, but the process is interrupted by large
bursts (failures or fluctuations).

A. Convergence of oscillations

1. Emergence of two types of agents

From numerical simulations of the RL minority game
system, we find that, as the system self-organizes itself into
patterns of regular oscillations, agents with two types of
behaviors emerge. The first type is those agents who are “self-
satisfied” in the sense that they remain in either the s = +1
state or the s = −1 state. Those agents win and lose the
game alternatively as the system develops regular oscillations.
The population sizes of the self-satisfied agents are denoted
as n(+1,+1) and n(−1,−1), respectively. The second type
of agents are the “speculative” agents, or speculators, who
switch states at each time step between s = +1 and −1. These
agents always win the game when the system exhibits regular
oscillations. We denote the population sizes of the speculative
agents as n(+,−) and n(−,+), which correspond to the two
possibilities of switching: from s = +1 to −1 and vice versa,
respectively.

Figure 1(b) shows the state transition paths induced by
the self-satisfied agents and the speculative agents. The os-
cillations of A(t ) associated with the convergent process can
be attributed to the state transition of the speculative agents
between the states +1 and −1. This agrees with the intuition
that, e.g., the investing behavior of speculators in a financial
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market is always associated with high risks and large oscilla-
tions. Due to the decrease in the population of the speculative
agents, the oscillation amplitude in any time interval between
two successive failure events tends to decay with time.

2. Stable state of Q table

The oscillations of A(t ) mean that r = +1 and −1 act
as the minority resource alternatively. For the self-satisfied
agents, according to the Q-learning algorithm, the update of
the element Q(s+, a+) can be expressed as

Qt+1(s+, a+) = Qt (s+, a+)

+α[R + γ Qt (s+, a+) − Qt (s+, a+)],

Qt+2(s+, a+) = Qt+1(s+, a+)

+α[γ Qt+1(s+, a+) − Qt+1(s+, a+)], (2)

where Qmax
t (s′, a′) = Qt (s+, a+) due to the inequality

Q(s+, a+) > Q(s+, a−). The update of the element Q(s−, a−)
is described by

Qt+1(s−, a−) = Qt (s−, a−)

+α[R + γ Qt (s−, a−) − Qt (s−, a−)],

Qt+2(s−, a−) = Qt+1(s−, a−)

+α[γ Qt+1(s−, a−) − Qt+1(s−, a−)], (3)

where Qmax
t (s′, a′) = Qt (s−, a−) as a result of the inequality

Q(s−, a−) > Q(s−, a+).
For the speculative agents, the updating equations of ele-

ments Q(s+, a−) and Q(s−, a+) are

Qt+1(s+, a−) = Qt (s+, a−)

+α[R + γ Qt (s−, a+) − Qt (s+, a−)],

Qt+2(s−, a+) = Qt+1(s−, a+)

+α[R + γ Qt+1(s+, a−) − Qt+1(s−, a+)],

(4)

where Qmax
t (s′, a′) = Qt (s−, a+) or Qt (s+, a−), due to

the inequalities Q(s+, a+) < Q(s+, a−) and Q(s−, a−) <

Q(s−, a+).
Figure 1(c) shows numerically obtained time series of

the elements of the matrix Q from Eqs. (2)–(4). For the
self-satisfied agents, the values of Q(s+, a+) and Q(s−, a−)
increase initially, followed by an oscillating solution between
the two values Q∗

1 and Q∗
2, where

Q∗
1 = [1 + α(γ − 1)]αR

1 − [1 + α(γ − 1)]2
,

Q∗
2 = αR

1 − [1 + α(γ − 1)]2

are obtained from Eqs. (2) and (3). For the speculative agents,
both Q(s+, a−) and Q(s−, a+) reach a single stable solution
Q∗

3 = R/(1 − γ ), which can be obtained by solving Eq. (4).
The three relevant values have the relationship Q∗

1 < Q∗
2 < Q∗

3.
The emergence of the two types of agents can be under-

stood from the following heuristic analysis. In the dynamical
process, a speculative agent emerges when the element as-
sociated with an agent satisfies the inequalities Q(s+, a−) >
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FIG. 2. Convergence of regular oscillations and bursts of failure.
(a),(b) Convergence of the regular oscillation pattern depends on the
exploration behavior of the agents as characterized by the rate ε. For
ε = 0 (gray region), the oscillation amplitude does not converge.
(c),(d) Detailed processes for the bursts of failure. If the regular
oscillations do not cross the line Cr = N/2 but behave either as (c)
A(t ) > Cr and A(t + 1) > Cr or as (d) A(t ) < Cr and A(t + 1) < Cr ,
the regular oscillations stop and a systematic failure burst emerges.
The blue line specifies A(t ) = Cr . The parameters are the same as in
Fig. 1.

