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Unveiling the chaotic structure in phase space of molecular systems using Lagrangian descriptors
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We explore here the feasibility of using the recently introduced Lagrangian descriptors [A. M. Mancho et al.,
Commun. Nonlinear Sci. Numer. Simul. 18, 3530 (2013)] to unveil the usually rich dynamics taking place in the
vibrations of molecular systems, especially if they are floppy. The principal novelty of our work is the inclusion
of p norms in the definition of the descriptors in this kind of system, which greatly enhances their power to
discern among the different structures existing in the phase space. As an illustration we use the LiCN molecule
described by realistic potentials in two and three dimensions, which exhibits chaotic motion within a mixed
phase space in the isomerization between the two wells corresponding to the linear isomer stable configurations,
LiNC and LiCN. In particular, we pay special attention to the manifolds emerging from the unstable fixed point
between the corresponding isomer wells, and also to the marginally stable structures around a parabolic point
existing near the LiNC well.
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I. INTRODUCTION

The rich dynamics usually exhibited by generic nonlinear
systems is strongly influenced by the structures existing in
their phase spaces [1]. Some of them, like invariant tori,
confine trajectories in particular specific regions, where the
motion is regular. Contrary, other trajectories have a more
complex, yet chaotic, behavior, thus being much more com-
plicated to compute and characterize, as Poincaré early dis-
covered [2]. Still, their behavior is strongly influenced by
invariant manifolds, which attract or repel motion toward or
apart from different regions in phase space.

The phase-space structure of conservative Hamiltonian
systems with two degrees of freedom (2-dof) can be very well
characterized using Poincaré surface of sections (PSOS). In
these systems, the phase space is four dimensional, and the
motion is always confined in the three-dimensional energy
shell. If the value of one of the coordinates and the conjugate
momentum are measured simultaneously on a certain plane,
i.e., that defining the PSOS, the dynamics is then easily visu-
alized and characterized. PSOS can then be used to identify
invariant tori (rendering curves in the PSOS picture), which
always correspond to regular motion, and those regions where
chaotic motion takes place, which is shown as a dense sea
of points, typically with no recognizable pattern at all. These
chaotic regions emerge when invariant tori break down, as
the celebrated Kolmogorov-Arnold-Moser (KAM) and the
Poincaré-Birkhoff theorems [1] dictate.

Nevertheless, the chaotic regions of phase space are not
free from organization and hierarchy. Indeed, underlying
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structures exist, such as unstable periodic orbits (POs) and
their associated invariant manifolds. In general, they present
an infinite number of intersections, the so-called homoclinic
tangle first described by Poincaré, whose infinite crossings
and recrossings are responsible for all the complexity of the
chaotic dynamics. Actually, these tangles, which can be either
homoclinic (intersections of the invariant manifolds associ-
ated with a single PO) or heteroclinic (intersections associated
with the invariant manifolds of different POs) are cornerstones
for the dynamics of nonlinear systems. Thus, their identifica-
tion is key for a correct dynamical characterization of this kind
of system.

Unfortunately, PSOSs are difficult to visualize in systems
with more than 2-dof because of their higher dimension. For
example, the Poincaré map in a system with 3-dof is four
dimensional. As a consequence, new visualization tools were
developed for this purpose (see, for example, Refs. [3–7]).
Also, other indicators of chaos and regular motion, measuring
the stability of trajectories, were defined and used. Lyapunov
exponents [8], measuring the stability of trajectories, are
one of them. However, they are often difficult to compute,
since their convergence is, in general, only achieved after
an extremely long propagation in time [8]. Other short-time
alternatives, such as fast Lyapunov indicators (FLI) [9,10] and
their variants [11], circumvent the previous problem, being
then much better suited for the task. Also, the small alignment
index (SALI) [12,13], and the mean exponential growth factor
of nearby orbits [14] are also efficient alternatives, much less
demanding computationally than the Lyapunov exponents.

Very recently, another powerful indicator of chaos, known
as Lagrangian descriptors (LDs), has been introduced. These
descriptors focus on the phase-space structures that are em-
bedded in the chaotic regions of phase space. They were first
introduced by Madrid and Mancho [15] under the name of
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M function for the characterization of aperiodic flows. Later,
they were applied to the study of maps [16–18], and stochastic
systems [19]. Moreover, LDs have also been successfully
implemented [20] within the so-called geometric transition
state theory [21,22] for the identification of recrossing-free
dividing surfaces [23–27], thus helping in the computation
of chemical reaction rates. Also, LDs have been used in the
identification of reactive islands that account for nonstatistical
behavior in chemical reactions [28].

