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Dynamic environment-induced multistability and critical transition in a metacommunity ecosystem
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We study a metacommunity model of consumer-resource populations coupled via dispersal under an
environment-dependent framework, and we explore the occurrence of multistability and critical transition. By
emphasizing two magnitudes acting on a dynamic environment at temporal and spatial scales, the coupled system
with simple diffusive coupling and the nonlinear environmental coupling enables various interesting complex
dynamics such as bistability, multistability, and critical transitions. Using the basin stability measure, we find the
probability of attaining each alternative state in a multistable region. In addition, critical transitions (one from
a high to a low species density and the other from a low to a high species density) are identified at different
magnitudes in the presence of stochastic fluctuations. We also explore the robustness of critical slowing-down
indicators, e.g., lag-1 autocorrelation and variance, to forewarn the critical transition in the metacommunity
model. Further, a network structure also identifies synchronization and multiclustering for a different choice of
initial conditions. In contrast with the earlier studies on dynamic environmental coupling, our results based on
the defined magnitudes provide important insights into environmental heterogeneity, which determines the set of
environmental conditions to predict metacommunity stability and persistence.
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I. INTRODUCTION

Systems of coupled oscillators construct an efficient frame-
work to study interacting oscillatory processes relevant to
different fields such as physics, chemistry, biology, ecol-
ogy, engineering, and many other disciplines of science
and technology [1,2]. The impact of such studies becomes
more advantageous due to the fact that natural systems are
rarely isolated and hence their dynamics can be explored
using potential models of interacting oscillators. Extensive
research on network of coupled oscillators explored a diver-
sity of cooperative phenomena, such as synchronization [3,4],
phase-locking [5,6], oscillation quenching [7], and chimera
states [8–10].

In the context of coupled oscillators, coupling plays a
crucial role in determining their dynamics [11]. In natural
systems, units interact with each other directly through dif-
fusion and also indirectly, e.g., via a common environment.
Particularly, this type of coupling is very much relevant
in ecology where species interact with common resources
as well as shared resources [12]. However, existing studies
with generic oscillators considered the shared resource as a
linear one [11], which deviates from reality. In the context
of ecology diffusion (or dispersion) is generally considered
as a linear process, however, other forms of coupling are
typically nonlinear. For example, the interaction between
resources and consumers can be nonlinear in nature, e.g.,
via the type-II functional response [13]. Functional response
determines how consumption rate varies with resource den-
sity. The type-II functional response is a saturating non-
linear function such that the consumption rate increases

up to a level and then saturates with increasing resource
density.

In complex spatial ecosystems, habitats where species re-
side are highly dynamic in nature [14]. Furthermore, multiple
tropic interactions [15,16] and its distribution with underlying
spatial heterogeneity [17,18], and the magnitude of environ-
mental conditions affect the metacommunity dynamics [19].
Investigations on numerous coupled nonlinear systems and
stochastic oscillators describe the theoretical understanding
of various biological mechanisms arising in metacommunity
ecosystems [20,21]. Particularly, different types of network
topologies emphasize the structure of habitat connectivity,
dispersal, and spatial distributions on ecosystem function-
ing [10,22,23]. Therefore, to model and study spatial ecosys-
tems by incorporating proper forms of coupling that encap-
sulates local as well as shared interactions are challenging
tasks.

In this paper, we take into account two types of species
interaction in the coupling, namely diffusive coupling and
nonlinear environmental coupling, to incorporate various
complexities of metacommunity systems [24]. In fact, these
couplings characterize the consumer-resource interactions in
three fundamental ways: (i) the interaction within the patch
(interaction with a local resource), (ii) the interaction be-
tween the patches (species migration), and (iii) the interaction
through a common dynamic environment (interaction with
a shared resource). Due to the spatial pattern of landscape
structure, the magnitude of species interactions acting on the
dynamic environment over time has a profound impact on the
species persistence. Here, we aim to address the following
questions: How do the magnitudes of spatially distributed
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populations acting on a dynamic environment affect the meta-
community dynamics? What is the range of the magnitudes
(fractions) at temporal and spatial scales that can promote
metacommunity stability and persistence?

Here, we explore both deterministic as well as corre-
sponding stochastic metacommunity models using two mag-
nitudes defined on the dynamic environmental coupling. The
considered magnitudes determine various complex dynam-
ics of the coupled system, such as bistability, multistability,
and critical transition. In particular, the existing bistability
and multistability consist of contrasting dynamical states in
a combination of both the equilibrium and nonequilibrium
states. Subsequently, using the concept of basin stability [25],
we find the probability of attaining a particular state in a
multistable region if initial conditions are chosen randomly.
This determines whether the metacommunity will persist
or face extinction via a critical transition [26,27]. In the
vicinity of a tipping point, when a system suddenly (in a
relatively short span of time) shifts from one stable state
to another under the influence of small stochastic pertur-
bations, it is known as a critical transition. We find that
although critical transitions occur here in proximity to a
saddle node bifurcation, still the critical slowing-down in-
dicators such as lag-1 autocorrelation and variance do not
always successfully forewarn of an upcoming transition. We
also study the system dynamics if the deterministic coupled
system incorporates the environmental stochasticity as well
as a network structure with a large number of interacting
habitats.

