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Quenching and revival of oscillations induced by coupling through adaptive variables
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An adaptive coupling based on a low-pass filter (LPF) is proposed to manipulate dynamic activity of
diffusively coupled dynamical systems. A theoretical analysis shows that tracking either the external or internal
signal in the coupling via a LPF gives rise to distinctly different ways of regulating the rhythmicity of the coupled
systems. When the external signals of the coupling are attenuated by a LPF, the macroscopic oscillations of the
coupled system are quenched due to the emergence of amplitude or oscillation death. If the internal signals of
the coupling are further filtered by a LPF, amplitude and oscillation deaths are effectively revoked to restore
dynamic behaviors. The applicability of this approach is demonstrated in laboratory experiments of coupled
oscillatory electrochemical reactions by inducing coupling through LPFs. Our study provides additional insight
into (ar)rhythmogenesis in diffusively coupled systems.
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I. INTRODUCTION

A model of coupled nonlinear oscillators serves as an
excellent framework to unravel and understand the intricacies
involved in various complex collective dynamical behaviors
and patterns that mimic real-world phenomena in diverse
areas of science and technology [1–3]. The intrinsic dynamics
of the individual units and the coupling architecture plays
a vital role in determining the onset of a rich variety of
nonlinear phenomena [4]. In particular, it was revealed that
strong couplings could give rise to the Bar-Eli effect [5,6],
where the natural rhythm of coupled dynamical systems is
lost via two distinct processes, namely amplitude death (AD)
and oscillation death (OD) [7–9]. Generally, AD refers to
the phenomenon of the quenching of oscillations through the
stabilization of one of the existing unstable homogeneous
steady states (HSSs), whereas OD is manifested as a stable
inhomogeneous steady state (IHSS). AD and OD have their
own advantages. In particular, AD serves as a control mech-
anism in several physical systems, whereas OD provides a
mathematical background for cellular differentiation [10].

During the past few decades, there has been a major interest
in revealing the emergence of AD and OD along with the
transition from AD to OD [11–21]. On the other hand, a few
recent investigations have unveiled the counterintuitive phe-
nomenon of reviving oscillations from AD and OD [22–27],
as AD and OD favor the onset of static states from evolu-
tionary dynamical states, thereby hampering the functional
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activity of a large class of real-world networks. Quenching
and revival of oscillations have been investigated as two
different dynamical entities in coupled systems. Hitherto, a
simple unifying scheme to switch between both dynamical
behaviors in the same dynamical network is still lacking,
which opens up an interesting possibility of research from
the viewpoint of engineering rhythmic dynamics of coupled
dynamical networks.

We propose an adaptive coupling based on a conventional
low-pass filter (LPF), which provides a unifying and efficient
approach to manipulate rhythmicity of coupled dynamical
systems. A LPF disperses and attenuates the high-frequency
signals. Previously, it was reported that the presence of a
LPF has a variety of important applications, which modify
the dynamics of systems in a nontrivial way [28–32]. For
example, a LPF was used to separate a local field potential
from the action potential in the electrode recordings of the
neural spiking activity in an electroencephalogram (EEG)
[28]. A LPF was an essential building block to regulate spa-
tiotemporal dynamics of coupled digital phase-locked loops
[29]. The topological limitation concerning an odd number
of real positive eigenvalues of the steady state was overcome
by using an unstable LPF, which offers an additional unstable
degree of freedom [30–32].

In this paper, our study reveals that incorporating LPFs in
the coupling may serve as a powerful candidate to engineer
the rhythmic dynamics of diffusively coupled dynamical sys-
tems. Specifically, we systematically establish that tracking
the external or the internal signal of the coupling by a LPF has
the complete opposite dynamical effects. Filtering the external
signal through a LPF facilitates the onset of AD and OD to
suppress the intrinsic rhythmic activities of coupled systems.
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In strong contrast, if the internal signal is further filtered via
a LPF, the quenched dynamics can be well revived by switch-
ing the stability of the stable homogeneous/inhomogeneous
steady states. The theoretical and numerical findings are con-
firmed in laboratory experiments with two coupled electro-
chemical reactions.