Q(s+, a+) and Q(s−, a+) > Q(s−, a−) simultaneously. Ini-
tially, the agents attend both resources +1 and −1, with
one group winning but the other losing. Only the group
that always wins the game can reinforce themselves through
further increment in Q(s+, a−) and Q(s−, a+). The stable
group of speculative agents leads to regular oscillations of
A(t ), because they switch states together between +1 and −1.
An agent becomes self-satisfied when it is in the +1 state and
the inequality Q(s+, a+) > Q(s+, a−) holds, or in the −1 state
and Q(s−, a−) > Q(s−, a+) holds. The self-satisfied state can
be strengthened following the evolution governed by Eqs. (2)
and (3), with Q(s+, a+) or Q(s−, a−) reaching the oscillating
state between Q∗

1 and Q∗
2, as shown in Fig. 1(c). We see that

the condition for an agent to become speculative is more strict
than to be self-satisfied. Moreover, a speculative agent has a
certain probability to become self-satisfied, as determined by
the value of the exploration rate ε. As a result, the population
of the speculative agents tends to shrink, leading to a decrease
in the oscillation amplitude |n(+,−) − n(−,+)| and conver-
gence of A(t ) closer to the optimal state N/2.

For the special case of ε = 0 [the gray regions in Figs. 2(a)
and 2(b)], agents take action entirely based on historical
experience Q. In this case, the numbers of the self-satisfied
and speculative agents become constant, and A(t ) no longer
converges to that associated with the optimal state. In general,
randomness in exploration can affect the convergence of the
system dynamics toward the state in which the resources
are optimally utilized. Specifically, random explorations can
dramatically increase the number of possible evolutionary
paths, while actions according to the Q-function restrict the
evolution direction of the system toward the optimal reward-
driven path. As a result, setting ε �= 0 can lead to an opti-
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mal path of equilibrium attendance, effectively eliminating
herding. Nonetheless, a bursting behavior can emerge in the
long-term evolution of the system, reducing efficiency. Ran-
domness in exploration thus plays the role of a double-edged
sword: a larger value of ε can facilitate a system’s settling into
the optimal convergence path and suppressing herding, but it
can lead to an undesired bursting behavior.

B. Intermittent failures in the RL empowered
minority game system

The intermittent bursts of failure events in the whole sys-
tem take place during the convergent process to the optimal
state. An understanding of the mechanism of the failures can
provide insights into the articulation of strategies to make the
system more robust and resilient.

The criterion to determine if an agent selecting +1 wins
the minority game is A(t ) < Cr = N/2. If the event A(t ) < Cr

[or A(t ) > Cr] occurs twice in a row, the oscillation pattern
will be broken. Since the agents are empowered with RL,
two consecutive winnings of either resource −1 or resource
+1 represent an unexpected event, and this would lead to
cumulative errors in the Q table, triggering a burst of error
in decision making and, consequently, leading to failures in
utilizing the resources. To see this in a more concrete way,
we note that a self-satisfied agent wins and fails alterna-
tively following a regular oscillation pattern. If the agent fails
twice in row, its confidence in preserving the current state
is reduced. As a result, the event Q(s+, a+) < Q(s+, a−) or
Q(s−, a−) < Q(s−, a+) would occur with a high probability,
leading to a decrease in the populations n(+,+) and n(−,−)
of the self-satisfied agents. The populations of the specula-
tive agents, n(+,−) and n(−,+), are increased accordingly.
These events collectively generate a bursting disturbance to
the regular oscillation pattern of A(t ), terminating the system’s
convergence toward the optimal state, as shown in Figs. 2(a)
and 2(b).