The paper is organized as follows: First, the metacommu-
nity model with simple diffusive and nonlinear environmental
coupling is defined in Sec. II. Further, two different magni-
tudes are defined in Sec. III based on the species interactions
with the considered coupling. The existence of multistability
and critical transitions using both deterministic and stochastic
cases is explained in Secs. III A and III B, respectively. Similar
qualitative dynamics in a network structure consisting of
more patches (nodes) is explored in Sec. III C. In Sec. IV,
the conclusions and the ecological relevance of multista-
bility, multiclustering, and critical transitions are discussed
in detail.

II. MATHEMATICAL MODEL

We investigate a spatially structured Rosenzweig-
MacArthur (RM) model as a metacommunity system under
an environment-dependent framework [19]. In particular,
this model characterizes the consumer-resource interactions
in fragmented habitats of an ecosystem and also species
migration in a dynamic environment. Here each habitat
(patch) consists of a local resource density (V ) and a consumer
density (H). We consider two types of coupling: (i) habitats
are connected through the migration of consumer species
via diffusion, and (ii) a dynamic environment with a shared
resource density (E ) governed by a logistic growth function,
which is accessible to all the consumers from different
interacting habitats [12,24]. In this case, in contrast to the
diffusion process, the coupling function is considered to obey
the type-II functional response. The metacommunity model

under an environment-dependent framework is formulated as

dVi

dt
= rVi

(
1 − Vi

K

)
− αiVi

Vi + B
Hi, (1a)

dHi

dt
= Hi

(
β

αiVi

Vi + B
− m

)
+ γ

εiE

E + C
Hi

+ d (Hi+1 − 2Hi + Hi−1), (1b)

dE

dt
= r1E

(
1 − E

K1

)
−

n∑
i=1

εiE

E + C
Hi, (1c)

where the patch index is denoted by i = 1, 2, . . . , n. It is
important to note that the dynamics of the consumer (Hi) in
the ith patch depends on both the local resource (Vi) as well as
the shared environmental resource (E ). In Eq. (1a), the logistic
growth function in each patch consists of r and K denoting
the growth rate and the carrying capacity of the local resource
(Vi), respectively. In type-II functional response, αi and B de-
note the predation (consumption) rate and the half-saturation
constant of the consumers, respectively. Also, the conversion
efficiency through predation and the natural mortality rate of
the consumer are denoted by β and m, respectively. Moreover,
in the logistic growth function of the shared resource (E ),
r1 and K1 denote the growth rate and the carrying capacity,
respectively. εi denotes the predation rate of the consumer
with respect to E . In other words, εi denotes the strength
of environmental coupling that connects each ith patch to
the common dynamic environment. Also, γ and C represent
the consumer’s conversion efficiency and the half-saturation
constant over the environmental resource. Each patch is con-
nected to the nearest-neighbor patches through migration of
the consumer species with dispersal strength (d), in other
words local coupling strength. Overall, the local coupling
strength (d) connects only interacting patches, whereas the
environmental coupling strength (εi) connects each ith patch
to the common dynamic environment (E ).

III. RESULTS

Initially, we consider a metacommunity model that consists
of two patches under an environment-dependent framework.
The schematic representation of the consumer interactions
over the local resource and the shared environmental resource
are described in Fig. 1. As we aim to address how the mag-
nitude of consumer interactions alters the metacommunity
dynamics, specifically stability and persistence, we define two
different magnitudes (or fractions) of consumer interactions
in terms of local and shared resources: (i) the magnitude
of environmental predation over local predation (Fεα), and
(ii) the magnitude of consumer interactions over a shared
resource (Fε1ε2 ) (to be elaborated on later in this section). In
the following subsections, we discuss key results governed by
these two factors. Numerical simulations including a bifurca-
tion analysis of the deterministic system have been carried out
using the continuation package XPPAUT [28]. The stochastic
simulations have been performed in MATLAB (R2015b).
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FIG. 1. Schematic representation of the coupled system (1) with
two patches in a dynamic environment. Here αi denotes the consump-
tion (predation) rate of the consumer species in the ith patch over
its local resource V , whereas εi denotes the consumption over the
environmental resource E .

A. Effects of variations in the magnitude of environmental
predation over local predation (Fεα)

In the metacommunity system (1) (with n = 2), first we
define the magnitude of consumer (H) interactions as a

fraction of environmental predation (ε) over the predation (α)
in a local resource [12]:

Fεα = ε

α
= Environmental predation rate

Local predation rate
.

For our present study, in both patch 1 and patch 2, the
consumption rates on the local resource are set to be identical
(i.e., α1 = α2 = α). Also, the consumer species consumption
rates on the shared environmental resource are set to be
identical (i.e., ε1 = ε2 = ε). The magnitude Fεα determines
both the temporal and spatial configurations of the consumer
populations (H) in the metacommunity.