In this paper, we apply LDs to study the dynamics of the
LiCN molecule with 2- and 3-dof, an isomerizing system with
a very floppy motion in the angular coordinate, which explores
wide regions of the potential energy surface. This implies im-
portant couplings with the other dofs and then a rich dynami-
cal behavior. As a result, chaos sets in at very low values of the
excitation energy. Actually, the LiCN molecule can be taken
as a benchmark for the study of classical and quantum chaos,
and their correspondence [13,29–31], for two reasons. First,
this system has a mixed phase space, which combines regular
and irregular motion at the same energy, a characteristic of
generic chaotic systems. Second, the system has in configura-
tion space two wells separated by a modest energetic barrier;
thus, it can be used as an ideal model to test methods designed
to study prototypical double wells with 1-dof, extending them
to higher dimensions in a more realistic situation.

In this paper, we demonstrate the ability of LDs to effi-
ciently and adequately describe the underlying relevant struc-
tures in the phase space of our realistic system, and we show
how LDs constitute an excellent alternative to that offered by
(composite) PSOSs, especially when the latter is difficult to
visualize. Furthermore, we show that LDs are able to unveil
the structures existing in the chaotic regions of phase space,
which leave no obvious imprint in the Poincaré maps. Like-
wise, we demonstrate that LDs exhibit a pattern that totally
mimics the tangles associated with homoclinic oscillations,
which originates the complex motion in nonlinear systems.
The computation of LDs also unveils the existence of other
structures, such as chain of islands or an interesting cantorus
related to a parabolic point [1] that appears in a saddle-node
bifurcation [32–34]. Moreover, other computational aspects
associated with LDs are explored in this paper. In particular,
we ascertain the improvement in the performance of the LD
that it is obtained when p norms, instead of the standard norm,
are used in their definition. Also, we study the effects of the
integration time used in the calculations.

This paper is organized as follows. First, we describe in
Sec. II the molecular system under study. Second, we discuss
in Sec. III some results about its reduced dynamics for two
energies relevant to our study using PSOS in a reduced two-
dimensional Hamiltonian. Third, we introduce in Sec. IV the
basics of the LD, and discuss some alternatives on their com-
putation. Fourth, we present in Sec. V the results of our study
along with the corresponding discussion. Fifth, we conclude
the paper in Sec. VI with a brief summary and outlook.

II. MODEL

The system under study is the floppy isomerizing LiNC �
LiCN system. Using Jacobi coordinates, the vibrational

FIG. 1. Potential energy surface for the LiCN molecule,
V (R, ϑ, r) = VLi-CN(R, ϑ ) + VC-N(r). (a) Contour plot for
VLi-CN(R, ϑ ). The existence of two minima, corresponding to
the stable collinear isomers: Li-CN at ϑ = 0 rad (green circle), and
CN-Li at ϑ = π rad (black diamond), is seen. These two isomers
are connected by the minimum energy path (brown line), which
crosses a modest barrier (red square). Three relevant periodic
orbits are also shown as almost vertical lines. (b) Morse function
(3) for the C-N dimer potential, VC-N(r). The definition of the
Jacobi coordinates, (R, ϑ, r), used in our calculations is shown
in the inset for the configuration of the isomerization reaction,
LiNC � LiCN, transition state formed at the barrier top localized at
ϑ = 0.292 π rad.

(J = 0) Hamiltonian is given by

H = P2
R

2μ1
+ P2

ϑ

2Iϑ (R, r)
+ P2

r

2μr
+ V (R, ϑ, r), (1)

where R, ϑ , and r describe the Li-CN stretching, the Li-
C-N bending, and the C-N stretching motions, respectively,
as shown schematically in the inset to Fig. 1(b). The corre-
sponding reduced masses are μ1 = mLimCN/mLiCN and μ2 =
mCmN/mCN, respectively, with mLiCN = mLi + mC + mN and
mCN = mC + mN. Iϑ (R, r) = [1/(μRR2) + 1/(μrr2)]−1 is the
reduced moment of inertia associated with the ϑ-dof. No-
tice that while the reduced masses μ1 and μ2, respectively
associated with R and r, are constant, the reduced moment
of inertia Iϑ depends on the value of the distances R and r.
As a consequence, the corresponding kinetic term introduces
a coupling between the previous coordinates and the angular
dof, ϑ . Further details on this coupling between the different
dofs and on the definition of Jacobi coordinates can be found,
for example, in the Ref. [35].