In general, the stability of the regular oscillations depends
on two factors: the equilibrium position determined by the
self-satisfied agents, and the random fluctuations introduced
by agents’ exploration behavior. For the first factor, the
equilibrium position is given by A0 = n(+,+) + [n(−,+) −
n(+,−)]/2, which deviates from Cr due to the asymmetric
distribution of the self-satisfied agents in the two distinct
resources. Figures 2(c) and 2(d) show two examples with the
equilibrium position A0 larger or smaller than Cr (the blue
solid line), respectively. We see that the converging process
is terminated when either the upper or the lower envelope
reaches Cr , i.e., when two consecutive steps of A(t ) stay on
the same side of Cr in replacement of an oscillation about
Cr . In the thermodynamic limit, for an infinitely large system
with self-satisfied agents symmetrically distributed between
+1 and −1 (so that the equilibrium position A0 is at Cr), the
oscillation would persist indefinitely and A(t ) approaches Cr

asymptotically.
The second factor of random fluctuations in agents’ ex-

ploratory behavior is caused by the finite system size, which
affects the oscillation stability. As the populations [n(+,−)
and n(−,+)] of the speculative agents decrease during the

FIG. 3. Statistical distributions of the time interval T0 between
two successive bursts of failure. (a) The distributions obtained from
one realization of the system dynamics, where those of the odd T0

values (red crosses) and even T0 values (blue squares) are remarkably
distinct. (b) T0 vs the deviation A0 − Cr of the equilibrium position
from the resource capacity. The solid squares (triangles) denote
the most probable value of the set of even (odd) T0 values. The
parameters are α = 0.9, γ = 0.9, and N = 5001. (c)–(f) Schematic
illustration of four cases associated with the regular oscillations
of A(t ), where cases (c),(d) lead to odd intervals T0 while cases
(e),(f) lead to the even values of T0. The dashed curves represent the
envelopes that cross the capacity value Cr (solid blue lines), which
triggers a failure burst.

converging process, the amplitude of oscillation, |n(+,−) −
n(−,+)|, becomes comparable to

√
εN , the level of random

fluctuations in the system. The occurrence of two consecutive
steps of A(t ) > Cr [or A(t ) < Cr] as a result of the fluctuations
will break the regular oscillation pattern. In the thermodynam-
ical limit, the effects of the random fluctuations are negligible.
We note that, while similar bursting behaviors were observed
previously [48,49], the underlying mechanisms are different
from ours. In particular, a finite memory was introduced
into the standard or grand-canonical minority game models,
where in the former the nonergodic behavior and sensitive
dependence on initial conditions were suppressed, but in
the latter large fluctuations arise. The main reason for the
bursts is a finite score effect based on the memory factor λ,
where speculators who may abstain from playing if the game
was not profitable enough are allowed to participate in the
game. That is, the long-term weighted historical memory is
used in agents’ decision making. In our work, the bursting
phenomenon can be attributed to the interaction between the
Q function and random explorations in systems of finite size,
i.e., the historical information is recorded in the Q function
through RL.

C. Time intervals between failure bursts

The dynamical evolution of the system can be described
as random failure bursts superimposed on regular oscillations
with decreasing amplitude. The intermittent failures can be
characterized by the statistical distribution of the time interval
T0 between two successive bursting events. Figure 3(a) shows
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a representative histogram of T0 obtained from a single sta-
tistical realization of the system dynamics (the inset showing
the same data but on a semilogarithmic scale). A remarkable
feature is that the distributions of the odd (red crosses) and
even values of T0 (blue squares) are characteristically distinct.
In particular, the odd values of T0 emerge with a smaller
probability and the corresponding distribution has a smaller
most probable value as compared with that for the even values
of T0. A possible explanation lies in the existence of two
intrinsically distinct processes.