1. Existence of multistability with variations in Fεα

We explore the qualitative dynamics of the coupled sys-
tem (1) at different magnitudes (fractions) of consumer (H)
interactions on local (V ) and shared (E ) resources. The cou-
pled system with both diffusive and environmental coupling
exhibits collective dynamics such as synchronization and mul-
tistability at different Fεα . In particular, the stable oscillations
from all the interacting patches show perfectly synchronized
behavior. Using a one-parameter bifurcation diagram for vary-
ing the fraction (Fεα), the qualitative dynamics of resource

FIG. 2. One- and two-parameter bifurcation diagrams depicting multistability: (a) one-parameter bifurcation diagram of the resource (Vi )
at different fraction Fεα with α = 0.4 and d = 0.6, (b) one-parameter bifurcation diagram of the consumer (Hi ) at different fraction Fεα with
α = 0.4 and d = 0.6, (c) ε-α space as a two-parameter bifurcation diagram, and (d) ε-d space as a two-parameter bifurcation diagram. The
dotted lines denote a particular case representing (a) and (b). Here the consumption rates in both of the patches are identical (ε1 = ε2 = ε).
In (a) and (b), green and blue circles denote stable and unstable limit cycles, respectively, whereas solid red and dashed black curves denote
stable and unstable steady states, respectively. Here HB, TB, BP, SN, and LP denote Hopf bifurcation, transcritical bifurcation, branch point,
saddle-node, and limit point, respectively. BS and MS denote the region of bistability and multistability, respectively. Other parameters are
r = 0.55, K = 0.55, αi = 0.4, B = 0.16, β = 0.75, m = 0.2, γ = 0.6, r1 = 0.5, K1 = 0.6, and C = 0.6.
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species (Vi) and the consumer species (Hi) are shown in
Figs. 2(a) and 2(b), respectively, at a particular dispersal rate
(d = 0.6). Here the stable steady states and the stable limit
cycles are represented by red solid curves and green filled
circles, respectively. Further, the unstable steady states and the
unstable limit cycles are denoted by black dashed curves and
blue filled circles, respectively.

In Fig. 2(a), we observe that for both the lower and higher
fractions Fεα , simple dynamics with either stable steady states
or oscillatory states occur. However, multistability consisting
of two stable steady states and one oscillatory state is created
through a subcritical Hopf bifurcation at HB2 (Fεα ≈ 0.5655).
Subsequently, there exists another multistability through tran-
scritical bifurcation at TB1 (Fεα ≈ 0.98) in which one of
the steady states here reaches zero, i.e., the species becomes
extinct in one of the states of multistability. Thereafter, multi-
stability consisting of only stable steady states exists after the
saddle-node bifurcation of the limit cycle (SN). Together with
multistability, the coupled system also shows bistability for
intermediate fractions, particularly between the bifurcation
points BP1 and saddle-node bifurcation of the limit cycle
(SN). The corresponding dynamics for the consumer popu-
lations (Hi) are shown in Fig. 2(b).

As the defined fraction Fεα measures the magnitude of
consumer interactions on a local resource over a shared
environmental resource, the complete dynamics for a wide
range of local predation and environmental predation are also
studied; the resulting two-parameter bifurcation diagram in
ε-α space is shown in Fig. 2(c). One can easily observe that,
at low predation in a local resource (α), the metacommunity
experiences simple stable steady-state dynamics. However,
various multistable regions (MS1, MS2, MS3, and MS4)
and a bistable region (BS) arise [see Fig. 2(c)] for a wide
range of parameter values. The time series in each multistable
region shows different characteristics, later shown in Fig. 3.
Since dispersal through simple diffusive coupling influences
the dynamics of metacommunity, we further explore the dy-
namics of the coupled system for a wide range of dispersal
rate d . We show multistable and bistable regions using the
two-parameter bifurcation diagram in ε-d space [Fig. 2(d)].
Importantly, for the low and high values of the consumption
rate (ε), the coupled system exhibits either a simple steady
state or synchronized oscillations, whereas the intermediate
consumption rate (ε) enables bistable and multistable dynam-
ics in the coupled system. Indeed, Figs. 2(a) and 2(b) depict
this observation in the exemplary bifurcation diagrams along
the dotted horizontal lines of Figs. 2(c) and 2(d) (for α = 0.4
and d = 0.6).

2. Basin stability measure

At different fractions (Fεα), the coupled system (1) shows
various characteristics of bistability and multistability. The
time series in each multistable region, denoted as MS1, MS2,
MS3, and MS4, are shown in the left panel of Fig. 3. For a
fixed set of parameters, various initial conditions determine
the alternative states arising in a multistable region. As far
as time series are concerned, the coupled system shows three
alternative steady states in MS1 [Fig. 3(a)] including one
stable oscillatory state and two stable steady states, all of

which have nonzero species density. But in MS2 [Fig. 3(b)],
one of the steady states reaches zero density, i.e., the species
becomes extinct. Similarly, three alternative stable steady
states arise in MS4 [Fig. 3(c)], one of which is in the extinction
state. In MS3 [Fig. 3(d)] there exist four alternative states, also
denoting one stable oscillatory state and three stable steady
states, one of which is in the extinction state. Indeed, one of
the alternative states is zero in each of MS2, MS3, and MS4.
Therefore, the considered coupled system with dispersal and a
dynamic environment can experience a sudden transition from
a species-rich state to a species-extinct state with variations
in Fεα .