The potential energy surface (PES) is split into two parts

V (R, ϑ, r) = VLi-CN(R, ϑ ) + VC-N(r), (2)

being VLi-CN(R, ϑ ), the potential associated with the molecule
when the distance C-N is kept fixed at its equilibrium value,
re = 2.186 a.u. [36]. This term is mostly responsible for the
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coupling between the R and ϑ dofs. The second term, VC-N(r),
corresponds to the potential interaction for the C-N stretching,
and it is described by a Morse function

VC-N(r) = D[1 − e−β(r−re )]2, (3)

with D = 0.291 35 a.u., and β = 1.4988 a.u. These two con-
tributions are shown in Figs. 1(a) and 1(b), respectively.

As can be seen, the LiNC-LiCN system presents two min-
ima, corresponding to the two stable collinear isomers: Li-CN
at ϑ = 0 rad and r = re, and CN-Li at ϑ = π rad and r = re,
respectively, being the latter the most stable one. These two
isomers are connected by the minimum energy path, Re(ϑ )
[shown as a brown line in Fig. 1(a)], which crosses a modest
barrier (also marked with a red square in the figure).

III. DYNAMICS

The dynamics of the LiCN molecule is very floppy, and
then chaos sets in at very low values of the excitation energy.
Moreover, the C-N vibrational frequency is very high and
then, to a good approximation, the r motion can be considered
decoupled from the rest of the motions in the molecule.
Accordingly, the system can be adequately described by a 2-
dof model corresponding to keeping r frozen at its equilibrium
value, which is described by the following vibrational (J = 0)
Hamiltonian:

H2 = P2
R

2μR
+ P2

ϑ

2Iϑ (R, re)
+ VLi-CN(R, ϑ ). (4)

In this case, the dynamics can be followed by means of
composite PSOSs, using the minimum energy path as the
sectioning plane, i.e., R = Re(ϑ ) and, for example, ψ̇ > 0.
Moreover, to make this PSOS an area preserving map, the
following canonical transformation must be used [29]:

ρ = R − Re(ϑ ), (5a)

Pρ = PR, (5b)

ψ = ϑ, (5c)

Pψ = Pθ −
(

dRe

dϑ

)
ϑ=ψ

PR. (5d)

Finally, taking into account the dynamical symmetry of the
problem, the computed plot can be simplified by performing
the following folding procedure:

ψ → ψ −
⌊

ψ

2π

⌋
2π, if |ψ | > 2π, (6a)

ψ → 2π + ψ, if ψ < 0, (6b)

ψ → 2π − ψ and Pψ → −Pψ, if ψ > π. (6c)

where �· · · � is the floor function.
Some results for moderate values of the excitation energy

are shown in Fig. 2. As can be seen, for the lowest chosen
value of the energy [panel (a)] all motions take place around
the most stable Li-NC isomer, and they are completely regular.
Accordingly, the dynamics is confined into invariant tori,
which render closed curves in the PSOS that foliate the avail-
able phase space in an onionlike fashion. Moreover, the chains
of islands corresponding to the resonances (nR : nϑ ) = (1 : 6),

FIG. 2. LiCN composite Poincaré surface of sections (ψ, Pψ ),
taking ρ = 0 and ψ̇ > 0 [see definitions in Eqs. (5)] for the 2-dof
model of LiCN corresponding to Eq. (4) for E = 1500 cm−1 (a), and
E = 2500 cm−1 (b).

(1 : 8), and (1 : 10) are readily observed. The fate of these
structures is dictated by the Poincaré-Birkhoff theorem [1].

As the energy increases to E = 2500 cm−1 [panel (b)]
some of the previously observed tori are destroyed, i.e., the
one corresponding to the (1 : 10) resonance, turning into a
conspicuous sea of points. As a consequence an ample region
of chaos representing irregular vibrational motion is seen.
Embedded in it, and next to the border of the available
phase space the chain of islands of stability corresponding
to a new (1 : 8) resonance is also apparent. It has different
characteristics from the resonance (1 : 8) observed in Fig. 2(a),
as discussed in Ref. [30]. Notice also that the stable chain
of islands (1 : 6) and the old (1 : 8) have survived. More
interesting is the accumulation of points that is observed just
outside the border of the regular region. This is indicative of
the existence of a cantorus, which was studied in detail by
some of us in the past [32–34], and will play a relevant role in
the discussion of the LD results presented in the next section.
Cantori constitute partial barriers for the flux of trajectories
across [37], this explaining the accumulation of points in the
area between the cantorus and the last unbroken invariant
tori [located closer to the center (ψ, Pψ ) = (π rad, 0 a.u.)].
Notice also the appearance, at this value of the energy, of
an area of regularity in a small neighborhood of the Li-CN
isomer, i.e., around ψ = 0 rad, which is now energetically
accessible.