II. RESULTS AND DISCUSSIONS

A. Effect of LPFs on AD with Stuart-Landau oscillators

We start with an analysis of the following paradigmatic
model of two coupled Stuart-Landau limit-cycle oscillators:

Ż j = (1 + iw j − |Zj |2)Zj + K[uk (t ) − v j (t )], (1)

where Zj = x j + iy j is a complex variable, w j is the intrin-
sic frequency of the jth uncoupled Stuart-Landau oscillator
( j, k = 1, 2, j �= k), and K is the strength of coupling. For
K = 0, each uncoupled Stuart-Landau oscillator has a stable
limit cycle Zj = eiw j t accompanied by an unstable origin Zj =
0. In the coupling, uk and v j are governed by two linear
ordinary differential equations (ODEs) relevant to Zk and Zj

as

αu̇k = −uk + Zk, (2)

βv̇ j = −v j + Zj, (3)

which in fact describe two LPFs to attenuate the signals of Zk

and Zj with the cutoff frequencies 1/α (α > 0) and 1/β (β >

0), respectively. The larger the values α and β, the stronger the
Zk and Zj are attenuated. In the limit of α → 0 and β → 0,
uk and v j are exactly Zk and Zj . Then the coupling form is
reduced to the standard diffusive one. Here, we will unveil
that by implementing the two LPFs, the external and internal
terms of the coupling have two opposite roles on the dynamic
activities of the coupled system.

The detailed dynamics of system (1) with α = 0 and β =
0 have been well addressed by Aronson et al. [11], who
revealed that AD occurs for 1 < K < (1 + �2/4)/2 if � =
|w1 − w2| > 2, implying that the limit-cycle oscillations of
coupled systems (1) collapse to the origin only if both fre-
quencies are sufficiently disparate and the coupling strength
is large enough. Interestingly, incorporating the external LPF
associated with the incoming signal Zk strongly alleviates the
restrictions for the onset of AD. Let us first examine AD
in system (1) with α > 0 and β = 0, whose stability can be
identified from a standard linear stability analysis of system
(1) with the LPF (2) around Z1 = Z2 = 0 and u1 = u2 = 0
[33]. Figure 1(a) illustrates the stable AD region for α = 0
and α = 0.165 on the (K,�) space. w1 = 5 − �/2 and w2 =
5 + �/2 are used. Clearly, the AD region sharply expands
and even extends toward the� = 0 axis for a finite interval of
coupling strength. The external LPF of Eq. (2) in the coupling
induces AD in coupled system (1) even with zero-frequency
mismatch. Figure 2(b) further depicts the stable AD interval
as a function of α for w1 = w2 = 5. Identical oscillators suffer
AD once α > αc = 0.16. Thus, when the incoming signals
are attenuated by LPF in the coupling, AD is facilitated by
suppressing the rhythmic activity of the coupled system.

FIG. 1. Quenching and revival of oscillations in two coupled
Stuart-Landau oscillators (1). (a) The AD regions in the parameter
space of (�, K ) for α = 0 (bounded by the dashed lines) and α =
0.165 (bounded by the solid lines). w1 = 5 − �/2, w2 = 5 + �/2,
and β = 0. (b) The AD interval vs α for w1 = w2 = 5 and β =
0. AD emerges for α > αc = 0.16 implying that stable limit-cycle
oscillations are quenched in identical oscillators. (c) The AD interval
vs β for w1 = w2 = 5 and α = 10. AD is completely revoked as
β > βc = 0.5. (d) The plot of time series of real(Z1). Limit-cycle
oscillation is lost for α = 10 when β = 0, which is regained as β

switched from 0 to 1 at t = 15. K = 3 and w1 = w2 = 5.

In contrast, if the internal signals of the coupling are
filtered by the LPF, a distinctly different effect arises. Next, we
incorporate the two LPFs of (2) and (3) simultaneously into
system (1), where the stability of AD is then determined from
the characteristic equation of the coupled system (1) around
Z1 = Z2 = 0 and u1 = u2 = v1 = v2 = 0 [34]. Figure 1(c)

FIG. 2. Quenching oscillations in the coupled system (4) by
implementing the LPF associated with only the external term of
the coupling. β = 0 and w = 5 are fixed. (a)–(d) The bifurcation
diagrams of the steady-state solutions for α = 0, 0.15, 0.27, and
0.35, respectively. Solid black (dark gray) and solid red (light gray)
lines denote the stable HSS (AD) and the stable IHSS (OD). (b) The
stable interval of AD (black region) and OD (red region) vs α for
β = 0. The external LPF facilitates the onset of OD at small values of
coupling strength, and further even induces AD as α > αc = 0.257.
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depicts the stable interval of AD versus β for α = 10, which
shows that the stable AD interval monotonically decreases
and completely vanishes for β > βc = 0.5. Thus the internal
LPF can provoke oscillations from AD. To visualize this more
clearly, we plot the time series for the real part of Z1 of system
(1) with K = 3 and α = 10 in Fig. 1(d), where β is switched
from 0 to 1 at t = 15. Clearly, the limit-cycle oscillation that
is quenched by the external LPF is restored by implementing
the internal LPF. Thus, the external and internal LPFs have
two drastically different dynamic effects: the external LPF
facilitates AD to suppress oscillations, whereas the internal
LPF revokes AD to revive rhythmic behavior.