Different initial conditions determine the respective con-
verging state in a multistable region. Indeed, if the chosen
initial condition is on a particular basin of attraction, then the
system will reach the respective steady state. In contrast to
choosing initial conditions from a particular basin of attrac-
tion, what is the probability of reaching the particular steady
state in a multistable system if initial conditions are chosen
randomly in the state space? This probability can be measured
by the so called “basin stability.” Henceforth, we use the
concept of basin stability [25] to determine the characteristics
of alternative steady states. Indeed, the probability (PSi ) of
reaching a particular state (Si) in terms of percentage is
computed as

PSi = Number of simulations reaching a state Si

Total number of simulations
× 100.

Here, initial conditions are chosen randomly from the
range Vi ∈ [0, 0.45], Hi ∈ [0, 0.5], and E ∈ [0, 0.55]. These
ranges are taken from the one-parameter bifurcation diagrams
of each variable [for Vi and Hi in Figs. 2(a) and 2(b), re-
spectively]. By exploring each multistable region with 104

simulations in which initial conditions are chosen randomly
and are uniformly distributed in the aforementioned ranges,
we calculate the probability of reaching a particular state after
removing enough transients from the time series.

For each alternative state in different multistable regions,
the probability of reaching a particular state (PSi ) is repre-
sented in the right panel of Fig. 3 using a pie chart with the
same color coding as was used in the corresponding time
series (also each state and the corresponding basin stability
are marked with a number) in the left panel. As far as the
basin stability is concerned, stable oscillations dominate in
MS1 since oscillations arise for almost 85% of the considered
initial conditions. In contrast, all three alternative states are
equally distributed in MS2. Importantly, one of the states
reaches zero (34%), hence the species has a better chance
of survival in this case. Subsequently, the stable state (i.e.,
solid red curve) dominates (83%) in MS4 as compared to
other alternative states. Finally, in MS3, the stable oscillatory
state and all the remaining stable states are almost equally
distributed. Importantly, in all these cases presented in Fig. 3,
the system has less of a chance of reaching the lower-density
state and/or the zero-density state. The basin stability of this
low-density state is much lower in comparison with that of the
other steady states.
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FIG. 3. Time series and the corresponding basin stability measures: In the left panel, each time series is set with an index, whereas the
right panel denotes the percentage of corresponding dynamics from 104 simulations with random initial conditions. Multistability (a) MS1
for ε = 0.25 and α = 0.4, (b) MS2 for ε = 0.45 and α = 0.4, (c) MS4 for ε = 0.5 and α = 0.4, and (d) MS3 for ε = 0.55 and α = 0.45.
The stable oscillations shown here are synchronized in both the interacting patches. Other parameters are d = 0.6, r = 0.55, K = 0.55, B =
0.16, β = 0.75, m = 0.2, γ = 0.6, r1 = 0.5, K1 = 0.6, and C = 0.6.

B. Effects of variations in the magnitude of consumer
interactions over a shared resource (Fε1ε2 )

Instead of using the magnitude based on the local (V )
and the shared (E ) resources, now we define another form
of magnitude only based on the dynamic environment. As
mentioned earlier, the dynamic environment acts as a shared
resource to the consumer species in all the interacting patches.
As far as natural systems are concerned, the consumer’s
consumption rate over a shared resource in each patch can
vary as well as having a different influence. In particular, a
habitat structure and heterogeneity force the consumer species
to have a heterogeneous effect on the dynamic environment.
Emphasizing the distinct consumption rates εi of the shared
resource E in each patch, here we define the magnitude (or
fraction) as a ratio between the patch-1 consumption rate (ε1)

over the patch-2 consumption rate (ε2):

Fε1ε2 = ε1

ε2
= H1 consumption rate over E

H2 consumption rate over E
.

As far as local dynamics are concerned, each patch has identi-
cal local interactions, but heterogeneity is set in the consump-
tion rate (εi) over the environmental resource (E ) only. Indeed,
all patches have identical local dynamics without coupling and
nonidentical dynamics over environmental coupling with E .

1. Existence of multistability with variations in Fε1ε2

Now we explore the qualitative dynamics of the coupled
system in terms of the defined magnitude of consumer in-
teractions over the shared resource E . In particular, using
one-parameter bifurcation diagrams for varying the fraction
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FIG. 4. (a) One-parameter bifurcation diagram for varying the fraction of consumption in the environmental resource (Fε1ε2 ) for d = 0.4,
and (b) one-parameter bifurcation diagram for varying the fraction of consumption in the environmental resource (Fε1ε2 ) for d = 0.8. Other
parameters are r = 0.55, K = 0.5, αi = 0.4, B = 0.16, β = 0.75, m = 0.2, γ = 0.6, r1 = 0.5, K1 = 0.6, and C = 0.6.

(Fε1ε2 ) at two different dispersal rates, the formation of mul-
tistability is shown in Fig. 4. Indeed, for increasing the
fraction (Fε1ε2 ) at the dispersal rate d = 0.4 in Fig. 4(a),
the coupled system exhibits phase-synchronized oscillations
that further lead to stable steady states at HB1. Between the
limit points LP1 and LP2, and also between LP3 and LP4,
two different hysteresis regions are formed with multistable
and bistable behaviors. The multistable region consisting of
phase-synchronized oscillations and two stable steady states
exist through a saddle-node bifurcation of the limit cycle (SN).
Subsequently, at the limit point (LP1), the resource density
(V1) reaches a low-density state that further leads to another
hysteresis region between LP3 and LP4. Moreover, a higher
fraction (Fε1ε2 ) suppresses the resource density V through a

transcritical bifurcation (TB). For another higher dispersal
rate (d = 0.8), similar qualitative dynamics arises, which is
shown in Fig. 4(b). In this case also, two hysteresis regions are
formed that consist of three alternative stable steady states.