IV. LAGRANGIAN DESCRIPTORS

In this section, we describe the use of LDs to study the
phase space of the isomerizing LiNC-LiCN molecular system,
which is the main goal of the present work. Essentially,
LDs measure the arc length of a trajectory launched at an
specific point of phase space. The dynamical character and
behavior of the trajectory, determined by the corresponding
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Hamiltonian flow, will leave an imprint on the LD, which
can in this way be easily ascertained. Actually, LDs present
an abrupt change at the boundaries of regions comprising
trajectories with qualitatively different time evolution, which
manifests as a discontinuity in the derivative transverse to
that boundary [38]. As will be shown in Sec. V below, the
previous singularity appears, for example, along the invari-
ant manifolds of hyperbolic trajectories, irrespective of them
being periodic, aperiodic, or chaotic. The heuristic argument
would still apply to our case, indicating that at the boundaries
of regions comprising trajectories with qualitatively different
time evolution the accumulated value of the chosen positive
quantity will change abruptly.

A. Standard definition of the Lagrangian descriptors

Following early work by Haller on strain tensors [39], the
first definition of LDs was introduced by Madrid and Mancho
[15] as

Ms(z0, τ ) =
∫ τ

−τ

√√√√ n∑
i=1

ż2
i (t ) dt, (7)

that is, the Euclidean norm of the flow ż(t ) = f (z, t ), with the
initial condition z0 = (R0, ϑ0, r0, PR,0, Pϑ,0, Pr,0) in our case,
and integrated over the time interval [−τ, τ ]. Hereafter, we
will refer to this definition of LD as the standard one.

Notice that the time evolution involved in Eq. (7) is per-
formed forward and backward in order to account for the
stable and unstable manifolds of hyperbolic orbits all at once.
Recall that the unstable (stable) invariant manifold determines
the dynamics forward (backward) in time, and then its imprint
in the LD is (almost) solely manifested by performing the
corresponding time evolution. Let us remark here that the
computation of the LD using Eq. (7) [and Eq. (8) below] re-
quires solely the propagation (forward and backward in time)
of the initial condition under study. On the contrary, for the
calculation of SALI one must also integrate two neighboring
trajectories [12,13], and for FLI (in an n-dimensional phase
space) the integration of n neighboring trajectories [10] is
required.

Obviously, the integration time τ plays an important role
in the definition and actual computation of LDs. Let us next
discuss the influence of this parameter in LDs, and how the
best suited value of it can be selected in our calculation.

In Fig. 3 we show some results for the 2-dof model of
LiCN [see Eq. (4)] for E = 2500 cm−1, the same one used
in Fig. 1(b). A fine grid of initial conditions on the PSOS
is chosen, and then the corresponding LD computed using
Eq. (7) for different values of the integration time τ . The
obtained numerical results are represented on the chosen
PSOS point using a color code that alternates cold and warm
colors in order to enhance the difference between adjacent
trajectories. The reason for this is that the most important issue
in the LD, as defined in Eq. (8), is to consider the changes in
the value (color) of the LD. [16–18,38].

As can be seen in Fig. 3(a), the LD is a smooth function
for the shortest integration times considered (τ = 103 a.u.);
then, no invariant structure is resolved. This is not an unex-
pected result since the stability exponent of a typical unstable

FIG. 3. Lagrangian descriptors for the LiCN 2-dof model (4) for
E = 2500 cm−1 [the same one used in Fig. 2(b)] using the standard
definition (7) for different values of τ : (a) 103 a.u., (b) 104 a.u.,
(c) 2 × 104 a.u., and (d) 105 a.u., respectively.

periodic orbit at this energy is of order λ ∼ O(10−4), and then
λ τ ∼ O(10−1), a value which is too small to distinguish the
hyperbolic behavior of two neighboring chaotic trajectories.
It is only when the integration time is sufficiently large that
the dynamics in different regions in phase space leave clearly
distinguished imprints on the LD plots, becoming then visible.
Notice, for example, that the LD plot shown in Fig. 3(b),
which corresponds to τ = 104 a.u., has a shape that very
much resembles that of the composite PSOS of Fig. 2(b). This
value of τ is still neither long enough to identify the invariant
structures in the chaotic regions of phase space, nor to identify
the chains of islands of stability.

Furthermore, when τ is further increased to 2 × 104 a.u.
the chaotic region of the PSOS in Fig. 2(b), which only con-
sists of a dense sea of points with no apparent or identifiable
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pattern, exhibits an involved shape in the LD plot shown
in Fig. 3(c), where abrupt changes in the coloring mark the
existence of invariant manifolds.

