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Transport barriers with shearless attractors
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We present a mechanism to generate a sequence of shearless curves or attractors to form a band of transport
barriers. We consider the labyrinthic nontwist standard map to prepare a scenario with three shearless curves.
Dissipation is introduced and three shearless attractors coexist, very close to each other. In both cases a collective
transport barrier is formed.
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I. INTRODUCTION

Complete transport barriers, in nonlinear systems, are
spanning curves that prevent particle trajectories from enter-
ing certain regions and keep them isolated from each other
[1,2]. They appear on the Poincaré map due to the persistence
of invariant tori under the effect of generic perturbations. A
special transport barrier is the shearless curve, named first in
[3], which appears broadly in works on plasma confinement
[4–9], nonlinear systems [10–22], and flow dynamics [23,24].
A global condition to the appearance of shearless tori is the
presence of frequency degeneracy in the system, if it is a
flow governed by a Hamiltonian, or the violation of the twist
condition if it is a discrete system governed by a map [3]. Such
systems present intrinsically resonances of the same order,
called isochronous resonances [25]. A nontwist map has as
many isochronous resonances as the order of the nontwist
term. A quadratic nontwist map presents a pair of isochronous
resonances. If the resonances are close enough, they can
interact through the overlap of their manifolds and form a
new topological rearrangement with meandering tori, among
which the shearless curves can arise. The characterization of
the shearless torus occurs by evaluating the winding number
of the system. A remarkable feature of the shearless curve is
that, in addition to surviving generic perturbations for longer
periods of time, it also survives the effects of dissipation and
becomes a robust attractor. In [26] it was named the shearless
attractor due to its origin on the shearless torus. The system
we are going to consider in the current paper is governed
by a two-dimensional nontwist map previously introduced in
[27] in a conservative fashion and also in [26] in a dissipative
scenario. The main idea is to create a region with several
nearby shearless curves or various nearby attractors in order
to produce a stronger collective transport barrier. The paper
is organized as follows. In Sec. II we present the model. In
Sec. III the results are shown and discussed. The concluding
remarks are presented in Sec. IV.

II. THE MODEL

We consider the nonlinear nontwist map called the
labyrinthic nontwist standard map, introduced in [27], given

by the equations

yn+1 = (1 − γ ) yn − b [sin (2π xn) + sin (η 2π xn)],

xn+1 = xn − a (yn+1 − r1)(yn+1 − r2). (1)

The parameter γ is responsible for introducing dissipation
in the system; for γ = 0 the system is conservative. Parameter
b controls the amplitude of the nonlinearity while parameter
a controls the influence of the nontwist term; both affect the
width of the chaotic sea. r1 and r2 are the positions where
the resonances will be born in the phase space (x, y), and η

is the parameter that induces bifurcations inside the resonance
islands. The x variable of the map has period 1. The quadratic
term involving r1 and r2 leads to the appearance of two
isochronous resonances [25] which can overlap, depending
on the distance |r1 − r2|. When η > 1, bifurcations inside the
islands generate new separatrices which can overlap as well.
Isochronous resonances have the same period and correspond
to degeneracy in frequencies. In this nontwist scenario a
shearless curve can appear, which is a remarkable robust
transport barrier because it has a winding number close to
the golden number, the most irrational number, and thus with-
stands the effect of generic perturbations for longer periods
of time. This point is very relevant for plasma confinement
in tokamaks. Depending on the value of η it is possible to
have the coexistence of more than one shearless curve, and our
conjecture is that many shearless curves may produce the best
scenario to obtain a more robust attractor in the dissipative
case. We are going to analyze this configuration.

III. RESULTS

Figures 1(a), 1(c), and 1(e) show the effect of varying the
parameter b considering the set of parameters η = 3, a = 0.1,
r1 = 0.2 = − r2, and γ = 0. In the second column we observe
the corresponding winding numbers calculated through the
expression

ω = lim
n→∞

(xn − x0)

n
, (2)

for which we have fixed x0 = 0.5 for all calculations. To
perform Eq. (2), we choose a small range for the variable y,
we divide it into 1000 values, and for each value we iterate
the equations of the map given in Eq. (1). After a maximum
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FIG. 1. The birth of shearless curves in the phase space as the parameter b is increased. In panel (a) the red curve is the only shearless curve,
which is associated with an extremum in the winding number, showed in panel (b); the green dots show the elliptic fixed points, and the purple
stars and black arrows show the hyperbolic fixed points. In panel (c) there are two shearless curves and in panel (d) there are two extrema,
while in panel (e) there are three shearless curves and in panel (f) there are three extrema. The parameters used were a = 0.1, η = 3, r1 = 0.2,
r2 = −0.2, and zero dissipation γ = 0. In panels (a) and (b) b = 0.005. In panels (c) and (d) b = 0.0051. In panels (e) and (f) b = 0.006.

number of iterations we take the value of x, calculate, and
store the value of ω. The process is repeated for all values of
y in this range. For each extremum of the winding number,
i.e., dω/dy = 0, a shearless curve will appear in the phase
space (x, y).