For a wide range of dispersal rate d and the fraction of
consumer interactions Fε1ε2 , the complete dynamics are shown
in Fig. 5 through a two-parameter bifurcation diagram in
the Fε1ε2 -d plane. The bistable (BS1, BS2, and BS3) and
multistable regions (MS1 and MS2) are shown in different
shaded regions that are separated by bifurcation curves. Since
the coupled system shows bistability and multistability as
a combination of both equilibrium (Eq) and nonequilibrium
(NEq) dynamics, we have represented these regions with
the words Eq and NEq. In MS1, three different alternative

FIG. 5. Two-parameter bifurcation diagram with variations in Fε1ε2 and d: Here Eq and NEq denote equilibrium (steady states) and
nonequilibrium dynamics (oscillations), respectively. The bistable and multistable regions are denoted by BS and MS, respectively. Other
parameters are r = 0.55, K = 0.5, αi = 0.4, B = 0.16, β = 0.75, m = 0.2, γ = 0.6, r1 = 0.5, K1 = 0.6, and C = 0.6.
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states such as one nonequilibrium (NEq) and two equilibrium
(Eq) states arise, whereas three alternative equilibrium states
exist in MS2. Similarly, the bistability region (BS1) has two
alternative equilibrium states, BS2 has one nonequilibrium
and one equilibrium state, and finally BS3 has two alternative
equilibrium states. The rightmost region in Fig. 5, denoted
after the transcritical bifurcation (TB) line, represents the
extinction of a shared environmental resource E . In Fig. 5,
the dotted lines at the dispersal rates d = 0.4 and 0.8 corre-
spond to the particular cases shown in Figs. 4(a) and 4(b),
respectively. Similar to Fig. 3, here also one can determine
the probability of reaching a particular state in bistable and
multistable regions using the basin stability measure.

2. Critical transitions in the presence of random fluctuations

Biological populations are often influenced by random
environmental fluctuations as a result of weather conditions,
climate change, etc. Environmental stochasticity directly im-
pacts community stability and persistence. In line with this
reasoning, here we explore the coupled system in the presence
of stochasticity. At first, we denote the coupled system (1)
without stochasticity as

dX

dt
= F (X ), (2)

where X = [V1 H1 V2 H2 E ]T , and F (X ) is the function rep-
resenting consumer-resource interactions with both of the
couplings. Stochasticity in ecological models has been used in
different ways, such as intrinsic and extrinsic noise [29–32].
In [30], the dynamics of a generalized Lotka-Volterra com-
petition model have been studied under the presence of ad-
ditive and multiplicative noise, and it has been shown that
multiplicative noise can induce coherent oscillations in the
species. Here we consider stochasticity in the form of multi-
plicative extrinsic noise (also the behavior of the system under
the influence of intrinsic stochastic fluctuation is shown in
Appendix). After incorporating stochasticity in Eq. (2), the
coupled system becomes

dX

dt
= F (X ) + σXξ (t ), (3)

where σ denotes the noise intensity and ξ (t ) denotes Gaussian
white noise with zero mean and unit variance.

Similar to the deterministic case (i.e., Fig. 4), here we
explore the stochastic system [Eq. (3)] using the defined
magnitude (Fε1ε2 ) of consumer interactions over the environ-
mental resource. We numerically simulate the system using
the Euler-Maruyama method [33] for varying the fraction Fε1ε2

in two different ways. First, we simulate the system to increase
the fraction from low to high, and second, we decrease the
fraction from high to low. At the dispersal rate d = 0.4, the
stochastic coupled system is explored to increase the fraction
Fε1ε2 from 0.5 to 2.1 within the time frame 2 × 103 in Fig. 6(a).
The stochastic system follows its deterministic skeleton. At
a particular threshold (Fε1ε2 ≈ 1.267), after reaching very
close to the SN bifurcation point, the system experiences a
critical transition through suddenly changing its present state
to another alternate state (low-density state) represented by
arrow marks. A further increase in the fraction leads to another
transition at Fε1ε2 ≈ 1.668 from the lower to the upper state.

The stochastic system experiences two transitions, upper to
lower states and lower to upper states [Fig. 6(a)]. In contrast
to an increase in fraction, if we decrease the fraction (Fε1ε2 )
with the same range and also with the same noise intensity,
two other transitions arise: upper to lower state at Fε1ε2 ≈ 1.47
and further lower to upper state before Fε1ε2 ≈ 0.77 [shown in
Fig. 6(b)].

At the dispersal rate d = 0.8, Figs. 6(c) and 6(d) also
show critical transitions for an increase and a decrease in
the fraction Fε1ε2 , respectively. For example, for increasing
the fraction in Fig. 6(c) with the same noise intensity σ =
0.009, there exists a transition at Fε1ε2 ≈ 1.636. However, for
decreasing the fraction in Fig. 6(d), two transitions occur from
upper to lower at the threshold Fε1ε2 ≈ 1.49 and further from
lower to upper before the threshold Fε1ε2 ≈ 0.496. Hence,
the magnitude of consumer interactions in each patch on
the resource E exhibits multiple critical transitions under the
presence of stochasticity in the system.