However, when much longer integration times are used,
a more detailed description of the local properties of the
invariant manifolds is included in the computed LD, and then
they no longer appear as continuous lines in the LD plots
but as blurry ones. This is the case seen in Fig. 3(d), where
τ = 105 a.u. Let us remark that this value of the integration
time is only ∼50 times larger than that of the periods of the
POs shown in Fig. 1. Nevertheless, this longer integration time
is useful to resolve the chains of islands that are embedded in
the more regular region of phase space that exists in the LiNC
well (ψ = π rad) located inside the cantorus that is seen as a
dense set of points in Fig. 2(b). The two insets presented in
Figs. 3(c) and 3(d) show enlarged views of these regions. As
seen, the chain of islands associated with the resonance (1 : 8),
which is clearly visible in the PSOS of Fig. 2(b), becomes also
visible in the LD computed for the longest integration time,
but not for the previous (smaller) considered values of τ .

As a result, we can conclude that τ is a crucial parameter,
that should be heuristically chosen to get meaningful LD re-
sults. In our case a value of τ = 2 × 104 a.u. seems adequate
for our purposes. Unfortunately, there is no explicit way to
predict an adequate value of it, and then only a trial-and-error
procedure can be performed to set its value.

B. Lagrangian descriptors defined using p norms

Although definition (7) has been demonstrated to be ex-
tremely fruitful since its inception, very recently Mancho et al.
[38,40] have elaborated an alternative definition for the LD,
which allows the identification of phase-space structures using
shorter computation times. This new and improved definition
of the LD characterizes the flow using a p norm in the
following way:

Mp(z0, τ ) =
∫ τ

−τ

n∑
i=1

|żi|pdt, (8)

with p � 1. Notice that for p = 1 the p norm appearing in
Eq. (8) is the so-called taxicab or Manhattan norm, giving
in two dimensions the distance corresponding to moving in a
rectangular grid to the final point. Unfortunately, to the best of
our knowledge, no such straightforward interpretation of the
p norm for other smaller values of p exists.

Let us now demonstrate the improvement obtained when
using p norms in the definition of the LD [see Eq. (8)], which
provides a more efficient alternative to study the structure of
phase space, especially when the dynamics is chaotic. For
this purpose, we show in Fig. 4 the LD computed for the
(approximately) optimized value of the integration time τ =
2 × 104 a.u., and different values of p. Notice how in all cases,
the computed LD reveals some structures in the chaotic region
that can be easily identified in an unambiguous fashion, this
being especially true in panels (a) and (b). When closely ex-
amined, they are seen to correspond to the invariant manifolds
defining the tangle that emanates from the unstable points of
the different chain of islands, mainly those corresponding to
the outer (1 : 8) resonance existing in this region of the LiCN

FIG. 4. Same as Fig. 3 computed using different p norms, as
defined in Eq. (8): (a) p = 0.1, (b) p = 0.4, (c) p = 0.6, and (d)
p = 1. An integration time τ = 2 × 104 a.u. has been used in all
cases.

phase space, which was discussed in connection with the
results in Fig. 2(b). The imprint of these structures in the LD is
much weaker in panels (c) and (d), where the p = 0.6 or p =
1.0 norms are used instead in the definition of the LD. Con-
trary to what happened for the standard LD, the chains of is-
lands that emerge in the frontier between regular and irregular
motion are here more clearly seen due to the use of p norms.

Let us finally sum up this section by pointing out that the
computation time for the LD has the same effect for both
standard and p-norm definitions: namely, if it is too low, the
LDs show up as a smooth function, while too high values
of the integration time render LD plots with too much infor-
mation, and then the existing structures cannot be identified.
Morever, our results show that a value of p = 0.4, which is
very close to that of ∼0.5 suggested by Mancho et al. [38,40],
seems to be best suited to identify the invariant manifolds that
partition the chaotic phase space in our case, and accordingly
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FIG. 5. Composite Poincaré surface of sections (a)–(c) and Lagrangian descriptors computed with p = 0.4 and τ = 2 × 104 a.u. (d)–(f)
for the 2-dof model of the LiCN molecule corresponding to Eq. (4), for different values of the vibrational energy: E = 3500 cm−1 [(a) and
(d)], E = 4000 cm−1 [(b) and (e)], and E = 4500 cm−1 [(c) and (f)].

all calculations presented hereafter will be performed using
this specific p norm.

V. RESULTS AND DISCUSSION

In this section we report the results of our LD calculation
and present the corresponding discussion. All LDs discussed
here have been computed using Eq. (8) with p = 0.4 and τ =
2 × 104 a.u.