Our computation and analysis indicate that the regular
oscillation processes can be classified into two categories, as
shown in Figs. 3(c)–3(f), leading to insights into the mech-
anism for the two distinct types of statistical distributions in
T0. In Fig. 3(c), A(t ) starts from a value below Cr = N/2 and
terminates at a value above Cr , due to the two consecutive
values above Cr as the lower envelope of A(t ) crosses Cr .
Similarly, in Fig. 3(d), A(t ) starts from a value above Cr and
terminates at a value below Cr , with the upper envelope of
A(t ) crossing Cr . In Fig. 3(e), A(t ) starts from a value below
Cr and terminates at a value below Cr . In Fig. 3(f), A(t ) starts
from a value above Cr and terminates at a value above Cr .
In Figs. 3(c) and 3(d), odd intervals are generated, while in
Figs. 3(e) and 3(f) the intervals are even. Between the cases
in the same category [e.g., (c),(d) or (e),(f)], there is little
difference in the statistical distribution of T0, especially in the
long-time limit.

We have seen that the equilibrium position A0 plays an
important role in terminating the regular oscillations, which
can be calculated as A0 = 〈A(t )〉t , where 〈·〉t denotes the
average over time. From Fig. 3(b) where the time interval
T0 is displayed as a function of the quantity A0 − Cr , we see
that the values of A0 closer to the capacity Cr lead to regular
oscillations with larger values of T0. The most probable values
of the distributions of the even (squares) and odd (stars) T0

values are also indicated in Fig. 3(b).

D. Mean-field theory

We develop a mean-field analysis to capture the main
features of the dynamical evolution of the multiagent RL
minority game system. We assume that the agents empowered
with RL are identical and share the same matrix Q. The
dynamical evolution of A(t ) can be described by the following
equation:

dA(t )

dt
= ε

N

2
+ (1 − ε){A(t )�(X1)

+ [N − A(t )]�(X2)} − A(t ), (5)

where the first item εN/2 is the number of agents that act
randomly with probability ε, half of which select +1. The
second item indicates the number of agents that act based
on the matrix Q with probability 1 − ε, which include agents
that stay in the +1 state and those that transition from −1
to +1. �(X ) denotes the step function: �(X ) = 0 for X < 0,
�(X ) = 1/2 for X = 0, and �(X ) = 1 for X > 0. The quan-
tities X1 and X2 are defined as X1 ≡ Qt (s+, a+) − Qt (s+, a−)

FIG. 4. Comparison of dynamical evolution of the system ob-
tained from simulation and mean-field theory. The attendance A(t )
obtained from (a) multiagent simulation and (b) numerical solution
of Eqs. (4)–(9). (c), (d) The corresponding results of the elements
of Q from multiagent simulation and from numerical solution, re-
spectively. The insets in (a)–(d) show the corresponding time series
of A(t ) and Q in a large time regime. The parameters are α = 0.9,
γ = 0.9, ε = 0.02, and N = 5001.

and X2 ≡ Qt (s−, a+) − Qt (s−, a−). The elements of the ma-
trix Q are updated according to the following rules:

dQt (s+, a+)

dt
= α

[
R�(X3) + γ Qmax

t − Qt (s+, a+)
]

×
[

(1 − ε)�(X1) + 1

2
ε

]
, (6)

dQt (s+, a−)

dt
= α

[
R�(−X3) + γ Qmax

t − Qt (s+, a−)
]

×
[

(1 − ε)�(−X1) + 1

2
ε

]
, (7)

dQt (s−, a+)

dt
= α

[
R�(X3) + γ Qmax

t − Qt (s−, a+)
]

×
[

(1 − ε)�(X2) + 1

2
ε

]
, (8)

dQt (s−, a−)

dt
= α

[
R�(−X3) + γ Qmax

t − Qt (s−, a−)
]

×
[

(1 − ε)�(−X2) + 1

2
ε

]
, (9)

where X3 ≡ N − 2A(t ), the step function �(X3) indicates
whether or not the agents gain a reward, and Qmax

t is the
expected value after action. Specifically, we have Qmax

t =
max[Qt (s+, a+), Qt (s+, a−)] in Eqs. (6) and (8) for the
agents who take action to transition to +1. Similarly, Qmax

t =
max[Qt (s−, a+), Qt (s−, a−)] in Eqs. (7) and (9) is for agents
taking action to transition to the state −1.