3. Precursors of critical transitions

In the vicinity of a bifurcation point, the dominant eigen-
value reaches close to zero and the recovery rate from per-
turbations becomes increasingly slow, which is known as
the critical slowing down [27]. In the case of a bifurcation-
induced critical transition, critical slowing down indicators,
which are generally known as early warning signals (EWS),
such as lag-1 autocorrelation [AR(1)] and variance, are known
to forewarn of an upcoming transition [34,35]. The cases
of failed or misleading warnings of critical transitions are
also reported in the literature [36,37]. Here, we explore the
robustness of EWS in predicting critical transitions in the
metacommunity system.

In our analysis, we consider stochastic time series of
model (3) for both forward and backward transitions, as
depicted in Figs. 6(a) and 6(b), respectively. In both time
series, we first visually identify shifts between high to low
resource density. Then we take time series segments [the
boxed regions in Figs. 6(a) and 6(b)] prior to a critical
transition and analyze them for the presence of EWS. For
stationarity in residuals, we use the Gaussian detrending with
a filtering bandwidth 60 before performing any statistical
analysis of the data. Then we use a moving window size of
half the length of the residual time series segment. The time
series analyses have been performed using the Early Warning
Signals Toolbox [38]. We calculate the lag-1 autocorrelation
and the variance, as these two indicators are known to be most
appropriate to anticipate critical transitions. The autocorrela-

tion at lag-1 is given by ρ1 = E{[x(t ) − μ][x(t + 1) − μ]}
σ 2

,

where E is the expected value operator, and x(t ) is the value
of the state variable at time t . μ and σ 2 are the mean and
the variance of x(t ), respectively. Variance is the second
moment around the mean μ, and it is measured as σ 2 =
1
N 	N

i=1[x(t ) − μ]2, where N is the number of observations
within the considered moving window. A concurrent rise in
these indicators is known to forewarn of an upcoming regime
shift [27,34,35].

In the case of anticipating forward transition, Fig. 7(a)
depicts that neither the AR(1) nor the variance shows a
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FIG. 6. Critical transitions using multiplicative noise for d = 0.4 when (a) Fε1ε2 varies in the forward direction, and (b) Fε1ε2 varies in the
reverse direction. Critical transition for d = 0.8 when (c) Fε1ε2 varies in the forward direction, and (d) Fε1ε2 varies in the reverse direction.
Other parameters are σ = 0.009, r = 0.55, K = 0.5, αi = 0.4, B = 0.16, β = 0.75, m = 0.2, γ = 0.6, r1 = 0.5, K1 = 0.6, and C = 0.6.

concurrent rise in their value, and hence they fail to predict
an upcoming transition. However, for the backward transi-
tion, Fig. 7(b) depicts that both the AR(1) and the variance
show a concurrent rise in their value. Hence, in this case
AR(1) and the variance are able to successfully forewarn
of a critical transition in species density. Though a criti-
cal transition is associated with the saddle-node bifurcation
in both cases, we find that still in one case the EWS are
unable to detect a transition beforehand. This predicts that
CSD-based EWS are not always able to successfully detect
a critical transition even if it is associated with a saddle-
node bifurcation [37]. These results suggest that more in-
vestigations are still needed to understand EWS of critical
transitions.

C. Multistability and multiclustering in a network structure

In natural ecosystems, typically a large number of habitats
are connected through dispersal along with the shared dy-
namic environment. Here, we explore the coupled system (1)
further for a network structure consisting of 16 patches un-
der an environment-dependent framework. The considered
network follows similar assumptions to those of Fig. 2, i.e.,
all patches are set to have identical dynamics in consumer-

resource interactions. As in Fig. 2, here also we analyze the
effects of variations in the magnitude of consumer interactions
on local and shared resources.

We observe that here the network also shows multistability;
additionally it shows multiclustered steady states. Figure 8
shows the spatiotemporal dynamics of the network for a
particular set of fixed parameters. Depending upon initial con-
ditions, here the system depicts either oscillatory or steady-
state dynamics. In the oscillatory case, the interconnected
patches show synchronized oscillations [Figs. 8(a) and 8(d)]
that form a 1-cluster solution. Two different cases of alter-
native stable steady states are shown using spatiotemporal
plots in Figs. 8(b) and 8(c). As far as stable steady states are
concerned, multiclustering (n-cluster) arises in the network
structure. For example, a 3-cluster and a 5-cluster are shown
in Figs. 8(e) and 8(f), respectively.

As randomly chosen initial conditions are associated with
the previously calculated basin stability, the network of
16 patches has high a probability of exhibiting equilib-
rium dynamics (stable steady states) rather than exhibiting
nonequilibrium dynamics (synchronized oscillations). Due to
the high dimensionality of the network, the probability of
reaching the synchronized state is much lower (we find it to
be less than 1%). Hence, the network structure with dispersal
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FIG. 7. Early warning signals calculated from the simulated time series data of the stochastic model [Eq. (3)] in the case of forward [see
Fig. 6(a)] and backward [see Fig. 6(b)] transitions with variations in Fε1ε2 . The lag-1 autocorrelation [AR(1)] and the variance are calculated
using a moving window of half the length of the time series segments [segments are indicated by the boxed regions in Figs. 6(a) and 6(b)].
(a) In the case of forward transition, neither AR(1) nor variance gives a reliable signal of an upcoming transition. (b) In the case of a backward
transition, both indicators show a clear increasing trend and reliably indicate an upcoming critical transition. For more details, see the text.