The results are presented divided into two parts. First, we
report in Sec. V A the phase-space analysis for the 2-dof
model of the LiCN molecule corresponding to Eq. (4), where
the C-N distance is kept fixed at its equilibrium value, paying
special attention to the neighborhood of the marginally stable
structures associated with the POs plotted in pink and purple
in Fig. 1(a). Second, Sec. V B is devoted to the case where the
full dynamics is taken into account, i.e., when the system is
studied with the 3-dof realistic model of Eqs. (1)–(3).

A. Two-degrees-of-freedom model

Here we extend our study of the 2-dof model for LiCN
presented in Sec. III, by considering vibrational excitation
energies above that of the saddle point [red square in Fig. 1(a)]
existing in VLi-CN(R, ϑ ) in Eq. (2).

In Figs. 5(a)–5(c) we show the composite PSOS for this
model corresponding to E = 3500, 4000, and 4500 cm−1.
Notice that all these energies allow the “rotation” of the Li
atom around the CN fragment, and thus the isomerization
process LiNC � LiCN. Here, the energy shell is formed by a
single connected volume, and not by two disconnected regions
as in the cases shown in Figs. 2–4. As expected, the degree of
chaoticity of the system has increased with the energy, as can
be inferred by visual inspection of the plots in these three pan-
els. In the corresponding chaotic areas, irregular motions ex-
ist, which allows the transport from different (distant) regions.

However, despite its numerical relevance, the PSOS offer
no clue of the (rich) underlying structure in these chaotic
regions, providing only detailed information of the regular
motion around the isomers. The situation is totally different
in Figs. 5(d)–5(f), where the corresponding results for the p-
norm computed LDs are displayed. In all of them, the tangles
existing in the chaotic regions, which in our case are mainly
due to the homoclinic intersections of the one-dimensional
stable and unstable invariant manifolds emanating from the
unstable fixed point corresponding to the PO at the saddle
of the PES [see Fig. 1(a)], are clearly visible. In fact, the
imprint of these manifolds, which are able to fully partition,
in an exact way, the phase space in the chaotic regions [1,41],
is so clear, that the LD plots can be used to compute them
[20]. Notice that although this calculation can be carried out
numerically using standard nonlinear techniques, this task
gets progressively more complicated as the dimensionality of
the problem raises, and then using LD as a first approximation
alleviates the computational burden, since it only requires
solving the system equations of motion and performing the
integral in Eqs. (7) or (8). Moreover, this way of proceeding
has the additional advantage of being easy to understand, this
opening a convenient door to the novice into this field.

Let us finish this section by discussing another relevant
point of our work, which is the ability of LDs to unveil
the structures in the neighborhood of a (marginally stable)
parabolic point in phase space, where the dynamics is non-
hyperbolic. To the best of our knowledge, to date, there is no
rigorous proof of the existence of discontinuities in the LD in
the vicinity of such points, contrary to what happens for the
regular unstable fixed-point case [16–18].

One such parabolic region exists in the dynamics of
our 2-dof model for LiCN. As discussed in detail in
Refs. [32–34,42], this and associated structures are due
to the occurrence of a saddle-node bifurcation at Ebif =
3440.6 cm−1, where a degenerate pair of marginally stable

032221-6



UNVEILING THE CHAOTIC STRUCTURE IN PHASE … PHYSICAL REVIEW E 99, 032221 (2019)

FIG. 6. Lagrangian descriptors computed with p = 0.4 and τ = 2 × 104 a.u. (a)–(e) for the 2-dof model of the LiCN molecule
corresponding to Eq. (4) for different values of the vibrational energy below, at, and above the energy, Ebif, of the saddle-node bifurcation
discussed in the text: E = 3000 cm−1 (a), E = 3200 cm−1 (b), E = Ebif = 3440.6 cm−1 (c) where the blue filled circle indicates the position
of the parabolic point, E = 3700 cm−1 (d), and E = 4163.3 cm−1 (e). The composite Poincaré surface of section (adapted from Ref. [33])
corresponding to (e), showing the phase-space structures associated with the bifurcation, is also presented, for comparison, in (f). In it, the
fixed points corresponding to the stable and unstable periodic orbits [see purple lines in Fig. 1(a)] are indicated with an open and a full purple
triangle, respectively. An invariant torus (black solid line) around the former, and the stable (blue line) and unstable (red line) manifolds
emanating from the latter are also shown.