The dynamical evolution of the system can thus be assessed
either through simulation, as presented in Figs. 4(a) and
4(c), or through the mean-field equations (4)–(9), as shown
in Figs. 4(b) and 4(d). A comparison between these results
indicates that the mean-field equations (4)–(9) capture the
main features of the collective dynamics of the RL minority
game system, which are regular oscillations with converg-
ing amplitude and intermittent bursts of failure. Due to the
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approximate nature of the mean-field analysis, its predictions
tend to deviate slightly from the simulation results. In par-
ticular, the analysis predicts bursts of sizes somewhat larger
than those from simulations. The reason is that, under the
mean-field approximation, the dynamical behaviors of the
agents are determined by a Q table. As a result, a burst
characteristic of system failure involves the whole population
of agents, making the size of the burst larger than that from
simulation. In addition, the mean-field analysis shows that
the period between adjacent bursts is approximately constant,
while simulation reveals more variations in the period. The
discrepancy can be attributed to the randomness in the size of
the bursts in simulation. The state of the system after the last
burst serves effectively as the initial condition of the process
leading to a convergent solution, the length of which is
affected by the burst size and randomness.

IV. DISCUSSION

Complex resource allocation systems with a large number
of interacting components are ubiquitous in modern society.
Optimal performance of such a system is typically measured
by uniform and even utilization of all available resources by
the users. Often this is not possible due to the phenomenon
of herding that can emerge spontaneously in the evolution of
the system, in which most agents utilize only a few resources,
leaving the vast majority of the remaining resources little ex-
ploited [11,16,17,31,32,34,35,50–54]. The herding behavior
can propagate through the system, as the few heavily used
resources would be depleted quickly, directing most agents
to another possibly small set of resources, which would be
depleted as well, and so on. A final outcome is the total
collapse of the entire system. An important goal in managing
a complex resource allocation system is to devise effective
strategies to prevent herding behavior from occurring. We
note that similar behaviors occur in economics [55–58]. Thus
any effective methods to achieve optimal performance of
resource allocation systems can potentially be generalized to
a broader context.

Mathematically, a paradigm to describe and study the dy-
namics of complex resource allocation is minority games, in
which a large number of agents are driven to seek the less used
resources based on available information to maximize payoff.
In the minority game framework, a recent work addressed the
problem of controlling herding [33] using the pinning method
that had been studied in controlling collective dynamics such
as synchronization in complex networks [32,59–66], where
the dynamics of a small number of nodes are “pinned” to some
desired behavior. In developing a pinning control scheme, the
fraction of agents chosen to hold a fixed state and the struc-
ture of the pinned agents are key issues. For the minority game
system, during the time evolution, fluctuations that contain
characteristically distinct components can arise: intrinsic and
systematic, and this allows one to design a control method
based on separated control variables [33]. One finding was
that a biased pinning control pattern can lead to an optimal
pinning fraction that minimizes the system fluctuations, and
this holds regardless of the network topologies.

Any control-based method aiming to suppress or eliminate
herding requires external input. The question we address

in this paper is whether it would be possible to design a
“smart” type of resource allocation system that can sense the
potential emergence of herding and adjust the game strategy
accordingly to achieve the same goal but without any ex-
ternal intervention. Our answer is affirmative. In particular,
we introduce RL from AI into the minority game system in
which the agents are “intelligent” and empowered with RL.
Exploiting a popular learning algorithm in AI, Q-learning, we
find that the collective dynamics can evolve to the optimal
state in a self-organized fashion, which is effectively immune
from any herding behavior. Due to the complex dynamics, the
evolution toward the optimal state is not uninterrupted: there
can be intermittent bursts of failures. However, because of
the power of self-learning, once a failure event has occurred,
the system can self-repair or self-adjust to start a new process
of evolution toward the optimal state, free of herding. One
finding is that two distinct types of the probability distribution
of the intervals of free evolution (the time interval between
two successive failure events) arise, depending on the parity
of the system state. We provide a physical analysis and derive
mean-field equations to understand these behaviors. AI has
become increasingly important and has been universally ap-
plied to all aspects of modern society. Our work demonstrates
that the marriage of AI with complex systems can generate
optimal performance to a certain extent, without the need for
external control or intervention.
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APPENDIX

Convergence mechanism of A(t )