FIG. 8. Synchronization, multiclustering, and species extinction in a network of 16 patches: Spatial dynamics are represented in the top
panel, and the respective temporal dynamics are represented in the bottom panel. (a),(d) Synchronized oscillations of 16 patches form 1-cluster;
(b),(e) dynamics of stable steady states with three clusters in which one of the clusters reaches the critical zero state and species become extinct;
and (c),(f) dynamics of stable steady states with multiple clusters that contain both nonzero and zero species density. The parameter values are
d = 0.5, ε = 0.06, r = 0.55, K = 0.55, αi = 0.4, B = 0.16, β = 0.6, m = 0.15, γ = 0.7, r1 = 0.5, K1 = 1.6, and C = 0.8.
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through simple diffusive coupling as well as environmental
coupling has a high probability of exhibiting multicluster
solutions.

The existence of multicluster solutions indicates the pro-
motion of community stability and persistence. A higher clus-
tering number promotes metacommunity stability by reducing
extinction risk, whereas a 1-cluster/2-cluster has a strong
chance of extinction through other external forces such as
seasonal change and climatic conditions. Indeed, the syn-
chronized oscillations of metacommunity have a high risk of
extinction since local extinction in one of the patches may lead
to global extinction in all the interacting patches [39–41]. In
contrast, in n-clustering stable steady states, local extinction
does not lead to extinction of other patch populations. There-
fore, n-clustering promotes metacommunity stability and its
persistence. In addition to multistability and multiclustering,
species extinction also arises in certain patches of the net-
work. For example, in Fig. 8(e) the existing three-cluster
state includes the critical zero steady state. Similarly, species
extinction in some patches occurs in Fig. 8(f) as well.

IV. DISCUSSION

Here, we have studied a metacommunity model consist-
ing of a diffusive coupling and a dynamic environmental
coupling. In particular, incorporating a nonlinear dynamic
environment with spatial heterogeneity and the magnitude
of environment coupling acting on the metacommunity at
a time, we have found a set of environmental conditions
that can promote community stability and persistence. As
most of the earlier studies on coupled oscillators have used
coupling strength in determining the qualitative dynamics, our
approach was based on two different magnitudes that quantify
the effect of a dynamic environment at temporal and spatial
scales.

The coupled nonlinear system determines bistability, mul-
tistability, as well as critical transitions in the presence of
noise, as compared to its uncoupled version, which just ex-
hibits simple characteristics of monostability. Both the simple
diffusive and the environmental coupling drive the system’s
dynamics from simple to complex, i.e., from monostability to
multistability. Indeed, the defined magnitude enables various
types of multistability consisting of three or more alternative
states. Moreover, the existing multistability contains either
only alternative stable steady states or alternative states in a
combination of both stable equilibrium and stable nonequi-
librium dynamics. In particular, in the nonequilibrium case,
perfectly synchronized as well as phase-synchronized oscilla-
tions arise, whereas homogeneous and heterogeneous steady
states arise in the case of stable equilibrium. Our results based
on these defined magnitudes emphasize the persistence of
metacommunity through the characteristics of multistability.

By emphasizing the random initial conditions in natu-
ral systems, we have found the probability of attaining a
particular alternative state in multistable regions using the
basin stability measure. Subsequently, two types of critical
transitions, one of which is from a high species density to
a low species density, and the other from a low species
density to a high species density, are identified in a stochas-

tic metacommunity model under an environment-dependent
framework. The CSD-based EWS are able to detect an up-
coming transition in one case, and in another case they fail
to provide any warning. This highlights the need for more
rigorous study of the effectiveness of EWS while predicting
a critical transition. Further, a large number of patches in a
network structure shows similar qualitative dynamics of mul-
tistability and species extinction. Dispersal and the dynamic
environment enable multistability and multiclustering in the
network structure with identical patchwise interactions. The
alternative stable states of multistability, consisting of both
stable oscillations (nonequilibrium) as well as stable steady
states (equilibrium), illustrate the significance of dispersal,
a nonlinear dynamic environment, and its distributions at
temporal and spatial scales on species persistence.

In earlier studies, multistability was observed in natu-
ral systems as well as laboratory experiments [42,43] in
various fields, including physics [44], biology [45], ecol-
ogy [46], genetics [47,48], neuroscience [49,50], and climate
science [51,52]. Various types of nonlinear complex systems
in terms of weakly dissipative systems, coupled and spatially
extended systems, and delayed feedback systems generate
multistability [42]. Here as a spatially extended coupled sys-
tem of biological populations, our results emphasize multi-
stability and critical transitions using the magnitude defined
on considered environmental coupling at temporal and spatial
scales. As far as real natural systems are concerned, a range
of ecological systems including lakes [26], coral reefs [53],
oceans, forests, and deserts [54,55] go through the alterna-
tive stable states [27]. One of the main reasons for shifting
between the alternative states in these natural systems is the
positive feedback that drives the system toward alternative
states. In agreement with this, the dynamic environment in
our model acts as a positive feedback on consumer popu-
lations, and its migration enhances alternative stable states.
Hence our study provides important insights of environmental
heterogeneity through the set of environmental conditions to
promote metacommunity stability.