POs, drawn in pink in Fig. 1(a), appear out of the blue, or
more precisely as the result of a series of high-order precursor
POs, which already exist below the bifurcation energy, as
discussed in detail in Fig. 6 of Ref. [33], where the (1 : 24)
and (1 : 28) precursors (oscillating around the LiNC isomer)
are shown. These two POs later evolve, as energy increases,
separating from each other [see purple orbits in Fig. 1(a)],
being stable that on the left side and unstable that on the
right side of the original one, this giving rise to interesting
dynamical properties of this region. Indeed, in these nonhy-
perbolic regions the existing stable and unstable manifolds
intersect at very small angles, or have tangencies which give
rise to infinite series of saddle-node bifurcations [33], which
mix with the bifurcations of the principal POs (around the
LiNC in our case), whose existence is guaranteed by the
Weinstein theorem [43]. All this makes the dynamics in this
region very complicated, and the proliferation of folds in the
precursor POs accumulate in the region where the “future”
saddle-node orbit will be born. As indicated before very few
of these structures are apparent, if at all, in the PSOS. For
example, in Fig. 5(b) only a tiny island of regularity is seen,
around (ψ, Pψ ) � (0.6π rad, 0 a.u.), while nothing is obvious
in panels (a) and (c).

To study the issue in detail, we present in Fig. 6 the results
corresponding to p-norm computed LDs at energies below
[panels (a) and (b)], at [panel (c)], and above [panels (d)
and (e)] that of the bifurcation point Ebif = 3440.6 cm−1.
The position of the parabolic point is indicated with a filled
blue circle in panel (c). As can be seen, the colored LDs
clearly indicate the existence of a complicated dynamical
structure, which changes with the energy. More interesting,

LDs also show that this structure does not appear out of the
blue at the bifurcation energy, but it also exists below it, being
there formed by the manifolds associated with high-order
POs oscillating around the Li-NC isomer, and intersecting
at small angles. All these results are in agreement with the
conclusions of Ref. [33], where complete details were given in
the discussions corresponding to its Figs. 6–10. Actually, the
similarities existing between the LD structures in Figs. 6(c)
and 6(d) and those in Figs. 8(c) and 8(f) of that reference are
quite remarkable. Finally, we are also giving, for comparison,
in Fig. 6(f), a zoom-in of the portion of the PSOS computed at
E = 4163.3 cm−1 corresponding to Fig. 6(e), where the struc-
ture emerging from the parabolic point, i.e., hyperbolic point
(filled purple triangle) and associated manifolds enveloping
the regularity region around the elliptic point (empty triangle
and black KAM tori), appears fully developed. (The reason
for choosing this particular value of the energy is that it is
equal to that of the 79th vibrational eigenstate of the LiNC-
LiCN isomerizing system, which is very much influenced by
the above discussed structure [32,33]). In it, we have only
included the most relevant elements. The position of the fixed
points corresponding to the stable and unstable saddle-node
POs [see also POs in purple in Fig. 1(a)], are indicated
with an open and a filled purple triangle, respectively. Also,
an invariant KAM torus enveloping the island of regularity
around the former is plotted in a black solid line, while the
remaining lines represent different portions of the stable and
unstable manifolds associated with the unstable PO, which
have been colored for better visualization. As can be seen, the
homoclinic tangle and regular region in this plot are extremely
well mimicked by the colored LDs of panel (e).
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FIG. 7. Lagrangian descriptors computed using p = 0.4 and τ = 2 × 104 a.u. for the 3-dof model of the LiCN molecule corresponding
to Eq. (1), for different values of the total vibrational energy: E = 3500 cm−1 (left column), E = 4000 cm−1 (middle column), and E =
4500 cm−1 (right column), and different choices of the initial fraction on the CN kinetic energy: T CN

kin = 0 cm−1 (top row), T CN
kin = 1000 cm−1

(middle row), and T CN
kin = 1500 cm−1 (bottom row).

B. Three-degrees-of-freedom model

Let us consider now the p-norm computed LDs for the
LiCN molecular vibrations when described with the 3-dof
model of Sec. II, which gives full account of the C-N motion.
The corresponding phase space will now be six dimensional,
and the energy shell five dimensional, with embedded three-
dimensional invariant KAM tori. The corresponding PSOS
having dimension four is difficult to visualize [3,5–7], and, as
in the case of the 2-dof model, the raw data are not expected to
provide much structural detail of the chaotic regions. On the
contrary, LDs should not have this limitation, being then fully
functional to unveil the eventual phase-space structures exist-
ing in the chaotic regions of this much more complex case.

In our study, the initial conditions for the trajectories are
chosen in the following way. First, we select which fraction
of the total energy goes into the C-N motion, and allocate it
all in the kinetic energy term, T CN

kin = P2
r /2μ2, since this is the

only one able to couple C-N and Li-CN motions. This implies
that we take re as the initial value for the coordinate r. In our
case, we choose T CN

kin = 0, 1000, and 1500 cm−1, presenting
the corresponding LD results in the upper, middle, and bottom
rows of Fig. 7, respectively. For the remaining (R, ϑ, PR, Pϑ )
variables, we take again random initial conditions in the 2-dof
PSOS, as defined in Sec. III.