B. Effect of LPFs on OD with Stuart-Landau oscillators

To further distinguish the distinct roles of the two LPFs
in engineering rhythmic behaviors of a coupled system, we
study the following system of two Stuart-Landau oscillators
now with symmetry-breaking coupling:

Ż j = (1 + iw j − |Zj |2)Zj + K[uk (t ) − v j (t )], (4)

αu̇k = −u j + Re(Zk ), (5)

βv̇ j = −v j + Re(Zj ), (6)

where j, k = 1, 2 and j �= k. Here the coupling involving
only the real parts breaks the rotational symmetry of the
coupled system, which is deemed to be a necessary condi-
tion for OD in the coupled Stuart-Landau oscillators [8,9].
System (4) with α = β = 0 reduces to the same case studied
by Koseska et al. [8], where AD, OD, and the transition
from AD to OD were reported. To unveil the distinct roles
of both LPFs on AD and OD, we assume here the two
oscillators having identical frequencies w1 = w2 = w. The
coupled system (4) has a HSS Z1 = Z2 = 0 and an IHSS
P(x∗

1, y∗
1,−x∗

1,−y∗
1 ) with x∗

1 = −wy∗
1/(w2 + 2Ky∗2

1 ) and y∗
1 =

±
√

(K − w2 + √
K2 − w2)/2K , where the IHSS appears via

a pitchfork bifurcation at K = (w2 + 1)/2. Note that the
steady-state solutions of the coupled system are not affected
either by the external LPF or by the internal LPF in the
coupling, but their stability may be switched. We will illus-
trate that the presence of a LPF in the external and internal
signals of the coupling has a large impact on both AD and
OD of system (4), whose stability can be obtained from their
corresponding characteristic equations [35].

For α = β = 0, i.e., without any LPFs in the coupling, sys-
tem (4) experiences only OD for K > w2 + 1/4, where AD
is unstable for all K > 0 [8]. Interestingly, by implementing
only the external LPF in the coupling, we find that it can
facilitate the onset of OD and even induce the occurrence
of AD. Figures 2(a)–2(d) depict the four typical bifurcation
diagrams of the steady states of system (4) for different values
of α. (w = 5 and β = 0 are fixed.) These bifurcation diagrams
are generated by depicting the solutions of both HSS and
IHSS as a function of K , where the stable steady states are
marked by the solid red lines and the unstable ones by the
dashed black lines. For α = 0.15 in Fig. 2(b), OD occurs at
a smaller value of coupling strength compared with that of
α = 0 in Fig. 2(a). The presence of the external LPF causes

FIG. 3. Reviving oscillations from AD and OD in the coupled
system (4) with α = 0.5 by implementing LPF in the internal term
of the coupling. w = 5 is fixed. (a)–(d) The bifurcation diagrams
of the steady-state solutions for β = 0, 0.2, 0.4, and 0.54, respec-
tively. (b) The stable interval of AD (black region) and OD (red
region) vs β for α = 0.5. The internal LPF destabilizes AD from
the lower coupling strength, which disappears at βc,1 = 0.3. For
β > βc,1, OD begins to be destabilized and is completely dismissed
as β > βc,2 = 0.55.

the coupled system to exhibit OD even at lower coupling
strengths. For a larger value of α = 0.27 in Fig. 2(c), AD
is found to be stabilized within a pronounced interval of
coupling strength. The AD to OD transition is established for
α = 0.35 in Fig. 2(d). Figure 2(e) elucidates the stable interval
of AD and OD as a function of α and K . It is evident that the
external LPF facilitates the onset of OD for smaller values of
K , then it induces AD in identical systems for α > 0.257, and
finally it establishes the AD to OD transition when α > 0.29.
Thus, the external LFP has a strong tendency to induce both
AD and OD to quench oscillations in the coupled system.