In Fig. 1(a), we give several initial conditions in order
to show more broadly the dynamics in the phase space. In
the range x : [0, 1] around y ∼ 0.2, and also around y ∼
−0.2, there are three elliptic fixed points and three hyperbolic
fixed points as well. In this configuration both isochronous

resonances have already overlapped. The stable fixed points
will become stable foci, i.e., point attractors, when the dis-
sipation is introduced. The red curve is the shearless curve
associated to the extremum of the corresponding winding
number showed with a blue dot in Fig. 1(b). For the value
b = 0.005, Fig. 1(a), there is only one shearless curve in
the system. In Fig. 1(c) we show only the shearless curves
without any other trajectory because we are interested in
understanding the behavior of these curves under the effect
of dissipation. Figure 1(d) shows the winding number with
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two extrema marked with blue dots. In Figs. 1(c) and 1(d),
we use b = 0.0051. Increasing the parameter to b = 0.006,
we can observe three shearless curves in Fig. 1(e) associated
with the three extrema of Fig. 1(f) also marked with blue
dots. Hence, with the chosen set of parameters we prepare
the system with three coexisting shearless curves, which
are very close to each other in the phase space, to under-
stand their evolution as the dissipation is increased in the
system.

The dissipation is now introduced for very small values
of γ in order to observe the transitions that usually occur in
tiny scales. In [26], it was showed that the shearless curve
becomes an attractor when dissipation is present and this
attractor carries the robustness of its conservative ancestor.
Based on that, and considering that in the system there are
three shearless attractors, we asked how would be the possible
behavior of these attractors as the dissipation is increased.
We adjust the parameters to observe smooth changes in the
structures of the attractors. To be successful, the dissipation
should be very small because the winding number is no longer
defined. However, to identify now the shearless attractors we
take their coordinates of the conservative case and evolve

them for a great number of iterations and we disregard the
transients of 90% of the iterations. The remaining points are
attracted toward the attractors. We plot them in Fig. 2, where
we keep fixed the parameters that could introduce chaos in
the system in order to observe the underlying structures that
support the final configuration of the shearless attractor. We
fix a = 0.1 and b = 0.006 and we select four values for the
dissipation parameter, γ = [1; 2; 3; 5] × 10−4.

In all the panels of Fig. 2 we did not plot the other point
attractors, which exist in the system, in order to keep the
focus only on the shearless attractors. We also did not plot any
transients of the trajectories. We can observe in Fig. 2(a) that
the three shearless attractors are closer but relatively distant in
relation to the next plots. In Fig. 2(b) the outer attractors move
toward the central one. The vertical straight lines are useful
for guiding the eyes to observe that movement. In Fig. 2(c),
we observe the same motion, and in Fig. 2(d) the three
shearless attractors are collapsed into only one attractor. The
interesting point here is to consider the inverse process: From
one attractor can be born three attractors. It seems intuitive to
us that to block transport three barriers are better than one.
For the range of values used for γ we can also observe a

FIG. 2. Weak dissipation is introduced. In panel (a) γ = 1 × 10−4 and the three shearless attractors are smoothly deformed in relation to
the plot of Fig. 1(e). In panel (b) γ = 2 × 10−4 and the central attractor is attracting the other two. In panel (c) γ = 3 × 10−4 and the formation
of a single attractor is accentuated. In panel (d) γ = 5 × 10−4 and the shearless attractors collapse into only one attractor. The vertical lines
are to guide the eyes.
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scenario of multistability in which there is a coexistence of
various shearless attractors.

IV. CONCLUDING REMARKS

We study a system that carries intrinsically the existence
of shearless curves, and we propose a mechanism to form
a region of robust attractors. Our model allows us to have
as many shearless curves as desired, and it is well known
that these curves are transport barriers that survive intense
generic perturbations. They play a very important role for
the plasma confinement in tokamaks, and the longer they
survive the more efficient is the confinement. We change the
control parameter b to evidence the birth of one, two, and three
shearless curves. We prepare the system with three shearless
curves and introduce dissipation transforming them into three
shearless attractors, by varying the dissipation parameter γ .
We observe that they collapse into only one final attractor.
This is a significant mechanism to form an attractor. In fast
or turbulent processes this configuration may go unnoticed,
but if these processes are controlled by parameters then
they can be adjusted to improve the transport barriers. This
improvement will occur by considering the inverse mecha-
nism and breaking the attractor degeneracy to form a sequence
of shearless attractors. Even in the conservative scenario it is

possible to create a region with several shearless curves close
to each other and produce a wider region of transport barriers.
The region composed of many shearless attractors is supposed
to be more robust to block transport in the system. However, to
verify this point, it is necessary to have at least one free param-
eter other than b, since it changes the winding number profile–
just as does the parameter a–and consequently changes the
number of shearless curves in the system. It should also be
distinct from the parameter γ , since it transforms the scenario
from one attractor to three attractors. However, to verify this
point, it is necessary to have at least one free parameter other
than b, since it changes the winding number profile–just as
does the parameter a–and consequently changes the number
of shearless curves in the system. It should also be distinct
from the parameter γ , since it transforms the scenario from
one attractor to three attractors. This point will be the subject
of further work.
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