Figure 7 shows the corresponding LD results for three dif-
ferent values of the total vibrational energy: E = 3500, 4000,

and 4500 cm−1 in the left, middle, and right columns, respec-
tively. Several comments are in order.

First, a big similarity between the LD corresponding to the
2-dof model of LiCN at the bottom row of Fig. 5, and those for
the 3-dof model with an initial null value of T CN

kin presented in
the top row panels of Fig. 7 is found. Obviously, this is not an
unexpected result if one takes into account the choice of zero
initial kinetic CN energy, and the fact that there exists a good
dynamical separation between the C-N and Li-CN motions
in our molecule, as demonstrated in Ref. [44]. In any case,
this result can be taken as further confirmation of the latter
assumption.

Second, more remarkable differences between the 2-dof
and the 3-dof descriptions of LiCN are observed when the
LDs are computed putting some initial kinetic energy in the
CN mode. The corresponding results are found in the middle
and bottom rows of Fig. 7. Here, the available phase-space
area is smaller than in the previous case (row), due to the
motion taking place in the “now hidden” (r, Pr ) CN part of the
LiCN phase space. Nevertheless, notice how the LDs are still
here able to identify the imprints of the invariant manifolds
partitioning the phase space in the chaotic regions.

More interestingly, the different columns in Fig. 7 can
be interpreted as the (approximate) evolution of the 3-dof
invariant manifolds, along with the corresponding trajecto-
ries for the full LiCN dynamics actually move. Indeed, due
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to Fenichel’s theorem, demonstrating the persistence and
smoothness of invariant manifolds for flows [45], it is plausi-
ble the possibility to construct, from the 2-dof manifolds, the
stable and unstable manifolds for the 3-dof coupled model,
considering the extra dof and the evolution of a stack of PSOS
maps of the 2-dof system calculated at different values of the
energy. Also, for the 3-dof Hamiltonian system (1), the result-
ing invariant manifolds have the correct dimension to exactly
divide the phase space completely. A detailed explanation of
this way of proceeding can be found in Ref. [46] for a 3-dof
extension of the 2-dof system in Ref. [41], where a chaotic
scattering problem has been chosen for the calculation. The
reason for this is clear, since the existence there of a large
portion of the phase space (the asymptotic one) in which the
motion is regular (transient chaos) makes the visualization of
the problem, i.e., evolution in the stack of reduced dimension-
ality PSOSs, much easier.

Third, notice that the similarities observed in the mani-
folds, as pictured by the LD color code, in corresponding (in
the energy sense) plots of the previous figures, i.e., between
Figs. 7(f) and 5(d), and between Fig. 7(h) with 7(d) and
also with Fig. 4(b), are again further indications of the good
dynamical separation existing between the C-N and Li-CN
motions [44], and also of the resilience of the manifolds of
the 2-dof model with respect to the perturbation induced by
the (weak) coupling appearing when the CN mode is included.

VI. SUMMARY

In this paper, we have demonstrated the feasibility of using
LD to unveil in an easy and effective way the phase-space
structures of molecular systems described by realistic poten-
tials. In particular, we have shown the improvement that is
obtained with respect to the standard LD definition when p
norms are used in it. We have also shown that in this latter
case it is very important to make a careful choice of the values
of p and the integration time τ , in order to identify clearly the
existing homoclinic and heteroclinic intersections, which are

responsible for the intricate dynamics in the chaotic regions
of phase space of mixed systems.

Likewise, we have used LDs to explore the phase space of
2-dof and 3-dof vibrational Hamiltonian models for the LiCN
molecule, which exhibits a rich dynamical behavior. We have
found that LD is an efficient tool to unveil the structure of
phase space regardless of the dimensionality of the system,
especially in the chaotic area, where other methods find it
more difficult to do so. We have also shown—and this is the
most important conclusion of our work—that the LD method
also works equally well, if not better, in the neighborhood of
parabolic points, where the dynamics is nonhyperbolic and
marginally stable; something that was not explored in the
original works of Mancho et al. [16–18], who only considered
the effect of hyperbolic points. By comparing the LD obtained
in our 2- and 3-dof calculations, we have also ascertained the
resilience of the manifolds in the approximated 2-dof model
with respect to the introduction of the C-N dof.

To conclude, we give an overview for possible relevant
future work. First, the emergence of the invariant structures
below and above saddle-node bifurcations should be investi-
gated in more detail using LDs. Second, a detailed procedure
for the visualization of the full dimensional dynamics using
stacks of (approximate) reduced dimensionality PSOS for the
3-dof model of LiCN should be developed.
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