In sharp contrast to the above uncovered role of the external
LPF, the internal LPF can revive oscillations from AD and
OD. Figures 3(a)–3(d) provide four bifurcation diagrams to
display how the presence of β influences the stability of
the steady-state solutions of system (4), where the external
LFP is fixed as α = 0.5 and w = 5 is used. Increasing β

from zero first destabilizes AD from its lower bound, e.g.,
Fig. 3(b) for β = 0.2. Then AD disappears for β = 0.4 in
Fig. 3(c), while OD is destabilized from the lower coupling
strength. Upon further increasing β to 0.54 in Fig. 3(d),
the coupled system only experiences OD. To systematically
characterize the impact of β in destabilizing both AD and
OD, Fig. 3(e) plots the stable coupling intervals of AD and
OD as a function of β. Increasing β revokes AD from small
values of K at first, whereas the stable OD interval remains
unchanged until that AD is completely destabilized at βc,1 =
0.3. For β > βc,1, OD starts to be destabilized and vanishes
at βc,1 = 0.55. The internal LPF prefers to revive oscillations
from deaths, in strong contrast to the external LPF with
the tendency to quench oscillations. Therefore, implementing
the LPF associated with different terms in the coupling has
two completely distinct effects in manipulating the rhythmic
activity of coupled system: the external LPF in the coupling
hampers the rhythmicity, while the internal LPF facilitates the
revival of oscillations from death states.
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FIG. 4. Quenching and revival of oscillations in two coupled
chaotic Rössler oscillators (7). (a) Bifurcation diagram obtained by
plotting the local maxima of X = x1+x2

2 as a function of α for β = 0
and K = 3. The coupled system (7) undergoes a reverse period-
doubling bifurcation from chaos to one cycle, and then experiences
AD for α > αc = 0.24. (b) Bifurcation diagram as a function of β for
α = 0.4 and K = 3. AD is destabilized at β = βc = 0.444. For β >

βc = 0.444, the coupled system (7) experiences a period-doubling
bifurcation from period-1 oscillation to chaos. (c) The plot of time
series of x1. Chaotic oscillation is regained from AD as β is switched
from 0 to 0.5 at t = 200. K = 3 and α = 0.4 are fixed. (d) K vs α for
the onset of AD for β = 0, 0.3, 0.5, and 0.7.

C. Effect of LPFs on AD with Rössler oscillators

Implementing LPFs in the coupling serves as a very generic
technique to manipulate dynamic activity of a diffusively cou-
pled system. To validate the generality, our study is extended
to the following system of coupled chaotic Rössler oscillators
with LPFs in the coupling:

ẋ j = −y j − z j,

ẏ j = x j + ay j + K[uk (t ) − v j (t )], (7)

ż j = b + z j (x j − c),

αu̇k = −uk + yk, (8)

βv̇ j = −v j + y j, (9)

where a = b = 0.1, c = 14, j, k = 1, 2, and j �= k. For K =0,
each uncoupled Rössler oscillator exhibits a phase-coherent
chaotic motion, and it has an unstable focus P = (x∗, y∗, z∗)
with x∗ = −ay∗, y∗ = −z∗, and z∗ = c−√

c2−4ab
2a . System (7)

suffers AD via the manifestation of suppression of the chaotic
oscillations due to a stabilization of P. The emergence of AD
can be identified from the characteristic equation of system
(7) with the LPFs (8) and (9) at P [36].

Figure 4(a) shows the bifurcation diagrams by plotting the
local maximum of the centroid X = x1+x2

2 as a function of
α for the coupled system (7) with K = 3 and β = 0. As α

is increased, a reverse period-doubling cascade from chaos
takes place, leading to period-1 oscillation at α = 0.153; the

oscillation collapses to the fixed point P at α = 0.244. This
observation confirms that AD is indeed induced by imposing
the external LPF in coupled chaotic Rössler oscillators, where
the bifurcation route leading to AD is much richer than that
in coupled Stuart-Landau oscillators. As the internal LPF is
incorporated, the AD is stable only if β < 0.444 in Fig. 4(b)
with K = 3 and α = 0.4 fixed. Upon further increasing β,
the period-doubling bifurcation from period-1 oscillation to
chaos is revived from AD. The chaotic oscillations suppressed
by the external LPF can be regained by implementing the
internal LPF, which can be directly seen from the plot of
the time series of X in Fig. 4(c) with β switching from 0
to 0.5 at t = 200. To gain an overall view of the distinct
roles of the two LPFs, Fig. 4(d) depicts the dependence of
K on α for the onset of AD for β = 0, 0.3, 0.5, and 0.7. It
is evident that the emergence of AD critically depends on
both α and β: the threshold of coupling strength K for AD
monotonically decreases for increasing α and rapidly grows
for increasing β. Therefore, we corroborate the generic nature
of the external LPF in quenching oscillations and the internal
LPF in sustaining rhythmicity.