In summary, the magnitudes based on environmental cou-
pling over local species interactions provide important in-
sights into the set of environmental conditions that can pro-
mote metacommunity stability and persistence. Further stud-
ies are needed, focusing on the effects of various types of cou-
pling (dispersal) strategies with higher tropical interactions
and temperature-induced environment in a metacommunity.
Moreover, the current rapid climate change due to anthro-
pogenic factors has had a profound impact on community
persistence. Therefore, it is quite important to address further
challenges that arise in nonautonomous ecosystem models
due to seasonal forcing and rapid climatic variations.
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TABLE I. Different types of fundamental processes for the
consumer-resource model (1), their propensity, and the correspond-
ing jump of species. 
 is the volume in which the processes occur.
The symbols +1 and −1 in the column showing the jump of species
(νμ) represent birth and death of the respective species.

Sl. Elementary Processes Propensity Jump of
no. events functions (aμ) species (νμ)

1. Vi + D � Vi + Vi Logistic growth rVi

(
1 − Vi

K


)
Vi = Vi + 1

of consumer
2. E + D � E + E Logistic growth r1E

(
1 − E

K


)
E = E + 1

of environment
3. Vi + Hi → ViHi Holling type-II αiVi

Vi+B∗

Hi Vi = Vi + 1;

ViHi → Vi + Vi processes of Vi = Vi − 1
resource

4. Hi + Vi → HiVi Holling type-II β
αiHiVi
Vi+B


Hi = Hi + 1;
HiVi → Hi + Hi processes of Hi = Hi − 1

consumer
5. E + Hi → EHi Holling type-II γ

εiE
E+C


Hi E = E − 1;
EHi → E + E consumption

of environment
6. Hi → D Natural mortality mHi Hi = Hi − 1

of consumer
7. Hi � Hj Diffusion of dHi Hi = Hi + 1;

consumer between Hi = Hi − 1
ith and jth

patches

APPENDIX: MONTE CARLO SIMULATION
OF THE STOCHASTIC MODEL

There are two major approaches used to take into account
intrinsic fluctuations in dynamical systems. The first one is the
master equation approach, in which the stochastic dynamics
are encoded analytically [56]. However, the complexity of a
master equation associated with a dynamical system precludes
us from solving this equation analytically in most cases. The
other approach is the Monte Carlo simulation approach, which
is an exact numerical solution of the master equation and pro-
vides stochastic time series [57]. In general, the Monte Carlo
simulation provides individual realizations of the Markov
process. It was developed by Gillespie and used widely for
studying a wide range of dynamical systems, such as popula-
tion dynamics [58], chemical reaction dynamics [59], systems
biology [60,61], and many more.

The consumer-resource model (1) studied in this paper
exhibits different types of fundamental processes. These
processes are (i) logistic growth of Vi, (ii) logistic growth
of Ei, (iii) Holling type-II functional response associated
with resource consumption by Hi, (iv) Holling type-II func-
tional response associated with the growth of consumer Hi,
(v) Holling type-II functional response associated with envi-
ronmental resource consumption by Hi, (vi) natural mortality
of Hi, and (vii) diffusion of Hi between spatially separated
patches. We list these fundamental processes along with
their propensity function (aμ) and the corresponding jump of
species (νμ) symbolically in Table I, where μ = 1, 2, . . . , 17
are the associated processes for the model (1).

In Table I, the symbol D represents death and the symbol

 represents the volume of the system. The species vector for
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FIG. 9. The stochastic time series of the model (1), generated
using the Gillespie algorithm, exhibits flickering between alternative
states.

this model is X = [V1, H1, V2, H2, E ]. Using the elementary
events stated in Table I along with their propensity function,
one can perform the Monte Carlo simulation and update the
species vector X . To perform our simulation, we use the same
parameters as used in Fig. 6(a). We use the direct Gille-
spie algorithm that generates two uniform random numbers
(r1 and r2) in the interval (0, 1). The time (t) for the next
process to occur is updated (i.e., t + τ ) stochastically by the
following rule:

τ = 1

a0
ln

(
1

r1

)
,

where a0 = ∑μ
j=1 a j . The index μ of the occurring process is

given by the smallest integer satisfying

μ−1∑
j=1

a j < r2a0 �
μ∑

j=1

a j .

The system states are updated, X (t + τ ) = X (t ) + Xνμ
, and

then the simulation proceeds to the next occurring time. Xνμ

represents the change in the species vector in the stochastic
time interval τ . The details of the algorithm can be found
in [57].

We find that the time series generated using the Monte
Carlo simulation (that captures the intrinsic stochastic
fluctuations) of the model exhibits flickering between alter-
native steady states (see Fig. 9). Due to flickering, the system
switches back and forth between alternative states in response
to relatively large stochastic fluctuations. Flickering between
alternative steady states itself is known as an indicator of an
impending critical transition [62]. Apart from that, variance
as an EWS is known to work well for a flickering data set.
Our result shows that if a metacommunity is affected by large
stochastic perturbations, then it may exhibit flickering before
completely shifting to an alternative state.
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