Typically, after a failure burst, A(t ) will converge to the
value corresponding to the optimal system state. The mech-
anism of convergence can be understood as follows. The
essential dynamical event responsible for the convergence
is the change of agents from being speculative to being
self-satisfied within the training time. If the inequalities
Q(s+, a+) < Q(s+, a−) and Q(s−, a−) < Q(s−, a+) hold, the
agent is speculative and wins the game all the time as a result
of the state transition. Otherwise, for Q(s+, a+) > Q(s+, a−)
and Q(s−, a−) > Q(s−, a+), the agent is self-satisfied and
wins and loses the game alternatively.
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FIG. 5. Matrix norm d for all agents empowered with RL. The
norms are indicated by the two red arrow positions in Fig. 1(a).
(a)–(d) Evolution of the matrix norm d at three adjacent time
steps: t + 1 vs t and t + 2 vs t + 1. The blue line is x = y. Panels
(a),(b) correspond to the left arrow, and (c),(d) to the right arrow.
(e),(f) The corresponding distributions of the matrix norm.

Consider a speculative agent. Assume that its state is r =
+1 at the current time step. The agent selects r = +1 with
the probability ε/2 and updates Q(s+, a+) with reward or
selects r = −1 with the probability ε/2 + (1 − ε) and updates
Q(s+, a−) without reward. If the agent selects r = +1, the
game will be lost, but the value of Q(s+, a+) can increase.
At the next time step, the agent selects r = −1 and loses the
game, and Q(s+, a−) will decrease. As a result, the inequality
Q(s+, a+) > Q(s+, a−) holds with the probability ε/2. That
is, the probability that a speculative agent changes to a self-
satisfied one is approximately ε/2.

Now consider a self-satisfied agent in the r = +1 state
at the current time step. The agent selects r = +1 with the
probability ε/2 + (1 − ε) and updates Q(s+, a+) with two
stable solutions (Q∗

1 and Q∗
2), or the agent selects r = −1 with

the probability ε/2. The agent selects r = −1 from the two
stable solutions Q∗

1 or Q∗
2 with the respective probability 1/2.

If the agent is associated with the smaller stable solution Q∗
2,

then Q(s+, a−) will decrease. As a result, the agent remains
self-satisfied. If the agent is associated with the larger stable
solution Q∗

1, then Q(s+, a−) will increase due to reward,
and the inequality Q(s+, a−) > Q(s+, a+) holds with the
probability 1/2. At the same time, if Q(s−, a+) > Q(s−, a−),
the probability is approximately equal to 1/2, and the self-
satisfied agent successfully becomes a speculative agent. Oth-
erwise, the self-satisfied agent remains self-satisfied. That is,
the probability that a self-satisfied agent changes to being
speculative is approximately ε/16 
 ε/2. As a result, A(t )
will converge to Cr asymptotically.

Two types of agents in phase space

For the RL minority game system, we can construct the
phase space in which the two types of agents can be dis-
tinguished. We define the matrix norm d = ‖Q‖ for the Q
matrix of each agent as the square root of the sum of all the
matrix elements. For the two positions indicated by the red
arrows in Fig. 1(a), Figs. 5(a)–5(d) show the relationship of
matrix norm d at three adjacent time steps. We see that the
agents can be distinguished and classified into two categories
through the matrix norm d , where the self-satisfied and the
speculative agents correspond to the top and bottom sides
of the line x = y and on the line x = y, respectively. The
reason that the speculative agents change their state while the
self-satisfied agents remain in their state lies in the property
of the elements of the Q matrix. In particular, after the system
reaches a steady state after training, for the speculative agents,
the following inequalities hold: Q(s+, a+) < Q(s+, a−) and
Q(s−, a−) < Q(s−, a+), while for the self-satisfied agents,
the inequalities are Q(s+, a+) > Q(s+, a−) and Q(s−, a−) >

Q(s−, a+). Since the values of the matrix elements Q(s+, a+)
and Q(s−, a−) associated with the self-satisfied agents are
between Q∗

1 and Q∗
2, the matrix norm d of these agents

rolls over on the line x = y at the adjacent time. However,
the elements Q(s+, a−) and Q(s−, a+) associated with the
speculative agents reach only the stable solution Q∗

3. As a
result, the matrix norm d of these agents remains unchanged.
Figures 5(e) and 5(f) show that the matrix norms for the
agents display a two-peak distribution, corresponding to the
two types. The peak height on the left-hand side increases with
time, while that on the right-hand side decreases.
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