D. Effect of LPFs on AD with electrochemical oscillators

The effects of LPFs in the coupling on the oscillatory dy-
namics are further experimentally explored with two coupled
electrochemical oscillators. The nickel electrodissolution in

α = 0
β = 0

α = 10 s
β = 0

α = 10 s
β = 0.5 s

(a) (b)

(c)

FIG. 5. Inducing AD and reviving the electrochemical oscilla-
tions with coupling through LPFs. (a) Experimental setup. Rind:
Individual resistances attached to the Ni wires. Vk (t ) and ik (t ) are the
applied circuit potentials and the measured currents for electrodes
k = 1, 2, respectively. (b) Experimental implementation of feedback
scheme. The measured currents [ik (t )] are filtered with coefficients
α and β in Eqs. (2) and (3) to obtain the corresponding uk (t ) and
vk (t ) variables. The potentiostat (GILL IK64) applies feedback with
set potential V0 and gain K . (c) Synchronized oscillations, AD,
and regained oscillations with coupling (K = −0.3 V/mA) without
LPF (t < 20 s, α = 0, β = 0), LPF in external signal (20 s � t <

110 s, α = 10 s, β = 0), and LPFs in both external and internal sig-
nals (t � 110 s, α = 10 s, β = 0.5 s), respectively. V0 = 1100 mV,
Rind = 5 kOhm.
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3 mol/L sulfuric acid electrolyte at 10 ◦C exhibits current
oscillations at constant circuit potential and individual resis-
tance attached to the wires [24]. We use two such wires, as
shown in Fig. 5(a); the currents (proportional to the metal dis-
solution rate) are filtered with a LPF, and the circuit potential
of each wire is adjusted according to the coupling scheme in
Fig. 5(b). The coupling is induced by small adjustments of
the circuit potential, proportional to the difference between
the external and internal coupling variables. As shown in
Fig. 5(c), without any filters the oscillations exhibit in-phase
synchronization. With a LPF only in the external variable
(α = 10 s, β = 0), AD is observed. The addition of a LPF in
the internal variable (α = 10 s, β = 0.5 s) revives oscillations
from AD. The electrochemical experiments well confirm that
introducing coupling through the LPFs serves as a powerful
technique to control oscillatory behaviors.

III. CONCLUSIONS

To conclude, we have unraveled two distinctly opposite ef-
fects of a LPF in manipulating rhythmic dynamics by examin-
ing its role in the external and internal signals of the coupling.
Using numerical examples, we showed that the limit-cycle
oscillations of coupled Stuart-Landau oscillators are quenched
by the external LPF, and they are regained by the internal
LPF. The chaotic dynamics of coupled Rössler oscillators is
annihilated to achieve AD through a reverse period-doubling
cascade by implementing the external LPF, which is restored
via a typical period-doubling bifurcation when imposing the
internal LPF. Unlike conventional diffusive coupling, in the
proposed coupling scheme the output signals of all the oscil-
lators are independently filtered by LPFs. When the internal
signal of the coupling is attenuated via a LPF, the macroscopic
rhythmic activities of the coupled system could be weakened
seriously or even completely lost due to the high possibility of
the occurrence of AD (OD). The external LPF of the coupling
has a strong tendency to induce (facilitate) AD (OD) to quench
oscillations of the coupled system, while the filtered internal
coupling can restore oscillations from both AD and OD.

We have experimentally demonstrated the ability to control
the rhythmogenesis of two electrochemical reactions coupled
with LPFs. The linear LPFs of the coupling were shown to

be vital and nontrivial factors in manipulating rhythmic be-
haviors of coupled systems. In realistic circumstances, signals
often suffer inevitable dispersion and attenuation during their
transmissions in diverse communication channels. The cou-
pling scheme with LPFs is thus of practical importance. Our
study may expand the understanding of the roots of emergence
of rhythmicity in populations of real-world systems, espe-
cially in biology, such as in the context of genetic regulatory
networks [37], where diffusion of autoinducer (AI) molecules
between the cell membranes is commonly governed by a
quorum sensing with dynamical evolution quite similar to the
LPF coupling.

Finally, we would like to emphasize that although only one
experimental (electrochemical) situation is described in the
present work, the proposed coupling technique is plausible
in many other experimental systems, where oscillatory units
in the networks can be reconnected by incorporating LPFs
before they are coupled, such as in networks of unijunction
transistors [38], Mackey-Glass analog circuits [39], semi-
conductor lasers [40], and photochemically coupled catalytic
micro-oscillators [41]. In fact, the filtered internal coupling
has recently been experimentally demonstrated to revive oscil-
lations from AD and OD in two mean-field coupled nonlinear
circuits [27], where the competing role of the filtered external
coupling in inducing death is ignored. As LPFs are quite
relevant and omnipresent in biological and physical systems
[42–44], our results are expected to be of widespread experi-
mental applicability.
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